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Abstract—The parallel map operation is an important par-
allelization primitive which can be used as a ”parallel for”
to accelerate serial code, or to build models of parallel code
such as ”Map-Reduce”. In Python, several existing libraries
provide parallel map functions. However, each has drawbacks.
Additionally, nested parallel map operations are typically prob-
lematic. YieldTasks improves on these situations by providing a
library that separates the implementation of parallelism from
the expression of parallelism, allowing the user to write code
once and change which library they rely on for parallelism
depending on the current scenario without re-writing a significant
portion of code. YieldTasks is also specifically designed to handle
nested parallelism efficiently. We discuss the motivation and
design decisions of YieldTasks, and describe an implementation
based on Multiprocessing. We use Qsearch, a quantum gate
synthesis program, as a case study, and benchmark the original
Qsearch implementation (based on Multiprocessing) against one
modified to use YieldTasks for better organization of parallelism.
We observe significant performance improvements from using
YieldTasks in this case study.

Source code for my implementation of YieldTasks can be
found at https://github.com/WolfLink/yieldtasks [8].

I. INTRODUCTION

The parallel map operation is an important parallelization
primitive that is both easy to switch to from common loop
structures in serial code and as a building block for other
parallel models. It involves applying one function to large set
of different inputs, where each function call is independent
from the other function calls within the map operation.

The map operation shows up frequently in the form of
iterating over a list or other collection of objects, and per-
forming the same operation on each object. In serial code,
this often takes the form of a for loop, but can also show up
as a ”map” function call. Many parallelism libraries include
some form of a parallel map function call. In Python, this
includes ”imap unordered” from Multiprocessing [4], ”ap-
plymap” from dask [6], and ”map” from TensorFlow [1].
Some libraries use other models of parallelism, such as Parsl
”apps” [2], or Map Reduce [11], which does provide a similar
”map” operation but it retrieves input and stores output to a
filesystem, since it is designed to be used in the specific map-
reduce pattern rather than as a more general ”parallel for”
operation.

However, each of these libraries have their drawbacks, and
users may want to use different libraries for different use
cases. For example, it is often more convenient and performant
to use Multiprocessing for using one computer with a few
processors, such as a personal laptop, while Dask is better
suited for scaling to supercomputers. It is good practice to

start with small-scale proof-of-concept code before scaling
up to datacenter-size operations. However, starting with a
datacenter-ready library adds overhead to beginning a project.

Currently, using a particular library for parallelism involves
building the codebase around that specific library. Switching
to a different parallelism library generally involves rewriting
every line of code that invokes a parallel map, and often
additional setup, and sometimes may require specific format-
ting of data [1]. For these reasons, it is desirable to have
one parallelism ”frontend” which allows the expression of
parallelism, separate from the ”backend” which contains the
implementation of parallelism. With such a library, it is possi-
ble to switch between different implementations of parallelism
for different use cases without modifying significant portions
of the code [2].

Another issue with common parallel map operations is
when nested for loops or map operations appear. It can
be a significant performance boost to parallelize each map
operation, but doing so with existing parallelization libraries
may cause performance detriment or even crash.

YieldTasks solves these problems by presenting a simple
parallel map ”frontend” that handles nested parallelism nicely,
and allows switching the parallel ”backend” without only a
small modificaiton to one line of code.

In this paper, I describe the design and motivation for Yield-
Tasks, my backend implementation based on Multiprocessing,
and validate its benefits with a case study of improving the
performance of Qsearch [9], a quantum gate synthesis tool
which is readily parallelizable, but difficult to do so effectively
with other parallelism libraries.

II. BACKGROUND

The parallel map operation is a common primitive for
parallelism. In Python, there are implementations of it in many
popular parallelism libraries. However, there are difficulties
with properly implementing parallelism in Python due to the
Global Interpreter Lock (GIL) which is present in the popular
CPython implementation of Python [3], [14]. Additionally,
there are more general difficulties with nested parallelism,
which are present even in libraries that do implement parallel
map operations in Python.

A. Importance of the Parallel Map

The parallel map operation, sometimes known as a ”parallel
for”, can be defined as a function result = map(f, data)
that takes in a function f and a collection of data data, and
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performs f on each element of data, and returns a collection
of the results.

