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Abstract

In the last three years in the continuum mechanics of solids literature, physics-informed neural networks
(PINNSs) which use neural networks for numerical solution of partial differential equations (PDEs) have
mounted a challenge to the de facto ruler of PDE solvers in that field: the finite element method (FEM).
Such PINNs have intrinsic advantages over FEM in that (i) they are mesh-free and (ii) they do not have an
explicit time discretization scheme; however PINNs as a numerical method for solving PDEs are currently in
their infancy and are notoriously difficult to work with. In this project, I use the modern language Julia to
construct two PINNs for example problems in (i) linear elasticity and (ii) finite deformation hyperelasticity,
documenting my challenges and strategies developed along the way. I compare the PINN results to FEM
results both for the purposes of validation and of performance comparisons between the two methods. The
PINN and FEM codes for this project are publicly available on GitHub, along with a list of tips and tricks
for constructing PINNs that I accumulated during my project development.

Code and tips repository

https://github.com/ericstewart36/pinnsforsolids
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1 Introduction

The Finite Element Method (FEM) reigns supreme among PDE solvers in computational engineering design
and analysis, having racked up over 80 years of applications in solid and fluid mechanics, heat transport,
biomechanics, electromagnetics, and more (cf. e.g. Liu et al., 2022). The practices and algorithms underlying
FEM trace their roots back to seminal works in continuum mechanics of solids, most notably

e Hrennikoff (1941) which first introduced the concept of a “mesh” discretization for elasticity problems,
and

e Courant (1943) which introduced a variational method for solving mechanical equilibrium and vibration
problems.

Since these two papers, developments tied to FEM have “fundamentally revolutionized the way we do scientific
modeling and engineering design, ranging from automobiles, aircraft, marine structures, bridges, highways,
and high-rise buildings” (Liu et al., 2022) and ultimately led to the very formation of my field of research:
computational solid mechanics.

Numerous other methods exist for numerical solution of PDEs beyond FEM, e.g. finite difference meth-
ods, finite volume methods, boundary element methods, and most recently physics-informed neural networks
(PINNs). All these methods have individual strengths and weaknesses, making them optimal in some sce-
narios and not in others; FEM’s ease of application to complicated geometries has been central to its success
in engineering design and analysis. However in the last three years, coupled to the rise of scientific machine
learning, PINNs in particular have mounted a challenge to FEM in the solid mechanics literature. Applica-
tions of PINNs in mechanics include phase-field fracture (Goswami et al., 2020), small-strain elastodynamics
(Rao et al., 2021), finite deformation hyperelasticity (Fuhg and Bouklas, 2022), and finite deformation plas-
ticity (Niu et al., 2023). None of these applications has used Julia, instead using TensorFlow or PyTorch.

The primary goal of my project is to construct PINNs in Julia for solving continuum mechanics problems
in (i) linear elasticity and (ii) finite deformation hyperelasticity, and to verify the results of the PINNs against
predictions of FEM programs solving the same problems. Throughout this development and validation
process I have documented my learnings as well as the benefits and shortfalls of PINNs relative to FEM —
which will be very useful for my own research purposes going forward. PINNs are a young technology and
are notoriously difficult to set up, run, and debug and so I have also constructed a list of PINN tips and
tricks to share publicly on GitHub so that others can benefit from the learnings in my work.

2 A brief explanation of PINNs

There are four main ingredients in a PINN. Here I list each ingredient with a brief explanation, as well as
the relevant Julia (*.j1) module(s). The excellent Julia module NeuralPDE. j1 (Zubov et al., 2021) forms
the backbone of the PINN code, and greatly facilitates tying each ingredient together.

1. Loss function: As with all PDE solution methods, we must enforce the governing PDE as well as
any boundary and initial conditions (collectively, the “BCs”). In the context of the PINN, these are
“weakly” enforced by minimizing the loss function
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e we have introduced the vector degree of freedom u € R2.
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moved to one side so that minimizing it enforces the PDE.
e the 2-D body is denoted as B and its 1-D boundary is denoted 0B, as in Fig. 1.

e the function f (ui, etc.) in Lppe(u) is the governing PDE with all non-zero terms

The loss function (2.1) is constructed symbolically in my code using ModelingToolkit.jl. This loss
function encodes the physical information of the problem being solved — it is the physics information
or PI in “PINN".

