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1. Introduction. In this report a review of Neural Ordinary Differential Equa-
tions (Neural ODEs), as well as an implementation coded in Julia, is presented. Neural
ODEs are a class of models that combine neural networks with ordinary differential
equations (ODEs). They were introduced by Chen et al. in 2018 [1] as a way to learn
continuous-time dynamics directly from data.

Unlike traditional approaches, e.g. recurrent neural networks, where data is mod-
eled through a discrete sequence of compositions and transformations, in Neural ODEs
data is modeled continuously. In this case, a neural network is used to model the deriv-
ative of the data u : R→ RN , which is assumed to be differentiable and continuously
dependent on time:

d

dt
u(t) = NN(u(t), t,θ),(1.1)

where NN correspond to a neural network, t is the time variable and θ ∈ RM are the
neural network weights. Then, given an initial condition u0 ≡ u(t0) ∈ RN , the model
prediction at time t1 is obtained through any standard ODE solver, this is

u(t1) = u0 +

∫ t1

t0

NN(u(t), t,θ) dt(1.2)

= ODESolver(NN,u0, t0, t1).(1.3)

A key advantage of Neural ODEs is their ability to model continuous-time dy-
namics, making them suitable for tasks where time plays a crucial role, such as time
series forecasting, trajectory prediction and generative modeling. By learning the
system’s latent dynamics, Neural ODEs can capture complex temporal dependencies
and generalize well to unseen time points.

Neural ODEs have shown promising results in various domains, including com-
puter vision, natural language processing, and physics, financial and biological simu-
lations [6]. They provide a flexible framework for modeling continuous-time dynamics
using neural networks, enabling a deeper understanding of temporal phenomena and
latent dynamics in data.

This report is organized as follow. Section 2 explains how backpropagation is
performed in Neural ODEs. Sec. 3 presents our in-house implementation of Neural
ODE adjoint solver, coded in Julia from scratch and built on top of the Flux.jl library,
alongside with some examples of interests. Finally, Sec. 4 presents Hamiltonian Neural
Networks, a special case of Neural ODEs specially designed to deal with Hamiltonian
systems. Our code and examples can be found in here1.

2. Backpropagation of Neural ODEs. Training Neural ODEs involves solv-
ing an optimization problem to find the parameters that minimize a given loss func-
tion, which can be done using gradient-based methods. In the context of Neural ODEs,
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to obtain the gradient of the loss function, a process called backpropagation, which
is typically achieved through automatic differentiation in a typical neural network
setting, is seldom performed. This is because backpropagating through the forward
pass of the ODE solver (eq. 1.3) could be prohibitively expensive. Another reason
is due to the potential limitation of the automatic differentiation engine’s access to
an external-library ODE solver. Instead, gradients are obtained through an adjoint
sensitivity method, originally presented in [1]. This method is explained below.

Suppose the initial condition u0 is given and our loss function G has the form of
an integral of our model prediction u in some interval [0, T ], i.e.

G(u,θ) =

∫ T

0

g(u(t,θ)) dt,(2.1)

where we have made explicit the dependence of the weights θ in u. In a typical
setting, we have access to a discrete set of observations {ũ(ti)}Pi=1, with ti ∈ [0, T ],
and we wish to minimize the discrete L2 error loss, or mean squared error, given by

G(u,θ) =
1

P

P∑
i=1

‖ũ(ti)− u(ti,θ)‖2 ,(2.2)

in which case

g(u(t,θ)) =
1

P

P∑
i=1

‖ũ(ti)− u(t,θ)‖2 δ(t− ti),(2.3)

where δ correspond to the Dirac delta function.
The goal of backpropagation is to obtain the gradient ∂G(u,θ)/∂θ ∈ RM and use

it to update the weights of our neural network. To do this we resort to the adjoint
method, which consists in the following steps:

1. Forward pass. Solve for u in the interval [0, T ] using the ODE solver (eq.
1.3) and evaluate the loss function (2.1).

2. Backward pass. Define the adjoint variables λ : [0, T ] → RN and µ :
[0, T ]→ RM . They are solutions of the adjoint ODE

d

dt
λ(t) = −

[
∂

∂u
NN(u(t), t,θ)

]>
λ(t)− d

du
g(u(t)),(2.4a)

d

dt
µ(t) = −

[
∂

∂θ
NN(u(t), t,θ)

]>
λ(t),(2.4b)

λ(T+) = 0,(2.4c)

µ(T+) = 0.(2.4d)

Solve the adjoint ODE backwards in time, from T+ to 0−. Note the terms
∂
∂uNN

>λ and ∂
∂θNN

>λ can be efficiently evaluated using reverse-mode au-
tomatic differentiation and vector-Jacobian products.

