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Abstract. Regular expressions are a convenient way to describe many pattern matching tasks. Most widely
available regex matching libraries, including Julia’s, run serially and cannot take advantage of the parallelism
available on modern CPUs. Additionally, there has not been a thorough performance analysis of the parallel
algorithms available in the literature that compares their relative performance and characterizes the types of
patterns and input data that each processes most efficiently. This work implements several parallel regular
expression matching algorithms in Julia and analyzes the performance of each.

1. Introduction. Regular expressions have played an important role in the development
of the theory of computation, and are also widely used to specify pattern matching problems.
For example, they can be used to validate user input, perform lexical analysis in a compiler, and
detect important events, such as signs of a network attack, in log files. Serial regular expression
matching libraries are available in many languages; Julia’s implementation is a wrapper around
the Perl Compatible Regular Expressions library [2]. However, these serial implementations
do not take advantage of the increasing number of processor cores available on modern CPUs,
which prevents applications that require pattern matching over large quantities of textual data
from easily scaling.

In response to this limitation, several parallel algorithms for matching regular expressions (or
an equivalent problem, executing deterministic finite automata) have been developed. However,
implementations of these are not widely available, so developers must devise parallelization
strategies for their specific applications to achieve scalability. Additionally, it is unclear how
the performance characteristics of these algorithms compare to each other, which would allow
the selection of the most efficient algorithm for each class of patterns and input data. Thus,
this project (1) implements several parallel regular expression matching algorithms in Julia
and (2) provides a performance analysis for each of them, with recommendations about the
most efficient ones for each use case. We find that the algorithms generally scale well as the
number of processors increases, and identify one algorithm that outperforms Julia’s baseline
implementation, even when run serially.

Section 2 introduces constructs from automata theory and describes how they can be used
to accomplish parallel regex matching. Section 3 provides details about the implementation of
these algorithms in Julia. Section 4 presents performance results for a benchmark dataset.

2. Algorithms.

2.1. Regular expressions and finite automata. We formally define a pattern of in-
terest as a language.

DEFINITION 2.1. Given an alphabet ¥ (a set of symbols), a language L over this alphabet is
a set of strings consisting of symbols in X.

Thus, each pattern matching task has a corresponding language consisting of all of the strings
that match the pattern. A restricted set of languages known as regular languages can be
represented by regular expressions. Regular expressions can be defined recursively, and they
have the following string representation.

DEFINITION 2.2. The language of reqular expressions is defined by the following context-free

grammar:
1.8 ::= ‘(8 )
2.8 ::=8 8
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Production 1 is used to override default operator precedence. Production 2 will match any
instance of a string from the language defined by the left subexpression, followed by any instance
of a string from the language defined by the right subexpression. Production 3 represents an
alternation between the two options: it will match the union of the languages of the two
expressions. Production 4, known as the Kleene star, represents matching the concatenation of
zero or more strings from the subexpression’s language. Finally, the terminals of the grammar
represent languages of size 1 containing only the corresponding character.

Some regular expression libraries contain extensions for more concisely representing com-
monly used patterns; for example, [abc] represents the same expression as ‘a’ | ‘b’ | ‘c’.
However, these extensions can be decomposed into combinations of the primitive operators
listed in Definition 2.2. Other extensions, such as backreferences, can be used to define non-
regular languages and cannot be represented as standard regular expressions. These cannot be
matched using the algorithms described in this paper, and are out of scope.

A way to test if a string is present in a regular language is to use finite automata.

DEFINITION 2.3. A nondeterministic finite automaton (NFA) consists of a set of states Q,
an alphabet X, a set of transitions 6 C {(q1,q2,¢)|q1,q2 € Q,c € LU {e}}, a set of starting
states I C @, and a set of final states F' C Q.

A string matches a NFA if it is possible to start at a state in I, take a sequence of edges, where
each edge (qi1,q2,c) represents a transition from state g1 to qo that consumes the character c
from the start of the string, or leaves the string unchanged if ¢ = €, and end at a state in F
when the remaining string is empty.

It is easy to convert any regular expression into an NFA that recognizes it, using the McNaughton-
Yamada-Thompson algorithm [5]. Note that for a given ¢; and ¢, an NFA may contain edges
to multiple destination states go, so there may be multiple paths through the graph for any
given string. Additionally, it may be possible to have a choice between consuming a character
or using an e-transition, if it exists. Thus, it is not convenient to determine whether an NFA
accepts a string. However, once the NFA is constructed, it is possible to construct another
automaton, known as a deterministic finite automaton in which the path, if it exists, is unique.
This process is shown in Algorithm 2.1.

