
MIT 18.337 Final Project Report

Composable Function Transformations for
Machine Learning in the Julia Programming

Language
Marcel Rød

May 16, 2023

1 Introduction
Over the past decade, the field of machine learning (ML) has significantly expanded,
with a notable increase in the last few years. As such, the selection of a programming
language and the corresponding development tools has become increasingly impor-
tant in order to optimize productivity in ML software development. A key factor to
consider is the performance of the resulting code. In the context of ML, any ineffi-
ciency in the speed of either the training phase or model inference can greatly reduce
the utility of the end product. Additionally, ML models often have wide-ranging
hardware requirements, from small embedded systems to large-scale GPU clusters.

Julia [1] is a relatively new programming language designed with a focus on
performance, possessing several features that make it suitable for ML applications.
However, being a newer language, Julia does not yet have the comprehensive library
ecosystem that established languages like Python offer. This is particularly evident
in the ML domain where Python has become the standard. Despite these challenges,
Julia exhibits potential to be a strong contender in the ML space due to its blend of
performance and user accessibility.

Nevertheless, there are areas where Julia can improve, especially in terms of ML.
This project seeks to address some of these gaps, borrowing from successful strategies
that have contributed to Python’s dominance in the ML landscape.

1

2 Background
2.1 Machine Learning
Machine Learning (ML), a branch of computer science, concerns the creation of
algorithms that derive insights from data. It aims to construct algorithms that can
execute tasks usually challenging to code explicitly, by defining behaviors through
parameters that can be learned. This is achieved by training a model using a data
set and then employing the trained model for inference. Generally, the model is a
function that accepts certain inputs to generate outputs.

The model’s training involves the minimization of a loss function, which quanti-
fies the discrepancy between the model’s output and the target output. To optimize
this loss function, its parameters are iteratively updated using gradient descent. This
optimization process necessitates the computation of the gradient of the loss func-
tion concerning the model parameters. The backpropagation algorithm [2] efficiently
accomplishes this, computing the gradient of a function composed of other functions.

ML has seen a surge in popularity recently and found diverse applications, from
image classification to natural language processing. This expansion is largely at-
tributed to the advancement of deep learning, a set of methods employing multi-
layered neural networks. Deep learning has thrived primarily due to the escalation of
computational power, enabling the enlargement of both our models and our datasets.
The shift from single process CPUs to large-scale multi-core and multi-GPU systems
has facilitated the development of sophisticated systems that were unthinkable a few
years ago.

2.2 Language and Framework Performance
The increase in computational power has led to the need for improved software tools.
These tools should not only handle important algorithms, such as matrix multiplica-
tions, but also manage tasks, compute gradients, and distribute work across multiple
devices.

Python is currently the most used language for ML, mainly due to its large array
of libraries providing these tools. Although Python itself is not very fast, its capability
to connect with C++ code offers a user-friendly interface while also benefiting from
the speed of C++.

Two main Python frameworks, PyTorch [3] and Jax [4], are in competition right
now, both presenting this high-level user interface. PyTorch is popular because it’s
easy to use, simple to experiment with, and convenient for debugging. These at-
tributes have made PyTorch a favorite among ML researchers and practitioners for

2

years.
On the other hand, Jax prioritizes performance, composability, and simplicity,

utilizing the principles of functional programming.

2.3 The Julia Programming Language
Introduced relatively recently, the Julia programming language [1] has quickly gained
recognition for its ease of use and speed, particularly within the scientific computing
community. Julia’s standout feature is its competitive performance, comparable to
that of C and Fortran, despite being a high-level language equipped with dynamic
runtime features reminiscent of Python and Matlab.

One hurdle for Julia’s adoption is its somewhat disjointed ecosystem of libraries,
whereas Python’s concensus on core libraries a key factor contributing to its dom-
inance in ML. Nevertheless, Julia’s development has accelerated in recent years,
showing promising progress.

Currently, ML applications in Julia primarily use Flux.jl [5], the most popular
framework for constructing neural networks within the language.

Julia features a robust type system and supports multiple dispatch, allowing for
the creation of generic code that can be tailored for various types.