2. Differentiable Neural Networks: The degrees of freedom (or DOFs — here, the components of the
vector u) are expressed using a neural network as shown in Fig. 1. These neural network degrees of
freedom are the NN in “PINN”.
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Figure 1: A neural network which maps {z1, 22} — u(x1,z2). Spatial derivatives of this neural network are
used to enforce the governing PDE in (2.1).

In the code, the neural network can be built using Flux. j1 or Lux. j1 and acts as a continuous mapping
of the coordinates of the computational domain {z1, 22} to values of the degrees of freedom u(x1,x2).
Importantly, we can relatively easily differentiate neural network DOFs to compute derivatives which
are needed to evaluate the loss function (2.1) — NeuralPDE. j1 uses Zygote. jl for this purpose.

3. Integral estimation: The loss function £(u) in (2.1) is expressed in terms of integrals which must
be estimated numerically. The NeuralPDE. j1 package provides three primary methods for estimating
these integrals: (i) grid methods, (ii) quasi-random methods, and (iii) Gaussian quadrature methods
using the Integrals. j1 package. These methods are illustrated in Fig. 2.
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Figure 2: Tllustrations of three methods for estimating the loss integral £(u).

4. Finally, we use the Optimization. j1 package to iteratively minimize the loss function (2.1) using any
of a wide array of available algorithms. Popular choices include Stochastic Gradient Descent, Adam,
or BFGS / L-BFGS.

Remark. A fundamental assumption of PINNSs is that the neural network which minimizes (2.1) best
satisfies the governing PDE(s) and BC(s), and is therefore the solution to the boundary /initial value



problem under study. We will see in this project that this assumption is not always true; perhaps it’s
more correct to say that the neural network which minimizes (2.1) is the solution which is the “least
wrong” within the particular constraints of the neural network architecture and training regiment we
construct.

3 A PINN for linear elasticity

The continuum theory of linear elasticity is only valid for materials undergoing a small amount of strain, at
most 1-5% — however, it is significantly simpler mathematically than nonlinear “finite deformation” theories.
We therefore use a problem in linear elasticity as a starting point for our PINN implementation, and will
move to more complicated theory after carefully validating the case of linear elasticity.

3.1 Theory
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Figure 3: The reference and deformed configurations, related by the displacement field u(X).

We identify a macroscopically-homogeneous body B with the region of space it occupies in a fixed reference
configuration, and denote by X an arbitrary material point of B. A motion of B to the deformed body B is
then a smooth one-to-one mapping x = X + u(X), with accompanying small strain tensor!

1
€= [Vu+ (Vu)']. (3.1)
The constitutive relation which delivers the stress tensor as a function of strain is then
2
oc=2Ge+ (K - 3G) tr(e) 1 (3.2)

where G and K are the shear and bulk moduli respectively, which both have units of pressure. Finally, the
equation of motion is the governing PDE and is given by

dive + b = pii, (3.3)

where b is a body force per unit volume e.g. gravity, and p is the mass density in kg/m3. The equation (3.3)
is analogous to Newton’s 2nd law but for a continuum body rather than a particle.

INotation: We use standard notation of modern continuum mechanics (Gurtin et al., 2010). Specifically: V and Div denote
the gradient and divergence with respect to the material point X in the reference configuration, and A = DivV denotes the
referential Laplace operator; grad div, and div grad denote these operators with respect to the point x = x(X, t) in the deformed
body; a superposed dot denotes the material time-derivative. Throughout, we write F~1 = (F)~!, F~T = (F)~ T, etc. We
write tr A, sym A, skw A, Ao, and symyA respectively, for the trace, symmetric, skew, deviatoric, and symmetric-deviatoric
parts of a tensor A. Also, the inner product of tensors A and B is denoted by A :B, and the magnitude of A by |A| = VA:A.



3.2 Validation problem: Quasi-static simple shear
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Figure 4: Problem setup for quasi-static simple shear.

As a validation problem, we consider the case of quasi-static simple shear illustrated in Fig. 4. The bottom
edge of the 1 mm square is kept fixed, while the top edge is displaced 0.01 mm in the horizontal direction (a
shear strain of ¥ = [0.01 mm / 1.0mm] = 1%) and the left and right edges are kept traction-free. We neglect
body and inertial forces so that b = it = 0, and using (3.1) and (3.2) we may write (3.3) purely in terms of
displacement vector components as?