DEFINITION 2.4. A deterministic finite automaton (DFA) consists of a set of states Q, an
alphabet 2, a set of transitions 6 C {(q1,¢2,¢)|q1,92 € Q,c € L}, a starting state q;, and a set
of final states F C Q. Additionally, there must be at most one transition for every pair (q1,c).

With this definition, each transition consumes exactly one character from the string, and there
is a unique path through the string, if it exists. Algorithm 2.2 shows a simple algorithm for
matching a string, which takes O(|s|) time.

2.2. Parallel DFA computation. Now that we have described the construction of a
DFA from any regex, we have reduced the problem of parallel regex matching to that of
parallelizing the execution of DFAs. Each algorithm discussed in the following section either
takes as input a DFA directly, or constructs a DFA through the process described above. Thus,
we will describe only the way each executes these DFAs in parallel.

The simple DFA execution algorithm does not easily parallelize because the computation of
the transition for each character requires knowing the ending state at the previous character.
A variety of algorithms have been developed to work around this problem.



Algorithm 2.1 Converting NFA to DFA (subset construction)

Input: NFA (Q,X,6,¢;, F)
Output: DFA (@', %, ¢}, F') that recognizes the same language as the NFA
worklist «+ {{g;}}
visited < {{q;}}
Q « {}
o+ {}
q; < {a:}
while worklist nonempty do
S <+ dequeue(worklist)
next < {}
for c € ¥ do
for ¢ € S do
if ¢ has transition from ¢ with character ¢ to ¢4 then
next < next U {qq}
end if
end for
if next ¢ visited then
¢’ < new DFA state for next
Q'+ Qu{d}
visited + visited U {next}
worklist <— worklist U {next}
else
q' <+ existing DFA state corresponding to next
end if
v’ <= DFA state corresponding to S
0 ' u{(v,d,c)}
end for
end while
F' = {S]S € Q' and at least one element of S is in F'}

2.2.1. Enumeration method [4]. One of the earliest methods of parallelizing DFA
execution involves speculative execution. First, the input string is split into one contiguous
chunk for each processor. Then, each processor executes the DFA starting from every possible
initial state on the corresponding chunks. This results in a map from the starting state at
the start of the chunk to the ending state after the chunk, for every chunk. Finally, paths
through the entire DFA are constructed by combining the solutions of adjacent chunks. The
full algorithm is shown in Algorithm 2.3.

Each chunk is processed in full |Q| times, once for each starting state, and processing each
chunk takes time linear in the length of the chunk. Additionally, it takes time linear in the
number of processors to reduce the results. It is theoretically possible to accomplish this
reduction in logarithmic time with respect to the number of processors, by reducing adjacent
pairs of results in a bottom-up manner, for a total reduction runtime of O(|Q|lg p), but since we
assume the number of processors is small relative to the size of the string, this would likely be
slower than the serial reduction due to synchronization and communication overheads. Thus,
the runtime of this algorithm is O(|Q||s|/p + p). Note that if |Q| > p, the work overhead of
this algorithm is very large and it will likely execute more slowly than the serial algorithm.



4

Algorithm 2.2 Executing DFA on a string
Input: DFA (Q,3,4,q;, F), string s
Output: whether DFA accepts s
q<q;
while s nonempty do
if (gi, g2, s[0]) € § for some g» then
q < q2
remove first character from s
else
return false
end if
end while
return g€ F

2.2.2. PaREM [6]. The algorithm introduced in this paper improves upon the naive
speculative execution algorithm by pruning the set of initial states that each processor must
consider. This set is calculated using the set of transitions that could occur between adjacent
chunks. In particular, the starting state for a chunk must be one that can be reached after
transitioning along an edge corresponding to the previous chunk’s last character, and it must be
possible to transition from the starting state using an edge corresponding to the current chunk’s
first character. It would be possible to generalize this pruning to consider the k characters at
the end of the previous chunk and the start of the current chunk; however, it is likely that
considering additional characters would result in diminishing returns.

The pruning process is shown in Algorithm 2.4, and is done by each individual processor.
Note that the pruned states depend on the input string s; thus, they must be computed online,
which takes resources away from the actual executions of the DFA. The rest of the algorithm
is the same as in Algorithm 2.3.