A distinctive strength of Julia, setting it apart from other languages, is its built-in
JIT (Just-In-Time) compiler [6]. This JIT compiler enables dynamically typed code
to be specialized into statically typed Julia code at runtime, which can subsequently
be compiled into efficient, native machine code.

3 Method
Although much of this section describes problems and potential solutions in Python,
we will rewrite them in Julia, and use the column-major convention for matrices for
consistency with Julia. This means that standard batching dimensions come last,
and that indexing conventions require each index to be specified, i.e. for an n × m
array, array[1] does not represent a vector, and we instead need to use array[1,
:] to get the first m-dimensional row vector.

3.1 Batching
Batching is the process of taking a function that operates on a single element, and
transforming it into a function that operates on a set of elements independently.
Batching is not a trivial process for several reasons. Firstly, batching exhibits a

3

function addfirstlast(x)
Return the sum of the first and last elements of a vector
return x[1] + x[end]

end

data = [1, 2, 3, 4, 5] # 5-element Vector
addfirstlast(data) # 6

batched_data = [data data data] # 5×3 Matrix

addfirstlast(batched_data) # also 6?

Listing 1: Batching done wrong.

trade-off between memory usage parallelism. If we batch a function using a purely
sequential loop, the memory allocated by that function can be reused for each iter-
ation of the loop, but in this case, we cannot parallelize the function. If we instead
use a parallel loop, we can perform work in parallel, but since each thread does al-
locations for their own work, we end up needing to allocate a corresponding amount
of additional memory. In PyTorch, the process of batching a function is usually one
of rewriting a function entirely, and even with this rewrite, managing parallelism
is tricky. Instead of this, then, what we want is a way to batch functions that can
help us reinterpret the meaning of a program in the light of the batching context of
our input data, and in which we can determine the level of parallelism at the latest
possible stage.

3.2 Function Transformations
Function transformations are higher order functions that take a function as input,
and return a new function as output. While deceptively simple in concept, they lead
to powerful abstractions of the operations we often do imperatively, and allow for the
creation of complex programs from simple building blocks – essentially decoupling
the meaning of the function being called from the structure it is acting on.

A naïve attempt at batching a Julia
The code in Listing 1 is incorrect, but does produce a result, and shows a weakness

of the flexibility of Julia. When applied to a matrix, a data structure that was not
considered while writing the function addfirstlast, Julia adds the first and last

4

elements of the matrix together, meaning element 1,1 and end,end. In order to
We solve these issues by introducing a function called vmap. vmap is similar to

the well known map, but suited uniquely for array programming. The arguments to
vmap are a function (to be batched), a tuple representing the axes to be batched over
for all input arguments, and a tuple representing the axes to be batched over for all
output arguments.

In order to generalize batching of functions to allow for arbitrarily nested structs
of arrays, we not only allow for arguments to be arrays, but also arbitrary nested
tuples of arrays. This functionality is facilitated by a project by the JuliaCollections
project, named AbstractTrees.jl.

3.3 Composability
Batching using functional transformations leads to a very compositional way of writ-
ing code. One can write a function based on its minimal functionality, and then
transform and compose this function to act on data of any format. For instance,
consider this way of building a matrix multiplication method:

1. Define a function multiply that multiplies two elements. This function knows
nothing about batching, and is defined only for floating point numbers.

2. Batch the multiply function and compose it with sum to create a dot function.

3. Batch dot to create a matrix-vector multiplication.

4. Batch the matrix-vector multiplication to create a matrix-matrix multiplica-
tion.

This approach is implemented in Listing 2. One can further batch this function to
construct any variety on the “batched matrix multiplication,” which is often specif-
ically implemented by most frameworks, called torch.bmm in PyTorch [7]. A great
advantage of doing this using a function like sum instead of writing a for loop is that
it is made clear to the compiler that reordering the summation does not change the
result, and so the compiler is free to reorder the summation to optimize cache usage.
Note that this benefit is also present in the common Julia method of writing matrix
multiplications, but is often not standard when doing sums in the later stage of an
algorithm.

