### A Pluto.jl notebook ### # v0.11.8 using Markdown using InteractiveUtils # This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error). macro bind(def, element) quote local el = $(esc(element)) global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : missing el end end # ╔═╡ fafae38e-e852-11ea-1208-732b4744e4c2 md"_homework 0, version 2_" # ╔═╡ 7308bc54-e6cd-11ea-0eab-83f7535edf25 # edit the code below to set your name and kerberos ID (i.e. email without @mit.edu) student = (name = "Jazzy Doe", kerberos_id = "jazz") # press the ▶ button in the bottom right of this cell to run your edits # or use Shift+Enter # you might need to wait until all other cells in this notebook have completed running. # scroll down the page to see what's up # ╔═╡ cdff6730-e785-11ea-2546-4969521b33a7 md""" Submission by: **_$(student.name)_** ($(student.kerberos_id)@mit.edu) """ # ╔═╡ a2181260-e6cd-11ea-2a69-8d9d31d1ef0e md""" # Homework 0: Getting up and running First of all, **_welcome to the course!_** We are excited to teach you about real world applications of scientific computing, using the same tools that we work with ourselves. Before we start next week, we'd like everyone to **submit this zeroth homework assignment**. It will not affect your grade, but it will help us get everything running smoothly when the course starts. If you're stuck or don't have much time, just fill in your name and ID and submit 🙂 """ # ╔═╡ 094e39c8-e6ce-11ea-131b-07c4a1199edf # ╔═╡ 31a8fbf8-e6ce-11ea-2c66-4b4d02b41995 # ╔═╡ 339c2d5c-e6ce-11ea-32f9-714b3628909c md"## Exercise 1 - _Square root by Newton's method_ Computing the square of a number is easy -- you just multiply it with itself. But how does one compute the square root of a number? ##### Algorithm: Given: $x$ Output: $\sqrt{x}$ 1. Take a guess `a` 1. Divide `x` by `a` 1. Set a = the average of `x/a` and `a`. (The square root must be between these two numbers. Why?) 1. Repeat until `x/a` is roughly equal to `a`. Return `a` as the square root. In general, you will never get to the point where `x/a` is _exactly_ equal to `a`. So if our algorithm keeps going until `x/a == a`, then it will get stuck. So instead, the algorithm takes a parameter `error_margin`, which is used to decide when `x/a` and `a` are close enough to halt. " # ╔═╡ 56866718-e6ce-11ea-0804-d108af4e5653 md"### Exercise 1.1 Step 3 in the algorithm sets the new guess to be the average of `x/a` and the old guess `a`. This is because the square root must be between the numbers `x/a` and `a`. Why? " # ╔═╡ bccf0e88-e754-11ea-3ab8-0170c2d44628 ex_1_1 = md""" your answer here """ # you might need to wait until all other cells in this notebook have completed running. # scroll down the page to see what's up # ╔═╡ e7abd366-e7a6-11ea-30d7-1b6194614d0a if !(@isdefined ex_1_1) md"""Do not change the name of the variable - write you answer as `ex_1_1 = "..."`""" end # ╔═╡ d62f223c-e754-11ea-2470-e72a605a9d7e md"### Exercise 1.2 Write a function newton_sqrt(x) which implements the above algorithm." # ╔═╡ 4896bf0c-e754-11ea-19dc-1380bb356ab6 function newton_sqrt(x, error_margin=0.01, a=x / 2) # a=x/2 is the default value of `a` return x # this is wrong, write your code here! end # ╔═╡ 7a01a508-e78a-11ea-11da-999d38785348 newton_sqrt(2) # ╔═╡ 682db9f8-e7b1-11ea-3949-6b683ca8b47b let result = newton_sqrt(2, 0.01) if !