In the worst case, this algorithm is equivalent to Algorithm 2.3 because no starting states
can be pruned from each chunk. However, in practice it is possible that a large portion of
states are impossible to reach from a given chunk boundary, and thus this method would give
a large speedup.

2.2.3. Simultaneous finite automata [7]. This method also takes the approach of
splitting an input string into one chunk per processor, executing on the chunks in parallel, and
finally reducing the results. However, instead of executing the original DFA once starting
from each possible starting state (or a pruned subset of the states), a new automaton is
constructed, called a simultaneous finite automaton (SFA), which is itself a DFA. In the SFA,
states correspond to functions @ +— @ in the original DFA, so that executing the SFA once
computes the same mapping that Algorithm 2.3 used |Q| executions of the original DFA to
compute. Once the SFA is computed once on each chunk, the resulting functions can be
composed to produce a function that when applied to the starting state of the original DFA,
gives the final state after executing it on the entire string.

From a DFA, an SFA can be constructed in a very similar manner as the NFA-to-DFA
construction. In the NFA-to-DFA construction, DFA states correspond to sets of NFA states,
while in the DFA-to-SFA construction, SFA states corresponding to functions @ — @ over the
original DFA states. The construction is shown in Algorithm 2.5.

The SFA can be precomputed ahead of time, because it only depends on the DFA. After
it is constructed, matching a string is accomplished in a very similar way as Algorithm 2.3,
except each processor only needs to start at the SFA start state, which is the identity map.



Algorithm 2.3 Speculative execution of DFA

Input: DFA (Q, 3,4, ¢, F), string s, number of processors p
Output: whether DFA accepts s
results < p x |Q| array
parallel for worker € {1,...,p} do
// speculatively execute from all starting states
for ¢ + @ do
qi < g
$; < chunk for this worker
while s; nonempty do
if (gi, g2, $[0]) € d for some g2 then
Qi < q2
remove first character from s;
else
q; < null
break
end if
end while
results[worker|[q] < ¢;
end for
end for
// reduce chunk results
q < qi
for worker € {1,...,p} do
q < results[worker][q]
if ¢ is null then
return false
end if
end for
return g € F

Computing the final result is also accomplished with the same reduction. This is illustrated in
Algorithm 2.6.

This algorithm has the advantage that each processor only needs to execute its automaton
once, while the other approaches can in the worst case take time proportional to the number
of DFA states. It requires O(|s|/p + p) time, where the first term represents the computation
of the ending SFA state for each chunk, and the second term represents the reduction time
(again, it’s possible to accomplish the reduction in O(|@Q|lgp) time if using a very large number
of processors, which may occur in a distributed system). However, the number of SFA states
can be exponential in the number of DFA states, which may result in poor cache performance.

3. Implementation. Each of these algorithms was implemented in a Julia package.

3.1. Regex parsing. Regular expressions are generally specified in the string represen-
tation given in Definition 2.2, so they must be parsed into an abstract syntax tree before
conversion into an NFA. This is accomplished with the ParserCombinator.jl package [3], which
provides convenient syntax for specifying a recursive descent parser. Only the most common
regular expression extensions are supported, because the focus of this work is on the parallel
evaluation of automata, and the algorithms to be evaluated only substantially differ once a
DFA has been constructed.



Algorithm 2.4 PaREM pruning

Input: DFA (Q,3,4,¢;, F), previous chunk s, current chunk ¢
Output: set of starting states that must be considered
S« 0
if no previous chunk then
S« {ai}
else
for ¢ € Q do
if § contains a transition from ¢ using the last character of the previous chunk then
S+ Su{q}
end if
end for
end if
T+ 0
for ¢ € Q do
if ¢ contains a transition from ¢ using the first character of the current chunk then
T+ TU{q}
end if
end for
return SNT

3.2. Automata construction and representation. The automata for each regular
expression can be computed ahead of time and stored for later use, so the efficiency the con-
struction algorithms is not the greatest priority. Automata are represented in a pointer-based
graph structure, where each state stores a lookup table, indexed by a single byte, that con-
tains either a pointer to the destination of the corresponding transition, or a Missing value to
indicate that the transition does not exist. This, rather than a sparse representation such as
an adjacency list, was chosen because SFA graphs are dense.