3. Evaluate gradient. The gradient of the loss function with respect to the
parameters is given by

∂

∂θ
G(u,θ) = µ(0−).(2.5)
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4. Update weights. Finally, update the neural network weights using the pre-
viously obtained gradient.

Note that the backward pass requires the values of u(t) for t ∈ [0, T ] in order to
solve the adjoint ODE (2.4). Therefore, it is necessary to either (A) store values of u
in the forward pass and then use an interpolant of u during the backward pass, or (B)
solve for u backward in time during the backward pass. Clearly, method (A) is more
memory intensive, whereas method (B) is more compute intensive. Nevertheless,
for method (B) it is important to mention that, although ODEs are theoretically
reversible in time, it is possible that solving for u backward in time yields a different
solution compared to the forward pass, due to the ODE solver discretization errors,
thus resulting in an incorrect backward pass solution. For this reason, we have chosen
method (A) for our in-house implementation of the Neural ODE adjoint solver (see
Sec. 3).

3. An in-house implementation of a Neural ODE adjoint solver. In this
section we present an in-house implementation of a Neural ODE adjoint solver. It
is written in Julia and built on top of the machine learning library Flux.jl [5], the
reverse-mode automatic differentiation library Zygote.jl [4] and the ODE solver library
OrdinaryDiffEq.jl [9]. There are already existing packages that implement Neural
ODE adjoint solvers, e.g. DiffEqFlux.jl [8], but we have decided to implement an
adjoint solver from scratch for pedagogical purposes, not only to learn about Neural
ODEs, but also with the purpose of us getting acquainted with the Flux.jl library.
Our code and examples can be found in here2.

In the following subsections, we will showcase some examples of interest conducted
using our code. In all of these examples, we employed a neural network with a
single hidden layer consisting of 64 hidden units, tanh activation functions, and a loss
function given by the mean square error (2.2). We used the ODE solver tsit5 of the
OrdinaryDiffEq.jl package.

3.1. Example: linear system. Consider the linear constant-coefficient ODE

d

dt
u(t) = Au(t)(3.1)

in the interval [0, 1], with

A =

(
−0.1 2
−2 −0.1

)
.(3.2)

We trained our neural network with 11 uniformly spaced observation in [0, 1] for var-
ious normal random initial conditions u0 ∼ N (µ = 0, σ = 4). A comparison between
the true solution, for a random initial condition, and our Neural ODE solution is
shown in Fig. 1. We observe that after enough training our Neural ODE solution is
able to follow the true solution quite well inside the training interval. Furthermore, if
we extend the ODE and Neural ODE solution outside the training interval, as shown
in Fig. 2, the Neural ODE keeps up with the true solution if we go forward in time,
where the amplitude of the true solution decreases. Nevertheless, if we go backward
in time, the amplitude of the true solution increases and the Neural ODE is not able
to follow. This in an expected behavior. For large amplitudes the nonlinear activa-
tion functions start to kick in, removing the neural network from its linear behavior,

2https://github.com/Riarrieta/NeuralODEProject
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thus the (nonlinear) Neural ODE cannot keep up with the true linear ODE. Clearly,
this issue can be overcome by training the neural network with initial conditions of
larger and larger amplitude, however, for a fixed neural network, a sufficiently large
amplitude will remove it from its linear behavior. This simple example illustrates the
limitation of using Neural ODEs to model ODEs with unbounded solutions over time.

Figure 1. Example 3.1. Comparison between the true solution and our Neural ODE solution
in the training interval [0, 1].

Figure 2. Example 3.1. Extrapolation of the ODE and Neural ODE solution outside the
training interval.