5

(), () -> ()
function multiply(x, y)

return x * y
end

(n,), (n,) -> ()
dot = sum ◦ @vmap(multiply)

(m, n), (n,) -> (m,)
matrix_vector_multiply = @vmap(dot, (1, nothing))

(m, n), (n, p) -> (m, p)
matrix_matrix_multiply = @vmap(matrix_vector_multiply, (nothing, :last))

(b, m, n), (b, n, p) -> (b, m, p)
batched_matrix_matrix_multiply = @vmap(matrix_matrix_multiply, (:last, :last))

Listing 2: Matmul implemented with only sum and multiply

3.4 Performance and Reconfigurability
Functional transformations allow both library developers and users to write code
that is both performant and reconfigurable. A library developer is then free to write
only the most basic functions, and then let the user compose them into more complex
variations with batching. A good example is that of the dot product implemented in
Listing 2 – any version of matrix multiplication breaks down into a batched set of
dot products, so a library implementation of these could supply just a dot function,
composed of a sum and a batched multiplication. This is not currently possible with
the dominant deep learning frameworks. It turns out that most array operations are
very simple to express using our vmap construct, and with the addition of a gradient
transform one can write compact, fast, readable, and reconfigurable code with little
effort.

Consider computing the gradients of the loss function in a neural network with
respect to one of the parameters, which is one of the most common operations in
deep learning. In PyTorch, one would compute gradients by performing a forward
pass through the neural network, and then backpropagating the gradients through
the network, however this can only be done cumulatively (adding up gradients over
elements in a batch), or individually. Thus, in order to compute gradients for multiple

6

function softmax(x)
exp_x = exp.(x)
exp_x ./ sum(exp_x)

end

First batch then gradient
(n, b) -> (n, b, n, b)
softmax_batched_grad = @grad @vmap softmax

First gradient then batch
(n, b) -> (n, n, b)
softmax_grad_batched = @vmap @grad softmax

Listing 3: Computing gradients for multiple elements using vmap.

elements, we have to trace the forward pass multiple times, and then backpropagate
each of these traces, which is very inefficient. In Julia one would also have to repeat
the forward and backward passes once for each of these gradient samples.

With functional transformations, we can write a function that computes the gra-
dients of a single element, and then batch this function to compute the gradients
of multiple elements. This is fundamentally a different computational task than the
one PyTorch is performing, and is much more efficient.

In PyTorch’s current prototype implementation of functional transformations
they show that even for small neural networks, batching the gradient computation
leads to a roughly 9x faster computation of gradients [8]. There is no other viable
approach in PyTorch. Listing 3 shows the implementation of this operation in Julia
using vmap.

Reconfiguring the computational mapping of the program without changing the
program itself is also incredibly powerful for an end user.

3.5 Batching and Multi-Device Parallelism
Batching is not only a way to generalize code to work on multiple elements, but
it is also a great way of expressing independent compute, and thus to determine
parallelism. Batched operations are almost by definition embarrassingly parallel, as
each element in the batch manipulated independently from the others. Batching
along the outermost (first in column-major convention) dimension of an array is also

7

(n,) -> (n,)
function softmax(arr)

exp_arr = exp.(arr)
return exp_arr ./ sum(exp_arr)

end

(n, b) -> (n, b)
Name the axis to be batched over
softmax_batched = @vmap(softmax, (:last,), name=:softmax_axis)

(n, b) = (10, 128)
array = randn(10, 128)

I want 8 parallel threads each doing 16 sequential batches
8 * 16 = 128
result = nothing
run_context(;softmax_axis=(parallel=8, sequential=16)) do

result = softmax_batched(array)
end

I want 2 devices (GPUs) to run 32 parallel threads with 2 sequential batches
2 * 32 * 2 = 128
result = nothing
run_context(;softmax_axis=(device=2, parallel=32, sequential=2)) do

result = softmax_batched(array)
end

Listing 4: A batched function can be run with various setups for parallelism.
run_context determines parallelism for the supplied function or closure.

8

a good way of coaxing SIMD-vectorization out of a compiler, as it guarantees that
the data is contiguous in memory.