The parallel map operation is an important primitive for
parallelism. It can be used directly as a replacement for a for
loop when loop iterations are independent of each other [15]. It
also can be used to build the parallelism primitives for other
parallel models. For example, both the ”map” and ”reduce”
operations of Map-Reduce [11] can be implemented with a
parallel map operation.

B. The Global Interpreter Lock

CPython, one of the most popular implementations of
Python, has a Global Interpreter Lock (GIL) [3], [14]. The
GIL prevents true thread-based parallelism. While it is possible
to spawn multiple threads within a Python program, the GIL
only allows one thread to go through critical parts of the
execution process at a time. Multithreaded Python code can
see a speedup when the primary bottleneck are filesystem or
network IO, or calls to certain calls to running non-Python
code which release the GIL. However, more generally the
GIL prevents true thread-based parallelism. This means that
most Python parallelism libraries rely on creating subprocesses
instead, which has a slightly higher overhead, and has other
implications such as requiring any data that the new subprocess
needs to be in a format that can be sent between processes
[12], [14].

C. Pickling

A common way to send data between processes involves
”Pickling” [5], a standardized way for Python objects to
serialize and un-serialize. The serialized data can be written to
a file, sent across a pipe, or sent across a network. The Python
Pickle module implements serialization for basic types (such
as integers, floats, booleans, strings, and None), functions,
and collections or object instances involving only pickleable
data. Users can implement their own functions to serialize
and unserialize their data when the default implementation is
inefficient or insufficient.

Pickled objects are binary or text data, and are readily
written to files, sent across pipes, or sent over networks.
For example, the Multiprocessing library uses pipes to send
pickled objects between processes.

D. Existing Parallelism Libraries

There are many existing parallelism libraries for Python
that provide parallel map operations. However, each has its
drawbacks. I will cover several popular examples.

1) Multiprocessing: Multiprocessing is a library provided
with Python in the standard library. It provides two parallel
map, ”Pool.imap” and ”Pool.imap unordered”. The difference
between the two is ”imap” returns outputs in the order of
the input data, while ”imap unordered” returns outputs in the
order that they finished processing. Both of these operations
rely on ”Multiprocessing.Pool”, which generates and manages
a pool of subprocesses. Pipes are used to send pickled data
between processes.

Multiprocessing is relatively lightweight and performs well,
but is not suitable for nested parallelism. The subprocesses
performing ”imap” operations are not able to submit more
work to the pool, and creating a pool within one of these
processes creates subprocesses of the subprocess, at best
creating oversubscription and at worst causing crashes related
to opening too many pipes or processes.

Additionally, ”Multiprocessing.Pool” does not support more
complex scenarios, such as multiple networked computers or
a multi-node supercomputer.

2) Dask: Dask is an advanced parallelism library for
Python that provides complex configuration and is readily ap-
plicable to scalable enviornments, such as networked comput-
ers or multi-node supercomputers. However, if not configured
well, it can be less performant than multiprocessing. Also, it
requires use of Dask dataframes to use the built-in ”applymap”
operation.

3) Tensorflow: Tensorflow is a library for accelerating
linear algebra, and is particularly suited for cases involving
machine learning. It can automatically run parallel code on
multiple cores or on a GPU. It includes a ”map” operation,
however, using it requires formatting data in a Tensorflow
array. These arrays are limited to containing only numerical
data, as opposed to Dask dataframes which can contain any
serializable (e.g. pickleable) python object.

Each of these parallelism libraries has its benefits. Mul-
tiprocessing is the simplest and most lightweight, Dask is
the most versatile, and Tensorflow supports GPUs. However,
Multiprocessing and Tensorflow do not readily support nested
parallelism, and Dask requires extensive configuration, and
introduces a large overhead.

E. Nested Parallel Maps
In some cases, code may exhibit multiple nested for loops,

or nested map operations. This can become a barrier to
parallelization, because performing the operations normally
involved in performing a parallel map, such as spawning sub-
processes, can cause reduced performance or even cause a
program to crash.