3.2. Example: Lotka-Volterra equations. Consider the Lotka-Volterra equa-
tions

d

dt
x(t) = αx(t)− βx(t)y(t),(3.3)

d

dt
y(t) = δx(t)y(t)− γy(t),(3.4)

in the interval [0, 10] with parameters (α, β, δ, γ) = (2/3, 4/3, 1, 1) and initial condition
(x0, y0) = (1, 1). This nonlinear system of ODEs is used to model prey-predator
dynamics, with the variables x and y representing population densities of prey (e.g.
rabbits) and predator (e.g. foxes), respectively. Solutions of the Lotka-Volterra eqs.
are periodic, with period T = 2π/

√
αγ. In our case, T ≈ 7.7, and the training interval

[0, 10] is slightly longer than the period.
A comparison between the true solution and our Neural ODE solution in the

training interval is shown in Fig. 3, and a comparison outside the training interval
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is shown in Fig. 4. Theu neural network was trained with 101 uniformly spaced
observations. Again, it is observed that the Neural ODE is able to keep up with
the true ODE solution in the training interval, and outside of it if we extrapolate
forward in time. It is extraordinary the fact that the Neural ODE is able to capture
the nonlinear dynamics of the system in the training interval and then replicate the
periodic behavior of the solution forward in time. However, the Neural ODE is not
able to replicate the true solution backward in time. The causes of this are unknown,
but we believe this issue can be addressed by increasing the length of the training
interval.

Figure 3. Example 3.2. Comparison between the true solution and our Neural ODE solution
in the training interval [0, 10].

Figure 4. Example 3.2. Extrapolation of the ODE and Neural ODE solution outside the
training interval.

3.3. Example: Lotka-Volterra equations with noise. In this example we
test the performance of the Neural ODE when the observations contain noise. Here,
we take the same Lotka-Volterra eqs. and parameters of Sec. 3.2, but we add white
gaussian noise η ∼ N (µ = 0, σ = 0.1) to each of the observation points, and we reduce
the number of observations from 101 to 41.

A comparison between the true solution, the noisy observations and our Neural
ODE solution in the training interval is shown in Fig. 5, and a comparison outside
the training interval is shown in Fig. 6. We observe that the Neural ODE possess
robustness to noise, since it is still able to follow closely the true solution and replicate
its periodic behavior, even in the presence of noisy observations.
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Figure 5. Example 3.3. Comparison between the true solution, the noisy observations and our
Neural ODE solution in the training interval [0, 10].

Figure 6. Example 3.3. Extrapolation of the ODE and Neural ODE solution outside the
training interval. The noisy observations inside the training interval are also shown.

3.4. Example: double pendulum. In this example we consider the dynamics
of a double pendulum, as depicted in Fig. 7. Following the Hamiltonian formalism of
classical mechanics, we have that the double pendulum has a Hamiltonian given by

H(q,p) =
m2l

2
2p

2
θ1

+ (m1 +m2) l21p
2
θ2
− 2m2l1l2pθ1pθ2 cos (θ1 − θ2)

2m2l21l
2
2

[
m1 +m2 sin2 (θ1 − θ2)

]
− (m1 +m2) gl1 cos θ1 −m2gl2 cos θ2,(3.5)

where q = (θ1, θ2) are the pendulums angles, p = (pθ1 , pθ2) the canonical momenta
of the system, (m1,m2) the pendulum masses, (l1, l2) the pendulum lengths and
g the gravitational acceleration. The canonical momenta (pθ1 , pθ2) have analytical
expressions given in terms of (θ1, θ2, θ̇1, θ̇2), but those expressions are not relevant for
our purposes. The dynamics of the double pendulum follow Hamilton’s equations,
given by

dq

dt
=
∂H(q,p)

∂p
,(3.6a)

dp

dt
= −∂H(q,p)

∂q
.(3.6b)
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The double pendulum equations are nonlinear, exhibit chaotic behavior, and the
solutions are in general aperiodic.

We compared the true ODE solution against a Neural ODE trained in the interval
[0, 0.25] with initial conditions q = (0.05,−0.05), p = (0, 0) and 26 uniformly spaced
observations. We took (m1,m2, l1, l2, g) = (1, 1, 1, 1, 9.8). Our results are shown in
Figs. 8 and 9, for comparisons inside and outside the training interval, respectively.
As in the previous examples, the Neural ODE is able to follow the true solution inside
the training interval, and even replicate the aperiodic and complex behavior outside
of it.