(result isa Number) md""" !!! warning "Not a number" `newton_sqrt` did not return a number. Did you forget to write `return`? """ elseif abs(result - sqrt(2)) < 0.01 md""" !!! correct Well done! """ else md""" !!! warning "Incorrect" Keep working on it! """ end end # ╔═╡ 088cc652-e7a8-11ea-0ca7-f744f6f3afdd md""" !!! hint `abs(r - s)` is the distance between `r` and `s` """ # ╔═╡ c18dce7a-e7a7-11ea-0a1a-f944d46754e5 md""" !!! hint If you're stuck, feel free to cheat, this is homework 0 after all 🙃 Julia has a function called `sqrt` """ # ╔═╡ 5e24d95c-e6ce-11ea-24be-bb19e1e14657 md"## Exercise 2 - _Sierpinksi's triangle_ Sierpinski's triangle is defined _recursively_: - Sierpinski's triangle of complexity N is a figure in the form of a triangle which is made of 3 triangular figures which are themselves Sierpinski's triangles of complexity N-1. - A Sierpinski's triangle of complexity 0 is a simple solid equilateral triangle " # ╔═╡ 6b8883f6-e7b3-11ea-155e-6f62117e123b md"To draw Sierpinski's triangle, we are going to use an external package, [_Compose.jl_](https://giovineitalia.github.io/Compose.jl/latest/tutorial). Let's set up a package environment and add the package. A package contains a coherent set of functionality that you can often use a black box according to its specification. There are [lots of Julia packages](https://juliahub.com/ui/Home). " # ╔═╡ 851c03a4-e7a4-11ea-1652-d59b7a6599f0 # setting up an empty package environment begin import Pkg Pkg.activate(mktempdir()) Pkg.Registry.update() end # ╔═╡ d6ee91ea-e750-11ea-1260-31ebf3ec6a9b # add (ie install) a package to our environment begin Pkg.add("Compose") # call `using` so that we can use it in our code using Compose end # ╔═╡ 5acd58e0-e856-11ea-2d3d-8329889fe16f begin Pkg.add("PlutoUI") using PlutoUI end # ╔═╡ dbc4da6a-e7b4-11ea-3b70-6f2abfcab992 md"Just like the definition above, our `sierpinksi` function is _recursive_: it calls itself." # ╔═╡ 02b9c9d6-e752-11ea-0f32-91b7b6481684 complexity = 3 # ╔═╡ 1eb79812-e7b5-11ea-1c10-63b24803dd8a if complexity == 3 md""" Try changing the value of **`complexity` to `5`** in the cell above. Hit `Shift+Enter` to affect the change. """ else md""" **Great!** As you can see, all the cells in this notebook are linked together by the variables they define and use. Just like a spreadsheet! """ end # ╔═╡ d7e8202c-e7b5-11ea-30d3-adcd6867d5f5 md"### Exercise 2.1 As you can see, the total area covered by triangles is lower when the complexity is higher." # ╔═╡ f22222b4-e7b5-11ea-0ea0-8fa368d2a014 md""" Can you write a function that computes the _area of `sierpinski(n)`_, as a fraction of the area of `sierpinski(0)`? So: ``` area_sierpinski(0) = 1.0 area_sierpinski(1) = 0.?? ... ``` """ # ╔═╡ ca8d2f72-e7b6-11ea-1893-f1e6d0a20dc7 function area_sierpinski(n) return 1.0 end # ╔═╡ 71c78614-e7bc-11ea-0959-c7a91a10d481 if area_sierpinski(0) == 1.0 && area_sierpinski(1) == 3 / 4 md""" !!! correct Well done! """ else md""" !!! warning "Incorrect" Keep working on it! """ end # ╔═╡ c21096c0-e856-11ea-3dc5-a5b0cbf29335 md"**Let's try it out below:**" # ╔═╡ 52533e00-e856-11ea-08a7-25e556fb1127 md"Complexity = $(@bind n Slider(0:6, show_value=true))" # ╔═╡ c1ecad86-e7bc-11ea-1201-23ee380181a1 md""" !!! hint Can you write `area_sierpinksi(n)` as a function of `area_sierpinski(n-1)`? """ # ╔═╡ c9bf4288-e6ce-11ea-0e13-a36b5e685998 # ╔═╡ a60a492a-e7bc-11ea-0f0b-75d81ce46a01 md"That's it for now, see you next week!" # ╔═╡ b3c7a050-e855-11ea-3a22-3f514da746a4 if student.kerberos_id === "jazz" md""" !!! danger "Oops!" **Before you submit**, remember to fill in your name and kerberos ID at the top of this notebook! """ end # ╔═╡ d3625d20-e6ce-11ea-394a-53208540d626 # ╔═╡ dfdeab34-e751-11ea-0f90-2fa9bbdccb1e triangle() = compose(context(), polygon([(1, 1), (0, 1), (1 / 2, 0)])) # ╔═╡ b923d394-e750-11ea-1971-595e09ab35b5 # It does not matter which order you define the building blocks (functions) of the # program in. The best way to organize code is the one that promotes understanding. function place_in_3_corners(t) # Uses the Compose library to place 3 copies of t # in the 3 corners of a triangle. # treat this function as a black box, # or learn how it works from the Compose documentation here https://giovineitalia.github.io/Compose.jl/latest/tutorial/#Compose-is-declarative-1 compose(context(), (context(1 / 4, 0, 1 / 2, 1 / 2), t), (context(0, 1 / 2, 1 / 2, 1 / 2), t), (context(1 / 2, 1 / 2, 1 / 2, 1 / 2), t)) end # ╔═╡ e2848b9a-e703-11ea-24f9-b9131434a84b function sierpinski(n) if n == 0 triangle() else t = sierpinski(n - 1) # recursively construct a smaller sierpinski's triangle place_in_3_corners(t) # place it in the 3 corners of a triangle end end # ╔═╡ 9664ac52-e750-11ea-171c-e7d57741a68c sierpinski(complexity) # ╔═╡ df0a4068-e7b2-11ea-2475-81b237d492b3 sierpinski.(0:6) # ╔═╡ 147ed7b0-e856-11ea-0d0e-7ff0d527e352 md""" Sierpinski's triangle of complexity $(n) $(sierpinski(n)) has area **$(area_sierpinski(n))** """ # ╔═╡ Cell order: # ╟─fafae38e-e852-11ea-1208-732b4744e4c2 # ╟─cdff6730-e785-11ea-2546-4969521b33a7 # ╠═7308bc54-e6cd-11ea-0eab-83f7535edf25 # ╟─a2181260-e6cd-11ea-2a69-8d9d31d1ef0e # ╟─094e39c8-e6ce-11ea-131b-07c4a1199edf # ╟─31a8fbf8-e6ce-11ea-2c66-4b4d02b41995 # ╟─339c2d5c-e6ce-11ea-32f9-714b3628909c # ╟─56866718-e6ce-11ea-0804-d108af4e5653 # ╠═bccf0e88-e754-11ea-3ab8-0170c2d44628 # ╟─e7abd366-e7a6-11ea-30d7-1b6194614d0a # ╟─d62f223c-e754-11ea-2470-e72a605a9d7e # ╠═4896bf0c-e754-11ea-19dc-1380bb356ab6 # ╠═7a01a508-e78a-11ea-11da-999d38785348 # ╟─682db9f8-e7b1-11ea-3949-6b683ca8b47b # ╟─088cc652-e7a8-11ea-0ca7-f744f6f3afdd # ╟─c18dce7a-e7a7-11ea-0a1a-f944d46754e5 # ╟─5e24d95c-e6ce-11ea-24be-bb19e1e14657 # ╟─6b8883f6-e7b3-11ea-155e-6f62117e123b # ╠═851c03a4-e7a4-11ea-1652-d59b7a6599f0 # ╠═d6ee91ea-e750-11ea-1260-31ebf3ec6a9b # ╠═5acd58e0-e856-11ea-2d3d-8329889fe16f # ╟─dbc4da6a-e7b4-11ea-3b70-6f2abfcab992 # ╠═e2848b9a-e703-11ea-24f9-b9131434a84b # ╠═9664ac52-e750-11ea-171c-e7d57741a68c # ╠═02b9c9d6-e752-11ea-0f32-91b7b6481684 # ╟─1eb79812-e7b5-11ea-1c10-63b24803dd8a # ╟─d7e8202c-e7b5-11ea-30d3-adcd6867d5f5 # ╠═df0a4068-e7b2-11ea-2475-81b237d492b3 # ╟─f22222b4-e7b5-11ea-0ea0-8fa368d2a014 # ╠═ca8d2f72-e7b6-11ea-1893-f1e6d0a20dc7 # ╟─71c78614-e7bc-11ea-0959-c7a91a10d481 # ╟─c21096c0-e856-11ea-3dc5-a5b0cbf29335 # ╟─52533e00-e856-11ea-08a7-25e556fb1127 # ╟─147ed7b0-e856-11ea-0d0e-7ff0d527e352 # ╟─c1ecad86-e7bc-11ea-1201-23ee380181a1 # ╟─c9bf4288-e6ce-11ea-0e13-a36b5e685998 # ╟─a60a492a-e7bc-11ea-0f0b-75d81ce46a01 # ╟─b3c7a050-e855-11ea-3a22-3f514da746a4 # ╟─d3625d20-e6ce-11ea-394a-53208540d626 # ╟─dfdeab34-e751-11ea-0f90-2fa9bbdccb1e # ╟─b923d394-e750-11ea-1971-595e09ab35b5