The usual recommendation is to combine multiple loops into
one larger loop. This technique is known as loop collapsing
[13]. For example, one way to iterate over all pairs of objects
between two sets would be to have two nested loops, one
that iterates over objects in one set, and one that iterates over
the the other set. However, another approach would be to
generate all pairs and iterate over the set of all pairs. This
”collapsed” loop performs the same set of computations, but as
one large loop that is easier to parallelize as it does not involve
nested parallelism. However, this requires the programmer to
carefully consider the implications of loops in their code,
which may not always be simple or even possible.

In a project with multiple interacting parts, it may be dif-
ficult to properly collapse loops without making assumptions
about how different parts will fit together. Additionally, loops
that cannot be parallelized (because iterations are not indepen-
dent) within a series of nested loops can make collapsing all
of the loops impossible. Examples of both of these issues are
discussed in Section V.
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One central issue to managing nested parallel maps is that
generally, the outermost layer of code is the layer that is most
appropriate to implement parallelism, but inner layers may
want to express parallelism, without the layers in-between
needing to facilitate communication across these abstraction
boundaries.

III. YIELDTASKS DESIGN

The basic principle of YieldTasks is to encapsulate running
code in a way that it can be stored as data while waiting for
new input data. This is accomplished through the use of Python
Generators and the ”yield” keyword. A system for organizing
the running of code is also required.

The YieldTasks API includes two core objects: the Task,
and the TaskQueue. The TaskQueue must be subclassed with
an implementation based on another parallelism library. The
Task object and the TaskQueue.map function should stay
compatible. This allows a user to swap parallelism ”backends”
by switching which subclass of TaskQueue is used, without
modifying any other code.

The ”TaskQueue.map” or ”TaskQueue.run” function should
be used at the outermost layer to call into YieldTasks. All
other parallel map calls can be performed with lines involving
the ”yield” keyword and either user-implemented subclasses
of Task, or functions wrapped as Tasks using the ”taskmap” or
”taskwrap” helper functions provided in the YieldTasks library.

A. Yield

A function that uses the ”yield” keyword returns a Generator
object when called. Every time ”next” is called on the genera-
tor object, the code is run up to the next ”yield” keyword,
at which point the code is paused, its state is stored, and
the yielded data is returned from the ”next” call. When the
function finally returns, the generator raises a ”StopIteration”
error with the return value attached. The ”next” function may
be called with an input argument, which will be received
as a return value from the ”yield” statement in the function
wrapped in the Generator object.

In this way, the ”yield” keyword enables a form of coroutine
that can be used to help build a parallel map.

B. Task

The Task object encapsulates code that needs to be run, and
is in charge of the expression of parallelism. It’s specification
is simple: arguments for its function should be stored at instan-
tiation. It must implement a function which takes no arguments
called ”run”. This function performs the encapsulated function,
and may or may not include ”yield” statements. If present,
each statement should yield a list of other Task objects. Those
sub-Tasks will be executed, and the return values will be
returned together in a list from the ”yield” statement once
all of the sub-Tasks are complete. The ”run” function may
return anything (or None) as a return value. If the Task is
a sub-Task that was yielded by some other Task, the return
value will be passed to the original Task as a return value
from a ”yield” statement. Otherwise the return value will be

output to user code as the return value of a ”TaskQueue.map”
or ”TaskQueue.run” call.

Users may implement their own Task subclasses, but several
tools are provided in the YieldTasks library to allow easier
wrapping of code into Task objects. The ”Partial” subclass of
Task takes a function as the first argument for initialization,
and any other arguments are stored. This is similar to the
”partial” function provided by ”functools” in the Python
standard library. The function that is wrapped this way may
include ”yield” statements in the format described previously.

The ”taskmap” and ”taskwrap” helper functions are also
provided. The ”taskwrap” function simply returns ”Partial”
task as the single element in a list, for more convenient usage
in ”yield” statements (which must return a list of Tasks). The
”taskmap” function performs the parallel map operation: it
takes as input a function as the first argument, a collection
of input data as the second argument, and stores the rest of
the arguments. Each time the function is called, one argument
from the collection of input data is passed as the first argument
to the function, and the rest of the stored arguments are passed
afterwards. The ”taskmap” function returns a list of Tasks that
are ready to be sent via a ”yield” statement.

C. TaskQueue

The TaskQueue object must organize and execute Task
objects, and is in charge of the implementation of parallelism.
It also has one function that must be implemented: the ”run”
function, which takes a single Task as input. The TaskQueue
class in my implementation of YieldTasks includes imple-
mentations of several other functions that may be useful in
implementing the ”run” function.