Consider the example given in Listing 5. We have a set of neural networks that all
share the same prefix, before branching off into different heads. Our code is already
batched with respect to the data, so a single batched data input is fed into the
network. Because of this structure, we can compute the common prefix between
these networks once, and then branch off into different heads when necessary. This is
a common pattern when working with partially frozen neural networks or ensemble
methods. If we have our neural network in the form of an AbstractTree or just a
NamedTuple of parameters, we can achieve this with a single application of vmap.

3.6 Implementation
We implement vmap as a typed final interpreter [9] by wrapping arrays in a vmap
tracing type called BatchedArray containing the array and the batch index.

We define batching rules for operations on BatchedArrays based on if they are
simple unary operations, binary operations, or reductions. These rules are very simple
due to the flexibility of Julia’s type system, multiple dispatch and the broadcasting
system.

Now, when a vmap-ed function is applied to an array, the array gets wrapped
in a BatchedArray, which will be passed into applied function. When operations
are performed on the BatchedArray, they respect the surrounding batching dimen-
sions, and permute the dimensions of the resulting arrays to match the vmap output
dimensions.

For the run_context, we set global context flags that can be seen by the vmap
function, and which determine looping shapes and parallelism. An interesting con-
sequence of this implementation is that Julia can JIT compile these shapes into
the same binaries as those produced by an ahead-of-time compiler using static set-
tings for loop sizes and parallelism. The device option is not yet implemented, since
multi-gpu support is currently a bit tricky in Julia.

4 Results
4.1 Simplification of Code and Expressivity
The difference in brevity, readability and flexibility between batching code by stan-
dard means of looping assignments and the vmap functional transformation is already

9

function linear(x; W, b)
W * x .+ b

end

function model(x; params)
linear(x; params.W, params.b)

end

Change this function independent from data layout
loss_pair = abs2

function loss(x, y; params)
ŷ = model(x; params)
Batching is handled when needed
(sum ◦ @vmap(loss_pair))(y, ŷ)

end

A single model
params = (W = randn(10, 5), b = randn(10))
loss(x, y; params)

An ensemble of 20 models, only differing in b
ensemble_params = (W = randn(10, 5), b = randn(10, 20))

Compute the losses for the models of the ensemble
Returns a 20-element vector
(@vmap loss (nothing, nothing, (nothing, :last)))(x, y; params=ensemble_params)

Listing 5: Batching of a neural network using vmap.

10

quite clear. There is however additional utility in the simplification of APIs by defin-
ing smaller functions with more generic functionality, and composing these functions
together. When composing a program out of vmaps, we can very simply determine
the level of parallelism and thus also memory usage without tampering with the logic
of the program itself.

4.2 Performance
In subsection 3.4, we saw how PyTorch has vastly improved the performance of a
common and fundamental operation with their initial implementation of functional
transformations. In Julia most of these problems are solved by the compiler and the
approaches Julia’s ecosystem has taken to differentiable programming. However, the
advantages of functional transformations are still present in this context through the
savings made by avoiding prefix computation and other features like the per-sample
gradients seen in Listing 3. Performance is also gained through simple configurability
of the parallelism and memory usage of a program, as seen in Listing 4. The result
reusable code that can be tuned to any individual use-case without making any
sacrifices in performance.

5 Discussion
5.1 Future Work
There are many possible avenues for future work in using compositional functional
transformations in Julia. I would firstly like to see a complete implementation of a
gradient transform that can take into account shapes to determine the best possible
combination of forward and backward passes for gradient computation. Further, I
would like to see vmap implement all of its functionality entirely at JIT compile time.
Currently, determining the shapes to use for parallelism and memory allocation is
done at runtime, but there is no reason other than implementation complexity that
this cannot be done at compile time. I also think it would be possible to determine
the optimal parallelism schedule automatically given a whole function composed out
of vmaps. In this case the user could supply a memory budget and ask for the fastest
possible execution within that budget. I think these are all solvable problems and
would like to pursue them further in the future.