1 82U1 82’11,2 82u1 82’&1
K+-G) oo+ —2)+G(Z+==L) =0
( 3 )(8x% +3x13m2)+ ((’h% + 3x%> ’

(3.4)
1 82u1 82UQ 82U2 62U2
K+ -G||+——=— G| =—=+—==1]=0
( +3>(3x13x2+3x§)+ (3x%+3x%> ’
and the boundary conditions are?
'LL1(£C17 0) = 0
us(1,0) = 0 } Bottom edge fixed
up(x1,1) = 0.0l mm .
up(1,1) = 0 } Top edge shear
(K_gg)(aul 8“2) G<a“1> -0
L 81:1 8x2 8931 ] (Oa: ) .
2 Left edge traction-free (3.5)
<8u2 aul)

G|=—+ =0

8:01 8x2 (0,22)

(KgG)<au1+au2>+G<aul> =0
L 8331 6.1‘2 8331 1 11,22) . .
*2 Right edge traction-free

aUQ 8u1
G| —+ =0

8.1'1 8332 (1,22)

For simplicity and to keep the different contributions to the loss function unity order of magnitude we use
unit material parameters, which in our unit system is G =1 MPa and K = 1 MPa.

Remark.

In FEM, traction-free boundary conditions are enforced on a given edge “naturally” by the nature of the
weak form, i.e. if one does not apply Dirichlet or Neumann boundary conditions to an edge that edge is
naturally traction-free. This is not the case for PINNs, since they do not use a similar “weak form” of the
governing PDE but rather the loss function (2.1) — in fact, before I realized I had to explicitly enforce the
traction-free conditions (3.5)5_g I observed erroneous results from my PINNs.

20ne of the foundation assumptions of linear elasticity is that deformations are sufficiently small that

o} () ~ o]
oz 09X,
3The traction-free boundary condition requires that en = 0, which for the right and left edges means 11 = 012 = 0.

()



3.3 Naive approach PINN results

For the initial PINN architecture, I used two separate neural networks for us (1, x2) and ug(z1,22) which
each had 2 hidden layers that were 5 nodes wide, with hyperbolic tangent activation functions.* I used the
quadrature integral estimation method, and training consisted of (i) 2000 steps of Adam with a learning rate
of 1073, then (ii) 2000 steps of Adam with a learning rate of 10~%, and finally (iii) 10,000 steps of LBFGS.?
The loss during training, contours of the solution variables wj(z1, 22) and uz(x1,z2) on the deformed body,
reference FEM solution generated from code I wrote in the open-source finite element program FEniCS
(Logg et al., 2012; Alnees et al., 2015), and contours of relative error between the PINN and FEM are shown
in Figure 5. Visualization of the FEniCS results are created in the open-source program ParaView (Ahrens
et al., 2005), and visualizations of the PINN results are created using Julia’s Plots. j1 module.
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Figure 5: Results from the (ug,us)-based PINN: (a) loss during training, (b) contours of u; and us on the
deformed body from the PINN, (c) contours of u; and us on the deformed body from FEM, and (d) contours
of error in u; and us for the PINN relative to FEM on the deformed body. Deformed geometries are shown
with displacements multiplied by a factor of 10.

Although the final loss value is reasonably low (around 10~2) the contours of u; and us are qualitatively
quite different from those of the reference FEM solution. For example, while u; in the PINN does increase
with o, the actual values at the top and bottom edges are quite off from their enforced values of 0.01 and
0 mm respectively, and the values of the degrees of freedom are not uniform along the top and bottom edges
as required. The PINN seems to have captured the broad strokes of the problem, but the enforcement of
boundary conditions in particular is quite poor and the deformed shape of the body — indicative of how
well the governing PDE is being solved — is quite different from that of the FEM solution.

4Through much experimentation with neural networks as deep as 6 layers and as wide as 100 nodes per layer, I found that
the number of hidden layers did not make much of a difference in the final results, nor did the dimension of the hidden layers
so long as that dimension is £ 4. Therefore I do not dwell on the specific architecture of the neural network chains in this work
and simply present results from a single reasonably-sized architecture. Also, the hyperbolic tangent activation function for the
hidden layers seemed to yield the best results.