3.3. Parallel matching procedures. Each of the three parallel DFA execution algo-
rithms accepts as input the corresponding precomputed data structure and a string represented
as a byte vector. The chunk boundaries are computed by the main thread, but all workers
read from the original vector to prevent memory copies from being a bottleneck. Parallelism is
achieved by using the Threads.jl library on a loop that computes the result for each subtask.
After this completes, the reduction is performed by the main thread and the final result is
returned.

4. Evaluation. Past work has not provided a clear analysis of the performance charac-
teristics of these algorithms, especially as compared to each other. Thus, we are interested
in several attributes. First, speculative execution incurs a large work overhead, proportional
to the number of DFA states |@Q|, to achieve parallelism. We will evaluate whether realistic
regular expressions can be converted into sufficiently small DFAs to make parallelism effective.
Additionally, we will evaluate whether the pruning done by PaREM provides a large enough
speedup in general scenarios to outweigh the cost of computing the reduced starting state sets.

We will also evaluate the empirical scalability of each of these methods. In theory, each
should achieve close to linear speedup as the number of processors increases, since the cost of
reduction is negligible, but there may be other bottlenecks such as memory bandwidth that
prevents this from being realized. A related question is the cache usage of each method; SFAs
can be exponentially larger in the worst case than the DFAs they are constructed from, so
executing an SFA may cause the graph data structure to move into a slower level of the cache



Algorithm 2.5 Converting DFA to SFA
Input: DFA (Q,3%,4,q¢;, F)
Output: SFA (Q',%,d, ¢}, F')
worklist «— {I} // start with the identify map, which is the state function when zero char-
acters are consumed
visited « {I}
Q"+ {}
& A}
g 1
while worklist nonempty do
f + dequeue(worklist)
next < I
for c € ¥ do
for ¢ € S do
if f(g) # null then
next(q) < ending state of transition using ¢ from f(g) in d, or null if not present
else
next(q) < null
end if
end for
if next ¢ visited then
q' < new SFA state for next
Q Q' U{d}
visited « visited U {next}
worklist < worklist U {next}
else
q' < existing SFA state corresponding to next
end if
v’ < SFA state corresponding to f
0 o' u{(v,d,c)}
end for
end while
F'=0

hierarchy, limiting scalability.

Finally, the absolute runtimes will be compared to the baseline, which is Julia’s serial PCRE
wrapper, to determine whether the magnitude of the speedup is worth accepting the more
limited functionality of these DFA-based methods.

4.1. Datasets and hardware. To evaluate the performance of each of these algorithms,
the benchmark dataset is the Dotstar subset of the ANMLzoo automata benchmark suite [8].
This consists of a set of regular expressions based on those used in a network intrusion detection
system. Additionally, the dataset contains two test strings containing network traces, one of
size IMB and one of size 10MB. The benchmarks are run on an AMD EPYC 7R13 CPU and
the Ubuntu 20.04 operating system. All timings are measured using the BenchmarkTools.jl
library [1] to reduce variance due to just-in-time compilation and caching.

4.2. Scalability. Each of the four algorithms (speculative execution, PaREM, SFA, and
the PCRE baseline) was used to match regular expressions sampled from the dataset to both
the IMB and 10MB test strings, using 1, 2, 4, 8, and 16 threads to measure whether the



Algorithm 2.6 Execution of SFA
Input: SFA (Q,%,0,q;, F), DFA (Q',X,0', 4}, F'), string s, number of processors p
Output: whether corresponding DFA accepts s
results < length p array
parallel for worker € {1,...,p} do
gi < I // start only from the identity map
s; < chunk for this worker
while s; nonempty do
if (gi, g2, s[0]) € § for some g2 then
qi < q2
remove first character from s;
else
// this branch is never reached because the SFA has a transition for every character
at each state
end if
end while
results[worker] < ¢;
end for
// reduce chunk results
q4q;
for worker € {1,...,p} do
q + results[worker|(q)
if ¢ is null then
return false
end if
end for
return ¢ € F’

implementations achieve the theoretical linear speedup. The speedup results for each regex
are aggregated by taking the geometric mean. Figure 1 shows the speedup for each method
compared to its speed when run with only one thread on the 1MB string and Figure 2 shows
the speedup when run on the 10MB string.