The ”run” function of the TaskQueue should call the ”run”
function of the passed Task. If that function is a generator
function, it should call ”next” on the generator and then store
it in a ”waiting” queue, along with information about which
Tasks it is waiting on. The yielded list of Task objects should
then be ”run” in the same way. When a ”run” is not a generator
function, its return value should be stored alongside data of
which generator is waiting on that data. When the returned
data is the last piece of data that a generator was waiting on,
that generator’s ”next” function should be called with a list of
the returned data from all of the Tasks that it waited on. This
process continues until the original Task’s generator returns,
and that return value is returned to the user as the output from
the ”run” function.

The TaskQueue function is built around storing and re-
suming ”Task” objects and the resulting generators. The
TaskQueue accomplishes this by first assigning each Task
an ID number. When a Task’s ”run” function is a generator
function, a ”ResumedTask” is created. This is a placeholder
object that stores the generator object and identification in-
formation about the original Task and the yielded sub-Tasks.
The sub-Tasks are also given a ”waiting id” which identifies
which ”ResumedTask” needs the return value of the newly cre-
ated sub-Task. When a Task produces output, the TaskQueue
checks its collection of ”ResumedTask” objects to find the one
with an ID matching the completed Task’s ”waiting id”. The
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Fig. 1. An image depicting the path that Tasks take during execution under the Multiprocessing-based MPQueue in YieldTasks, which is an example of
the more general TaskQueue system. First, the user submits a task to the TaskQueue using either ”TaskQueue.map” or ”TaskQueue.run”. Then, the task is
assigned to a WorkerQueue, and run. The Task either returns output or yields a list of sub-Tasks. If there are sub-Tasks, they are sent to the TaskQueue to be
assigned to WorkerQueues. If there is a return value, it is sent to the TaskQueue, where it is either sent to a worker with a waiting Task, potentially causing
it to be reawoken, or it is returned to the user.

return value is stored on the ”ResumedTask” and if this was
the last needed return value, the ”ResumedTask” is queued
for execution. The execution of a ”ResumedTask” is slightly
different from that of a normal ”Task” (instead of calling ”run”
the ”next” function of the generator is called) but the behavior
afterwards is the same. The only Task that does not have a
”waiting id” will be the original Task sent as input to the ”run”
function on the TaskQueue. When this Task (or the resulting
ResumedTask) produces a return value from its ”run” function,
that return value will be returned to the user (as there will be no
Task waiting for this data). Note that generator objects cannot
be pickled, so most implementations of TaskQueue will face
the restriction that the process that starts execution of a Task
must maintain that generator object and perform all of that
Task’s execution over time.

Another type of placeholder Task called a ”Placeholder-
Task” is provided. This Task is meant to store the return value
of another task. It’s run function simply returns this stored
value. It should inherit the identification information (such as
the ”id” and ”waiting id” of its parent).

IV. TASKQUEUE IMPLEMENTATION WITH
MULTIPROCESSING

For evaluation of the YieldTasks design, I implemented a
YieldTasks ”backend” based on Multiprocessing in the form of
a ”MPQueue” subclass of ”TaskQueue”. This implementation
is available my implementation of the YieldTasks library
and is available on GitHub [8]. An overview of how the
Multiprocessing implementation of YieldTasks works is shown
in Figure 1.

While it is more convenient to use ”multiprocessing.Pool”
to create a pool of workers, I need more control over the
sub-processes than ”Pool” provides. A critical complication is
that generator objects cannot be pickled. This means that the
subprocess that starts executing a Task must perform the entire
execution over time. Instead, I manually create a number of
”multiprocessing.Process” processes and store them as a list of
workers. The main process, which runs the ”run” function of

the ”MPQueue” is in charge of delegating work to the worker
processes, communicating between the processes, and sending
the final return value to the user. The worker processes run
a modified ”TaskQueue” called a ”MPWorkerQueue” that is
in charge of maintaining its list of waiting ”ResumedTask”
objects. Unlike a normal TaskQueue, the MPWorkerQueue
waits for more Tasks from the MPQueue when it is done with
its current tasks, and sends both finished return values in the
form of PlaceholderTasks, and yielded Tasks to the MPQueue
rather than returning them from its ”run” function.