5Not much happens during LBFGS training for this initial study, but the LBFGS stage proved essential for future studies.



3.4 “Mixed formulation” PINN results

After much experimentation, I found that the best remedy to the poor results of the PINN in Fig. 5 was to
recast the problem as a “mixed formulation” in terms of the five degrees of freedom®

{Ul,UQ,O'll,UQQ,UlQ}, (36)

so that all of the governing equations and boundary conditions are exclusively in terms of first derivatives
of the degrees of freedom, in contrast to (3.4) which includes second derivatives. Specifically, the equation
of motion becomes

80'11 60'12

=0
61‘1 8.132 ’
0012 0022 -0 (3.7)
0z, Oxe
However, we must now enforce the constitutive relation (3.2) as three extra governing equations, viz.
aul 8U2 8u1
= (K G 2G —
u ( * > (81‘1 * 8372) * 8.1‘1
Bul 3uz 8uQ
=(K G — | +2G — 3.8
022 ( + ) <8m1 + 8332) 0x4 (38)
8U1 8UQ
=G |—+—].
au <8$2 + (91'1)
Then, the boundary conditions are simply
up (x1,0) = Bottom edge fixed
uz(x1,0) =
ui(x1,1) = 0.0l mm .
up(1,1) = 0 Top edge shear
11‘(0’“"2) } Left edge traction-free
J12 (0712) =0
o =0
11‘(1,1:2) Right edge traction-free
J12 (1,r2) =0

To reiterate, the main difference between this formulation and the previous one is that it involves lower-order
derivatives for all quantities — at the cost of introducing three extra degrees of freedom and three extra
governing equations for the stress tensor components.

The architecture for the neural networks, integral estimation methods, and training methods are identical
to the previous section.” The results of the “mixed formulation” PINN are vastly improved over the previous
results, suggesting that with all else equal, our PINN has greater accuracy for problems involving lower-
order derivatives. The loss during training, contours of the solution variables wuj(z1, 22) and us(x1,z2) on
the deformed body, reference FEM solution generated from code I wrote in the open-source finite element
program FEniCS, and contours of relative error between the PINN and FEM are shown in Figure 6.

6The linear elastic stress tensor is symmetric so that o132 = 0921.

7 Although the neural network for each degree of freedom is the same size as in the previous problem, the fact that we have 5
degrees of freedom for the mixed formulation means we necessarily have more total parameters. However, the greater expressive
power of the model itself does not seem to be the reason for the improved performance, since I ran experiments on 2-degree of
freedom models with similar number of parameters which still did not yield satisfactory results.
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Figure 6: Results from the (uq,ug, 011,022, 012)-based PINN: (a) loss during training, (b) contours of u; and
ug on the deformed body from the PINN, (c) contours of u; and uy on the deformed body from FEM, and
(d) contours of error in u; and wus for the PINN relative to FEM on the deformed body. Deformed geometries
are shown with displacements multiplied by a factor of 10.
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Figure 7: Contours of the components of the stress tensor predicted by (a) the mixed formulation PINN and
(b) FEM. Deformed geometries are shown with displacements multiplied by a factor of 10.

The contours of u; from the mixed formulation PINN are pretty much spot-on with the FEM solution
— the RMS error value between the PINN and FEM is 5.962e-5 mm or ~ 60 nm. The RMS error for us is
similarly low, 1.217e-4 mm or ~ 120 nm. Additionally, the deformed shape of the square agrees quite well
with that of the FEM, indicating good satisfaction of the governing PDEs. In Fig. 7 we also plot contours



of the components of the stress tensor predicted by the PINN versus those from FEM, and can see that all
are in reasonably good agreement. Most importantly, the value of the shear stress o1 in the middle of the
domain goes to 0.01 MPa, as required by the analytical expression

o12 =G, (3.10)

where here G = 1 MPa and « = 0.01. We take the good quantitative agreement in displacement and stress
fields between the PINN and FEM as validation of our PINN implementation of linear elasticity.