11

5.2 Conclusion
Batching is the process of taking a function that operates on an array and trans-
forming it into a function that operates on a batch of arrays. Standard approaches
of batching make hidden assumptions and impose restrictions on code that makes
it hard to compose, and hard to optimize. Function transformations, like vmap, are
a way of automatically deriving functions from other functions, and are a great
way to increase code reuse, composability and performance. We have shown how
functional transformations can be used to simplify batching behaviors, and move
decisions about layout and computational mapping to the last possible moment, en-
abling faster development, more readable code, better performance, and multi-device
parallelism with little effort required from the user.

References
[1] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A Fresh Ap-

proach to Numerical Computing,” SIAM Review, vol. 59, no. 1, pp. 65–98, issn:
0036-1445. doi: 10.1137/141000671. [Online]. Available: https://epubs.
siam.org/doi/10.1137/141000671.

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations
by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 6088, issn:
1476-4687. doi: 10.1038/323533a0. [Online]. Available: https://www.nature.
com/articles/323533a0.

[3] A. Paszke, S. Gross, F. Massa, et al., “PyTorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information Pro-
cessing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc,
E. Fox, and R. Garnett, Eds., Curran Associates, Inc., pp. 8024–8035. [On-
line]. Available: http://papers.neurips.cc/paper/9015- pytorch- an-
imperative-style-high-performance-deep-learning-library.pdf.

[4] J. Bradbury, R. Frostig, P. Hawkins, et al., JAX: Composable transformations of
Python+NumPy programs, version 0.2.5. [Online]. Available: http://github.
com/google/jax.

[5] M. Innes, E. Saba, K. Fischer, et al., “Fashionable modelling with flux,” CoRR,
vol. abs/1811.01457, arXiv: 1811.01457. [Online]. Available: https://arxiv.
org/abs/1811.01457.

12

https://doi.org/10.1137/141000671
https://epubs.siam.org/doi/10.1137/141000671
https://epubs.siam.org/doi/10.1137/141000671
https://doi.org/10.1038/323533a0
https://www.nature.com/articles/323533a0
https://www.nature.com/articles/323533a0
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://github.com/google/jax
http://github.com/google/jax
https://arxiv.org/abs/1811.01457
https://arxiv.org/abs/1811.01457
https://arxiv.org/abs/1811.01457

[6] J. Aycock, “A brief history of just-in-time,” ACM Computing Surveys, vol. 35,
no. 2, pp. 97–113, issn: 0360-0300. doi: 10.1145/857076.857077. [Online].
Available: https://dl.acm.org/doi/10.1145/857076.857077.

[7] “Torch.bmm — PyTorch 2.0 documentation.” (), [Online]. Available: https:
//pytorch.org/docs/stable/generated/torch.bmm.html.

[8] “Per-sample-gradients — PyTorch Tutorials 2.0.1+cu117 documentation.” (),
[Online]. Available: https://pytorch.org/tutorials/intermediate/per_
sample_grads.html.

[9] O. Kiselyov, “Typed Tagless Final Interpreters,” in Generic and Indexed Pro-
gramming: International Spring School, SSGIP 2010, Oxford, UK, March 22-26,
2010, Revised Lectures, ser. Lecture Notes in Computer Science, J. Gibbons,
Ed., Berlin, Heidelberg: Springer, pp. 130–174, isbn: 978-3-642-32202-0. doi:
10.1007/978-3-642-32202-0_3. [Online]. Available: https://doi.org/10.
1007/978-3-642-32202-0_3.

13

https://doi.org/10.1145/857076.857077
https://dl.acm.org/doi/10.1145/857076.857077
https://pytorch.org/docs/stable/generated/torch.bmm.html
https://pytorch.org/docs/stable/generated/torch.bmm.html
https://pytorch.org/tutorials/intermediate/per_sample_grads.html
https://pytorch.org/tutorials/intermediate/per_sample_grads.html
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1007/978-3-642-32202-0_3

	Introduction
	Background
	Machine Learning
	Language and Framework Performance
	The Julia Programming Language

	Method
	Batching
	Function Transformations
	Composability
	Performance and Reconfigurability
	Batching and Multi-Device Parallelism
	Implementation

	Results
	Simplification of Code and Expressivity
	Performance

	Discussion
	Future Work
	Conclusion