A. MPWorkerQueue

The MPWorkerQueue is designed to be run by a worker
process. Rather than using the normal ”run” function, it is
started with a ”start” function call, and Tasks are sent via
a pipe (step 2 of Figure 1. The worker maintains its own
queue of Tasks to run. For each of these tasks, it runs it as
described in Section III (step 3 of Figure 1), including storing
a ResumedTask and identifying Task metadata when a Task
yields a list of sub-Tasks. However, instead of putting these
sub-Tasks in its own queue, it sends them via pipe to the
MPQueue (step 4 of Figure 1.

Because workers are in charge of maintaining Resumed-
Tasks and the identifying metadata, they are also in charge
of assigning IDs to Tasks, and include their own ”worker id”
when they do so. This helps the MPQueue identify which data
needs to go to which worker to re-queue ResumedTasks.

When a Task or ResumedTask produces a return value
as output instead of yielding a list of sub-Tasks (step 5
of Figure 1, the worker first checks to see if it has the
ResumedTask that needs this data. If so, it stores that data
and potentially re-queues the ResumedTask as described in
Section III. Otherwise, it creates a PlaceholderTask to wrap
the data and sends it to the MPQueue. The MPQueue will
send the PlaceholderTask to the correct worker, which will
then execute the PlaceholderTask, recognize that it needs the
resulting data, and process it accordingly (step 6 of Figure 1).



5

When the worker has finished all of the tasks in its queue,
it waits to receive a new task from the MPQueue through the
pipe. When it receives Tasks from the MPQueue, it repopulates
its own queue and resumes work on those Tasks (step 8 of
Figure 1). It continues this way until the MPQueue sends a
message that lets the worker know that all Tasks are complete.

B. MPQueue

The MPQueue receives the user’s initial Task (step 1 of
Figure 1), as well as PlaceholderTasks and Tasks from the
MPWorkerQueues and is in charge of sending them where
they need to go. It does not actually execute any Tasks.

The MPQueue’s run function begins with calls to Multipro-
cessing to create and start the worker processes and the pipes
needed to communicate with them. It then enters a loop which
includes sending Tasks to workers and receiving Tasks from
workers, which it repeats until all workers have completed all
Tasks, and no Tasks remain in the MPQueue’s main queue.
The MPQueue keeps track of how many Tasks it has assigned
to and completed by each worker to aid in load balancing as
well as part of the termination condition.

The loop starts with popping all the Tasks in its queue, and
assigning them to workers (step 2 of Figure 1). It maintains
data about how many tasks have been assigned to each worker,
and uses this to assign new Tasks to worker with the least
number of current Tasks. When the MPQueue encounters a
PlaceholderTask, it instead uses the ”worker id” stored as part
of the ”waiting id” to determine which worker to send it to
(step 8 of Figure 1). The Tasks are sent to workers by pipe.

Once the queue is emptied, the MPQueue waits for data
to become available from one of the worker’s pipes. It then
retrieves that data and uses it to repopulate the queue (steps 4
and 6 of Figure 1). If the received data is a PlaceholderTask
with no ”waiting id” it instead stores the data to be returned
to the user later.

Once the queue is empty and all workers are done, the
MPQueue cleans up by sending a message to each worker
that tells it to stop, and then waits for all of the sub-processe
to finish. Finally, it retrieve the stored return value and returns
it to the user (step 7 of Figure 1).

V. CASE STUDY: QSEARCH

Qsearch is a quantum gate synthesis tool, which is
written in Python and offers an interesting opportunity
for parallelization [9]. The reference implementation of
Qsearch, which is available on GitHub [10] and may be
installed via PyPy, includes parallelism using ”multiprocess-
ing.Pool.imap unordered”. However, this paralleization is in-
efficient. The specific challenges in effectively parallelizing
Qsearch exemplify the benefits of YieldTasks.

A. Qsearch Background

Qsearch is a quantum gate synthesis tool, which is a
technique used in quantum compiling to produce a quantum
program (also known as a ”quantum circuit”) from a descrip-
tion of a desired program in the form of a unitary matrix.

Quantum gate synthesis has applications in quantum circuit
design and optimization [9], [10].