3.5 Some remarks on the performance of the PINN versus FEM

In general, the PINNs in my work have significantly worse performance (higher runtime) than my FEM code
which solves an identical problem. This is due to several factors, but in my view the two biggest are:

e FEM algorithms have had the benefit of several decades of performance improvements while PINNs
are really still in their infancy, and

e my PINNSs rely on the most resource-intensive part of neural network development — the training —
to come up with a solution to a PDE.

As a benchmark, the time to generate a solution to the quasi-static simple shear problem for the PINN,
FEniCS-based FEM (written in Python), and Abaqus-based FEM (written in FORTRAN) are shown in
Table 1. Here, the timing was measured against the longest step in the solution procedure — for the PINN
this was the training, and for the FEM codes this was the Newton-Raphson solver. My machine is a 2019
Macbook Pro with a 2.4 GHz Quad-Core Intel Core i5 processor and 16 GB of RAM.

Table 1: Time to solve the quasi-static simple shear problem for the PINN versus two FEM softwares.

PINN FEniCS FEM (Python) Abaqus FEM (FORTRAN)
23m 29.64s 0.538s 0.200s

Clearly, there is a huge gap in performance between the PINN and both FEM softwares. Since Flux. jl
and Lux. j1 support GPU-based training, I attempted close this gap by by training the PINN neural network
on a GPU. I was eventually able to run the neural network training on a GPU on JuliaHub, but this ultimately
did not actually speed up the training process for the PINN. I was unable to find out why the GPU did
not speed up the training process within the time constraints of the project, so stuck with my CPU for the
results shown.

4 A PINN for hyperelasticity

Having carefully validated our PINN for linear elasticity, we move on to more complicated theory — finite
deformation hyperelasticity. The theory in this section is much more general than that of the previous
section, and is not limited to small deformations. Such a theory is typically applicable to soft materials,
especially elastomers and polymer gels. For simplicity, however, we still use unit material parameter values
of G =1 MPa and K =1 MPa.



4.1 Theory

The kinematics of finite deformations are described by the deformation gradient tensor®

F=1+Vu, (4.2)

which encodes all the stretching and rotation information of the body’s deformation. Further, the volumetric
deformation is measured by
J=detF >0, (4.3)

so that F is invertible. The free energy of the deformable body is then a function of F, and here we will use
the compressible Neo-Hookean form for the free energy®

Vn = %G(tr (FTF)—3—2InJ)+ %K(J —1)% (4.4)

In finite deformations there are many different stress measures, but here we will use the Piola stress tensor
Tr. For thermodynamic consistency, the Piola stress tensor is given by the derivative of the free energy
function with respect to F,

_ 0w

T. =
BTOOF

—GF-F )+ K(J-1)F . (4.5)

Remark. Writing out the components of the expression (4.5) for the Piola stress in terms of u; and us is
quite lengthy and complex, since it involves the inverse of F as well as its determinant. However, I was able
to use ModelingToolkit. jl to evaluate the stress tensor symbolically in the PINN code rather than writing
it out in full.

Finally, the referential form of the equation of motion is the governing PDE, given by
Div Ty + br = pri, (4.6)

where b is a body force per unit volume of the reference body e.g. gravity, and py is the referential mass
density in kg/m?>.

4.2 Example problem: quasi-static large extension of a soft material

To test out our finite-deformation hyperelasticity PINN, we model an example problem that involves large
levels of stretching well beyond the limit of applicability for linear elasticity, shown in Fig. 8. The upper
edge of the specimen is extended 1 mm in the vertical direction while the bottom edge is held fixed. During
the deformation, the sides of the specimen contract inwards significantly to accommodate the large levels of
stretch in the vertical direction. As before, we neglect body forces and assume the deformation is quasi-static
so that by = u = 0.

8For this project, I assume plane strain conditions prevail so that

ouq ouq 0
0X1 0X.
F = Oug 14 U2 ol - (4.1)
6X1 6X2
0 0

9Generally, quantities with the subscript (-)r indicate a quantity measured in the reference body.

10
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Figure 8: Problem setup for large extension.