In a Hamiltonian system, such as the double pendulum, if Hamiltonian (3.5) is
independent of time, then the Hamiltonian itself must be a conserved quantity. A
comparison of the Hamiltonians of the true ODE and the Neural ODE is shown in
Fig. 10. Although in theory the Hamiltonian of the true ODE solution should be
conserved, we see it is not the case, in fact, it is slowing increasing. This is due to
the ODE solver, which is not designed to conserve the Hamiltonian over time. A
class of ODE solvers denominated symplectic solvers are able to maintain conserved
quantities over time [7], but they were not used in this work.

In the Neural ODE case we observe the Hamiltonian decreases over time, it is not
conserved. This is mainly due to the fact that Neural ODE does not follow a Hamil-
tonian structure, such as 3.6, hence the Hamiltonian is not necessary conserved. This
poses a challenge as it enables the Neural ODE to evolve towards prohibited states.
The system’s allowed states are limited to those that possess the same Hamiltonian
value as the initial condition. We will explain in Sec. 4 how this difficulty can be
overcome with the use of Hamiltonian Neural Networks.

Figure 7. Example 3.4. Schematic of a double pendulum.

4. Hamiltonian Neural Networks. Hamiltonian Neural Networks (HNNs)
are a subclass of Neural ODEs specifically design to deal with Hamiltonian system,
proposed by Greydanus et at. in 2019[3]. Unlike the Neural ODEs approach, which
would replace the right-hand-side of Hamilton’s eqs. (3.6) with a neural network, in
HNNs the Hamiltonian itself is modeled with a neural network, this is

H(q,p) = NN(q,p,θ),(4.1)
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Figure 8. Example 3.4. Comparison between the true solution and our Neural ODE solutions
in the training interval [0, 10].

Figure 9. Example 3.4. Extrapolation of the ODE and Neural ODE solutions outside the
training interval.

Figure 10. Example 3.4. Hamiltonian of ODE and Neural ODE solutions outside the training
interval.

and thus Hamilton’s eqs. now read

dq

dt
=

∂

∂p
NN(q,p,θ),(4.2a)

dp

dt
= − ∂

∂q
NN(q,p,θ).(4.2b)

The fact that HNNs preserve the underlying Hamiltonian structure of the system
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lead to unique advantages, such as the (theoretical) conservation energy and long-term
stability, useful in accurate long-term predictions.

Some difficulties of HNNs are, first, that in order to perform backpropagation
we require to take second order derivatives of our neural network. To see this, note
that we need first order derivatives in the forward pass (eq. 4.2), and then take
derivatives one more time in the backward pass (eq. 2.4). This is expensive, and
some automatic differentiation libraries, such as Zygote.jl, have limited capabilities
with respect to second or higher order derivatives. Second, in some system it is not
obvious how to compute or measure the canonical momenta p, hence in those cases
we cannot formulate the dynamics of the system of interest with the Hamiltonian
formalism. An alternative to HNNs, namely Lagrangian Neural Networks [2], uses
the Lagrangian formalism instead of the Hamiltonian formalism, and thus avoids the
computation of canonical momenta, it only requires generalized coordinates q and
generalized velocities q̇. Nevertheless, it presents other difficulties on its own: it
requires third order derivatives and to solve linear systems in both the forward and
backward passes.

4.1. Example: hamiltonian double pendulum. Here we repeat Example
3.4, but using a HNN instead. This time we resort to the DiffEqFlux.jl package
for a HNN implementation, instead of an in-house implementation of our own, just
for showcasing purposes, and additionally because the Zygote.jl library presents dif-
ficulties to obtain second order derivatives of neural networks with respect to their
weights, which are required for backpropagation. Furthermore, for simplicity we uti-
lize the collocation method, detailed in [10], to train the HNN.

The HNN is able to keep up with the true solution, both inside the training interval
and forward in time, just like the Neural ODE counterpart. However, this time our
model posses a Hamiltonian structure, hence the Hamiltonian should be conserved,
at least theoretically. A comparison between the Hamiltonians of the ODE solution
and the HNN is shown in Fig. 11. We observe that both Hamiltonians grow slowly
at the same rate. As pointed out in Example 3.4, this growing is due to numerical
errors in the ODE solver, and not due to the lack of Hamiltonian structure. It can be
said with certain then that our HNN is able to correctly reproduce the Hamiltonian
structure of the system and to conserve the Hamiltonian. We are secure that, if we
employed a symplectic solver, we would observe a constant Hamiltonian, in both the
ODE and HNN solutions.

Figure 11. Example 4.1. Hamiltonian of ODE and HNN solutions outside the training interval.
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