Qsearch performs synthesis by searching over a tree of
Ansatz circuit structures. For each Ansatz circuit structure,
it uses numerical optimization to find the parameters for the
Ansatz circuit that best match the target unitary. Further Ansatz
circuits are generated, using feedback from the numerical
optimization step, and this process repeats until a sufficient
match is found. An overview of this process is depicted in
Figure 2.

The objective function used for numerical optimization
involves simulation of small quantum circuits. This consists
of a sequence of matrix multiplications. The gradient of
the objective function is computed alongside the objective
value by a custom implementation of forward-mode automatic
differentiation that is specifically optimized to take advantage
of the properties of unitary matrices, and to share computations
with computing the objective as much as possible [10].

The computational cost of Qsearch primarily comes from
the cost of computing the objective function for numerical
optimization. This objective function is called thousands of
times per optimization, and thousands of optimizations are run
per synthesized unitary. Additionally, it is common to have a
set of unitaries of interest rather than just one unitary to focus
on.

It is worth noting that Qsearch consists of running many
relatively computationally intensive function calls (quantum
circuit simulation), with a relatively small variety of data being
passed between function calls (the constant unitary and the
different Ansatz circuit structures). This is different from the
commonly-studied scenario in which a very small calculation
must be performed on a large variety of data [11].

B. Opportunites for Parallelism in Qsearch

Qsearch has several opportunities for parallelism.
1) Multiple Unitaries: It is common to have a list of

unitaries to be synthesized rather than focus on a single unitary
at a time. The entire synthesis process must be run once per
unitary, but each synthesis process is independent from all
others.

2) Multiple Ansatz Circuits: When Qsearch generates
Ansatz circuits, it typically generates multiple Ansatz circuits
at a time. All of these Ansatz circuits must be numerically
optimized, but the optimizations are independent of each other.

3) Multi-Start Optimization: The optimization landscape
for the optimization problems involved in Qsearch have many
local minima. To improve the chances of finding the global
minima, Qsearch employs multi-start optimization. This in-
volves running the numerical optimization procedure many
different times from different starting points. All of these
optimizations are independent of each other.

C. Difficulties with Loop Collapsing in Qsearch

The usual recommendation for handling multiple nested
parallelizable loops is to collapse them into one loop. This
is difficult to do in Qsearch for two reasons:
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Fig. 2. An image depicting the algorithm used by Qsearch to perform quantum gate synthesis. A tree of Anastz circuit structures is searched. At each node
in the tree, the Ansatz circuit is instantiated by using numerical optimization to find parameters that minimize the objective function (the distance between
the implemented and target unitaries). The results of this optimization are used to determine if the node is a ”leaf node” (a node that represents a solution to
the synthesis problem), and are also used in heuristics to guide the search.

1) Serial Loops Nested with Parallel Loops: Not all of the
loops in Qsearch are parallelizable. Within each synthesis pro-
cedure, there are multiple rounds of generating set of Ansatz
circuits. Each Ansatz generation round is dependent on the
previous one, because the results from optimization are used to
determine when a solution has been found, and in heuristics to
guide the generation of future Ansatzes [9], [16]. This makes it
impossible to collapse the loops of optimizing multiple Ansatz
circuits and performing multi-start optimization together with
the loop of synthesizing multiple unitaries.

Additionally, the numerical optimization process involves a
serial loop. However, because this process forms the innermost
loop, it is not a significant barrier to parallelization because
it may simple be treated as one computationally expensive
function call.

2) Abstraction Barriers: Qsearch is intended to be used
in a wide variety of use cases, ranging from synthesis of
large, individual unitaries to synthesis of many small unitaries.
Qsearch has to be ready to perform one synthesis routine
or many, to perform individual optimization or multi-start
optimization, and to have a modified Ansatz circuit generation
process.

Furthermore, there are variants of synthesis (such as target-
ing a discrete gate set [7]) that introduce new loops, which
may or not be parallelizable, to the program.

The uncertainity of which loops will be present and paral-
lelizable makes it difficult to write a loop-collapsed Qsearch
that can handle every scenario without significant modifica-
tion. The current implementation of Qsearch instead imple-
ments pieces of the program that can be swapped for variants,
with only certain pieces implementing parallelism.