We again use a “mixed formulation” for solving the problem in terms of displacements and the components
of the stress tensor. Importantly, the Piola stress tensor is not symmetric so we must use six degrees of
freedom

{ur,u2, Tr,11, Tr,22, Troi2, Tro21 - (4.7)

Neglecting body and inertial forces, the equation of motion is then

0Tr11  O1n21

-0,
00X, 0X, (4.8)
OTr12 | OTg2a 0
00X, X,

as before, the constitutive relations must be enforced as four extra equations to determine the four indepen-
dent in-plane components of the Piola stress T.' Finally, the boundary conditions are

u1 (.’1717 0) =0
uz(x1,0) =0 Bottom edge fixed
ul(l.lv ]-) =0
us(z1,1) = 1.0mm Top edge pull
. -y (4.9)
o ’(O’Iz) Left edge traction-free
Ty01| =0
) (0,z2)
T; =0
- ’(1’1’2) } Right edge traction-free
Teo1| () 4y =0

Remark. To obtain results which better enforce the boundary conditions in the hyperelasticity PINN, we
modify the loss function (2.1); to the augmented form

‘C(u) = AepE ﬁPDE(u) + Ascs ‘CBCS(u)7 (4.10)

with specific values Appr = 1 and Age, = 10. The general strategy (4.10) of re-weighting different loss
function contributions has been successfully employed in applications in the literature by e.g. Rao et al.
(2021).

0For brevity, the lengthy expressions for the components of the Piola stress tensor in terms of u; and ug are omitted here,
cf. the Remark on p. 10.

11



4.3 Hyperelasticity PINN results

The architecture for the neural networks and integral estimation methods are identical to those used for
linear elasticity. However for the hyperelasticity problem I found that training took much longer due to
the increased complexity of the governing equations and boundary conditions, and that LBFGS was the
best-performing optimization algorithm by far. I therefore trained the neural network for only 500 steps of
LBFGS, after which the loss seemed to have converged. The loss during training, contours of the solution
variables uj(z1,22) and ug(z1,22) on the deformed body, reference FEM solution generated from code I
wrote in the open-source finite element program FEniCS are shown in Figure 9.

Although the loss only converges to a value on the order of 1, the hyperelasticity PINN still does quite
well predicting the deformed shape of the body versus FEM. The PINN result displays the characteristic
“hourglass” type shape we’d expect, and matches the values of u; through the body very well. The lateral
contraction predicted by the PINN is close to that predicted by the FEM, although the PINN has contracted
by 0.15mm on each side in contrast to the 0.13mm predicted by FEM. Near the corners of the finite
element mesh, you can see that the mesh is perhaps not fine enough of a resolution to fully resolve the local
deformation and appears piecewise linear — the PINN, not being confined to a spatial mesh, does not suffer
from this issue and appears smooth near the corners.!!
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Figure 9: Results from the hyperelastic PINN: (a) loss during training, (b) contours of u; and ug on the
deformed body from the PINN, (c) contours of u; and ug on the deformed body from FEM. Importantly,
the deformed body in all cases is shown at true scale.

The Piola stress components predicted by the PINN and the corresponding FEM are shown in Fig. 10.
Although the scale of the legend is a bit different for some stress components in the PINN versus FEM,
in general the distribution of stress values in the deformed body is similar for both solvers. Since we are
applying a stretch in the es-direction, the normal component of the stress in this direction 7y 22 is the most
important component — and both the PINN and the FEM report a value of Ty 22 = 1.85 MPa in the bulk of
the body. Although the quantitative agreement for the other Piola stress tensor components is weaker, the

11Probably the best way to resolve which of the PINN or FEM predictions is more correct near the corners is to run an actual
physical experiment!
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qualitative patterns of each component (where the stresses are locally higher and lower in the body) agree
well between the PINN and FEM. I believe even better quantitative agreement in these other Piola stress
components could be achieved with greater training time.
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Figure 10: Contours of the Piola stress components Ty 11,7k 22, Tx,12, and Ty 91 in the deformed body
predicted by (a) the PINN and (b) the FEniCS FEM. The deformed body is shown at true scale.