On the 1MB string, both the speculative and PaREM methods display linear speedup up to
8 threads, but this diminishes as the thread count is increased to 16. The SFA algorithm does
not achieve linear speedup even for two threads, and increasing the number of threads beyond
two has no effect on the runtime. This difference is likely due to the small size of the tested task;
since the speculative and PaREM methods have a large work overhead, their effective problem
size is larger than the SFA method, so that the overhead associated with launching threads and
collecting results is negligible compared to each thread’s subtask. Another contributing factor
may be that SFAs are generally larger in terms of the number of states than the corresponding
DFAs; thus, executing SFAs can cause more cache misses and use more memory bandwidth,
which can become a bottleneck as the number of processors increases.

However, when the problem size is increased to 10MB, we observe that the speculative and
PaREM methods scale close to linearly even up to 16 threads, and the scaling of SFA is much
closer to linear. This indicates that memory bandwidth is not a significant bottleneck for
the execution of SFAs of this magnitude. We conclude that parallel regex matching is more
applicable to larger problems (having at least an order of magnitude of tens of megabytes).
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4.3. Runtime. Each of the experiments of the previous section also recorded absolute
runtimes, which are now compared to the serial baseline in Figures 3 and 4.

We observe that the work overhead of the speculative and PaREM methods is quite large in
practice, and that even with 16 threads, the runtime remains worse than the serial baseline.
This indicates that the regexes in our benchmark dataset form DFAs that are relatively large
compared to the number of processors available. Additionally, the pruning performed by
PaREM does not appear to result in a measurable speedup. The cases it is able to prune may
occur too infrequently in our benchmark dataset, or the cost of performing this pruning (which
must happen at runtime) might exceed the savings of the pruned states. However, even when
run serially, the SFA method outperforms the baseline by a factor of 8, which is likely due to
the extremely simple inner loop that processes a single character. The regex extensions that
PCRE supports requires it to track more state during execution, which incurs a performance
penalty. Thus, this method provides a speedup even if it is not known in advance whether
multiple processors are available, so users do not need to implement a fallback to PCRE in the
case of serial execution.

4.4. Automata size. To better understand the performance characteristics of these al-
gorithms, it is useful to consider the size of the underlying automata, which impacts how many
states can be preserved in each level of cache during execution. The sizes of the constructed
DFA (used for the speculative execution and PaREM methods) and the corresponding SFA
(used by the SFA method) were computed for each of the regexes tested above. The relation-
ship between the two is displayed in Figure 5. Although in theory a DFA with |Q| states may
require an SFA with |Q|!?! states in the worst case [7], in practice this exponential behavior
does not seem to occur. In fact, the SFA size appears to grow polynomially, with a growth
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rate of approximately O(|@Q|'77). Thus, this method should not have significant issues scaling
to larger, more complex regular expressions.

5. Future work. A direction for future work may be to extend the frontend of the
library (which parses regex strings into an abstract syntax tree) to support a greater subset of
commonly used syntactic sugar. This would allow the library to support a greater variety of
regular expressions, without needing any preprocessing to desugar these constructs. Another
useful feature would be selecting an optimal algorithm to use at runtime, depending on the
characteristics of the input string and the pattern. For example, very simple expressions with
few DFA states may run faster using speculative execution than the SFA method even after
accounting for work overhead, since the DFA may fit entirely in a faster level of cache than the
SFA. Further experimentation can also be done with the representations of SFAs in memory; for
example, storing the DFA mapping separately from the lookup table will change the memory
access pattern. Finally, the algorithms for constructing the various automata from each regex
can be further optimized. This was not in scope of this work, but doing so would improve
usability for very large patterns and decrease latency in the scenario where the patterns are
not known ahead of time.

6. Conclusions. This work implements several parallel regular expression matching al-
gorithms in Julia. We confirmed that given sufficient data, all three algorithms achieve close
to the theoretical linear speedup as the number of processors increases, and showed that one
of the algorithms, SFA matching, significantly outperforms Julia’s built-in regex library, even
when running serially. This speedup results from a compact data structure representation,
keeping the hot loop as simple as possible, and taking advantage of parallelism when available.
Additionally, we found that the work overhead of the speculative execution based methods
generally results in worse performance than the serial baseline, so they should only be used on
very simple patterns. Finally, we replicated the finding in [7] that SFAs empirically grow much
more slowly than in the theoretical worst case.

The implementations are available at https://github.mit.edu/dengzac/18.337-project.
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