D. Parallelism in the Existing Implementation of Qsearch

The reference implementation of Qsearch [10]
includes parallelism implemented via ”multiprocess-
ing.Pool.imap unordered”. This parallelism is applied at
two locations: running multiple Ansatz circuits in parallel,
and performing multi-start optimization. Running multiple
Ansatz circuits in parallel is a productive use of parallelism
in most scenarios, but can underutilize the available resources
when the circuit is small and there are many available
hardware threads. Performing multi-start optimization is not
always applicable, but when it is used, it is always productive
to do so in parallel. For CPUs with many hardware threads,
multi-start optimization is unlikely to fully utilize the CPU.

It is also worth mentioning BQSKit [17], which is a
quantum circuit optimization library that includes an im-
plementation of Qsearch as well as several other quantum
synthesis techniques and other quantum circuit optimization
tools. BQSKit implements parallelism only at the multiple-
unitary level.

Qsearch is versatile enough to tweak how parallelism is
implemented. Depending on how it is configured, it will use
parallelism at the multiple-Ansatz level, the multi-start level,
both, or neither. (User-customized Qsearch code can introduce
further paralleization). The choice of parallelization options
can result in either undersubscription or oversubscription. The
difference between undersubscription and oversubscription is
illustrated with screenshots of ”htop” in Figure 3.

1) Undersubscription: Undersubscription is when the code
generates fewer parallel processes than there are available
hardware threads in the CPU. This is generally sub-optimal, as
there are unused CPU resources. Qsearch performs undersub-
scription when using just one of the its two main optimization
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Oversubscription Undersubscription

YieldTasks

Fig. 3. Screenshots of ”htop” during the benchmarking process, illustrating the difference between undersubscription, oversubscription, and the behavior of
YieldTasks (which seems to underuse the CPU, but only slightly).

options. BQSKit performs undersubscription when there are
fewer unitaries to perform than the number of available
hardware threads. One technique that Qsearch uses to combat
undersubscription is to naively predict what Ansatzes will
be needed soon so as to increase the number of Ansatzes
generated at once. The extra Ansatzes generated this way are
not always useful, so while this approach will better utilize a
many-core CPU, it will be performing work that ends up not
being useful, and wastes resources doing so.

2) Oversubscription: Oversubscription is when the code
generates more parallel processes than there are available hard-
ware threads in the CPU. Qsearch performs oversubscription
when parallelizing on both the multiple-Ansatz and multi-
start levels at the same time. When that happens, Qsearch
will generate one ”multiprocessing.Pool” for parallelizing the
Ansatzes, and each of those sub-processes will create its
own ”Pool” of sub-sub-processes for performing multi-start.
This results in a total number of working processes equal
to Ansatzes × multi-starts. For example, a common scenario
would be 3 Anastzes and 16 multi-starts for a total of 48
processes. This technique will fully utilize the CPU, but
the OS will constantly switch between working threads, and
performance will be lost due to this context switching.

E. Accelerating Qsearch with YieldTasks
To accelerate Qsearch with YieldTasks, I started with the

Qsearch library and, in particular, the code for ”SearchCom-
piler”, which performs the core quantum synthesis task. I

wrote a function containing the contents of ”SearchCom-
piler.compile” and replaced the call to ”solve circuit parallel”
line (which calls into Qsearch’s wrapper over Multiprocessing)
with an equivalent line consisting of ”yield” and ”taskmap”
from YieldTasks. I also had to write a function which wraps
Qsearch’s calls to numerical optimization, and a function to
perform multi-start optimization with ”yield” and ”taskmap”
rather than by creating a ”multiprocessing.Pool”. Finally, when
I wish to synthesize multiple unitaries at a time, I do so using
”TaskQueue.map” rather than serially as one would do with
the reference Qsearch implementation.

F. Benchmarking Technique
I ran the ”average time.py” benchmarking script from the

Qsearch GitHub repo [10], which performs a set of 8 different
unitary synthesis tasks of varying difficulty 10 times each,
and records the average time it took for each synthesis task.
I modified the script slightly to report only the average total
time for completing all 8 tasks, rather than timing each one
individually, and to include 16 multi-starts during optimiza-
tion.