4.4 Attempts at a PINN for dynamic hyperelasticity

Having established the baseline capabilities for my PINN to model finite deformation hyperelasticity of
rubber-like materials, I then spent some time trying to add inertial effects (or dynamics, modeled by the
acceleration term pg 0 in (4.6)). Adding these effects introduces significant complexity to the PINN, specif-
ically

e a new material parameter py for the mass density of the material,
e a new temporal dimension ¢ as input to the PINN, and
e second derivatives of the displacement with respect to time,

and a similar “mixed formulation” necessitates the use of eight total degrees of freedom

{u1,ug, 01,2, Ty 11, Tr,22, Tr 12, Tro21 }- (4.11)

I was ultimately unsuccessful in getting reasonable results from the dynamic PINN in time for the project,
but I have publicly posted the code for a dynamic hyperelastic PINN and reference FEM code on the project
GitHub as a starting point for someone else, or myself in the future to pursue this direction. To the best of
my knowledge, such a dynamic hyperelastic PINN has not been previously demonstrated in the literature
and so would be a very nice and novel contribution.
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5 Source codes and general tips for PINNs
I have constructed a publicly available GitHub repository,
https://github.com/ericstewart36/pinnsforsolids

which contains all the Julia PINN codes and Python FEniCS codes used in this work, as well as a list of
helpful tips, tricks, and best practices for PINNs that I learned during this project. I now present the tips
and tricks from my work here:

e BC enforcement: Unlike FEM, PINNs only “weakly” enforce the boundary conditions via the loss
function — that is, they permit solutions which do not completely satisfy the applied boundary con-
ditions. If you have trouble with BC enforcement, you can use the augmented loss function scheme
(4.10) to improve the enforcement of the BCs by setting Apc, > Appe.

— The paper Rao et al. (2021) presents a scheme for forcible boundary condition enforcement using
a composition of three functions: one which satisfies the boundary conditions precisely, one which
measures the distance to the nearest boundary condition “edge”, and one which represents the
solution within the domain. Implementing this approach in NeuralPDE. j1 could be a nice future
project.

e Low-order derivatives: I found that reformulating my problem in terms of lower-order derivatives —
even at the cost of extra governing equations and degrees of freedom — was essential to getting accurate
results from my PINN. This observation has been made before in the literature for TensorFlow-based
PINNs by Rao et al. (2021).

e Neural network architecture: I found that solving PDEs on a unit square does not require very
deep or wide neural networks — 2 hidden layers with 5 hidden nodes each and hyperbolic tangent
activation was sufficient. In general, the optimization process and problem formulation matter much
more than neural network architecture.

e Optimization algorithms: Adam and BFGS/LBFGS seem to work the best for training PINNS —
Adam for a fast “burn-in” process and BFGS/LBFGS to drill down to finer scales.

e Material parameters: I found that using physical values of the material parameters (e.g. steel
has G = 210,000 MPa and K = 245,000 MPa) led to poor convergence behavior since the different
components of the loss function had different orders of magnitude. For best convergence in physical
problems, it is essential to devise a unit system and normalization scheme which renders the different
components of the loss functions similar orders of magnitude.

— In this work I sidestep the issue of material parameter scaling by simply using unit material
parameters rather than physically representative values. However, for PINNs to be useful in
engineering they must be able to accommodate physical values of material parameters.

6 Concluding remarks

This project has been a very valuable learning experience for me about PINNs and the Julia language. I
heavily leveraged many existing Julia tools — especially NeuralPDE. j1 — and was still ultimately surprised
by how lengthy and difficult it was to set up a PINN for problems in continuum mechanics and get reasonable
comparison to FEM results. I constructed a list of useful tips and tricks for PINNs based on my experience
and have made it publicly available, so that ideally others don’t have to re-learn these items.

In the end, I was able to construct PINNSs for (i) linear elasticity and (ii) finite deformation hyperelasticity
which yield favorable comparisons to finite element solutions of the same problems. Although PINNs for
similar constitutive models and governing equations exist in the literature, these are the first such PINNs
written using Julia. In terms of performance, the PINNs are on the order of 1,000 times slower than FEM
— but to be fair the technology is still in its infancy in comparison to FEM.
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While PINNs are a bit cumbersome, we are only at the beginning of their story and I am optimistic about
their future applications in continuum mechanics of solids. Their development is tethered to the development
of one of the fastest-growing fields of scientific machine learning — neural networks — and since they are
mesh-free and lack any explicit time discretization I believe they will be superior to FEM for select problems
in continuum mechanics. Examples of such problems include e.g. resolving the stress singularity at a crack
tip or modeling shocks in solids.
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