Benchmarks were run on a computer with a Ryzen 9 5950X
processor, which has 16 cores (32 threads), and 128GB of
RAM.

I then wrote 3 variants of the benchmarking script: one
that only uses parallelism at the multi-Ansatz level (undersub-
scription), one that uses parallelism at both the multi-Ansatz
and multi-start levels (oversubscription), and one that uses



8

Technique Time
Undersubscription 19m 58s
Oversubscription 8m 21s

YieldTasks 5m 32s
TABLE I

Summary of the results of benchmarking Qsearch re-written with YieldTasks
against the reference Qsearch implementation written with Multiprocessing.

The times presented are wall-clock times recorded using time ”timeit”
package from the Python standard library. The task being benchmarked was

to perform a set of 8 unitary synthesis tasks, using 16 mult-starts, and to
repeat this task 10 times. Undersubscription refers to using the reference

implementation of Qsearch and parallelizing only on the multi-Ansatz level,
leaving the CPU underutilized. Oversubscription refers to using the
reference implementation of Qsearch and parallelizing at both the

multi-Ansatz and multi-start levels. YieldTasks refers to using a modified
version of Qsearch built on YieldTasks to parallelize at the multi-Anatz,

multi-start, and multi-unitary levels without oversubscribing. The
benchmarks were all run on a computer with an AMD Ryzen 9 5950X CPU
which has 16 cores (32 threads) and 128GB of RAM. The time presented is
the total time to perform all tasks 10 times, not the average time per set of

8 tasks.

YieldTasks to parallelize at the multi-Ansatz, multi-start, and
multi-unitary levels. The results are presented in Table I.

G. Benchmarking Discussion

The results from my benchmarking experiment showed
that oversubscription is better than undersubscription. The
undersubscription approach took 19m 58s to complete but
the oversubscription approach only took 8m 21s. YieldTasks
performed even better, completing the tasks in 5m 32s.

Examining screenshots of ”htop”, a program that monitors
CPU usage on a per-thread basis, we can visually see the
difference in behavior between oversubscription, undersub-
scription, and YieldTasks. These screenshots are presented in
Figure 3. It appears that YieldTasks did underutilize the CPU,
but only slightly.

This experiment clearly demonstrates the value of the Yield-
Tasks approach in parallelizing a program that is difficult to
parallelize with other libraries.

VI. CONCLUSION AND NEXT STEPS

My YieldTasks implementation was able to achieve an
advantage over Multiprocessing in the difficult-to-parallelize
scenario of Qsearch. It implements the parallel map operation
in a way that can be nested efficiently, while also separating
the expression of parallelsim from the implementation of
parallelism such that it is possible to change the parallel
backend without rewriting large portions of code. YieldTasks
is currently publicly available on GitHub. However, there are
further improvements to be made.

Examining the behavior of YieldTasks as illustrated in the
”htop” screenshot in Figure 3, it appears that YieldTasks
slightly underutilized the CPU (although it still outperformed
over-utilization). It is possible that there is more performance
to be squeezed out of this situation. This might be fixed
by improving the load-balancing algorithm in MPQueue by
tracking more details about the status of workers, or by
preferentially sending Tasks to the workers that are waiting

on them, reducing the amount of communication that needs
to occur. An investigation of the workload balance would be
useful to improve this performance.

One of the core ideas of YieldTasks is to allow changing
the parallelism backend without changing much code. To
accomplish this, I need to make more implementations of
the TaskQueue, such as one backed by Dask, which would
allow running on a multi-node supercomputer, or one that takes
advantage of Multiprocessing’s features to share information
between processes on different computers over a network.
Another possibility would be to have a highly customized
TaskQueue that could perform specific Tasks on a GPU. This,
combined with a TaskQueue that can delegate between mul-
tiple sub-TaskQueues, similar to the MPQueue, could enable
the usage of both the CPU and GPU at the same time.

Another improvement would be to re-write the code using
the ”async” and ”await” syntax from Asyncio. Asyncio does
not actually enable parallelism (it enables multithreading, but
is limited by the GIL), but it may be able to be combined
with a parallelism backend such as Dask or Multiprocessing to
enable an implementation of YieldTasks that uses the ”async”
and ”await” syntax instead of the ”yield” syntax, which might
look nicer to users.
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