### A Pluto.jl notebook ### # v0.12.4 using Markdown using InteractiveUtils # This Pluto notebook uses @bind for interactivity. When running this notebook outside of Pluto, the following 'mock version' of @bind gives bound variables a default value (instead of an error). macro bind(def, element) quote local el = $(esc(element)) global $(esc(def)) = Core.applicable(Base.get, el) ? Base.get(el) : missing el end end # ╔═╡ 05b01f6e-106a-11eb-2a88-5f523fafe433 begin using Pkg Pkg.activate(mktempdir()) Pkg.add([ Pkg.PackageSpec(name="PlutoUI", version="0.6.7-0.6"), Pkg.PackageSpec(name="Plots", version="1.6-1"), ]) using Plots gr() using PlutoUI end # ╔═╡ 048890ee-106a-11eb-1a81-5744150543e8 md"_homework 6, version 0_" # ╔═╡ 056ed7f2-106a-11eb-3543-31a5cb560e80 # WARNING FOR OLD PLUTO VERSIONS, DONT DELETE ME html""" """ # ╔═╡ 0579e962-106a-11eb-26b5-2160f461f4cc md""" # **Homework 6**: _Epidemic modeling III_ `18.S191`, fall 2020 This notebook contains _built-in, live answer checks_! In some exercises you will see a coloured box, which runs a test case on your code, and provides feedback based on the result. Simply edit the code, run it, and the check runs again. _For MIT students:_ there will also be some additional (secret) test cases that will be run as part of the grading process, and we will look at your notebook and write comments. Feel free to ask questions! """ # ╔═╡ 0587db1c-106a-11eb-0560-c3d53c516805 # edit the code below to set your name and kerberos ID (i.e. email without @mit.edu) student = (name = "Jazzy Doe", kerberos_id = "jazz") # you might need to wait until all other cells in this notebook have completed running. # scroll around the page to see what's up # ╔═╡ 0565af4c-106a-11eb-0d38-2fb84493d86f md""" Submission by: **_$(student.name)_** ($(student.kerberos_id)@mit.edu) """ # ╔═╡ 05976f0c-106a-11eb-03a4-0febbc18fae8 md"_Let's create a package environment:_" # ╔═╡ 0d191540-106e-11eb-1f20-bf72a75fb650 md""" We began this module with **data** on the COVID-19 epidemic, but then looked at mathematical **models**. How can we make the connection between data and models? Models have *parameters*, such as the rate of recovery from infection. Where do the parameter values come from? Ideally we would like to extract them from data. The goal of this homework is to do this by *fitting* a model to data. For simplicity we will use data that generated from the spatial model in Homework 5, rather than real-world data, and we will fit the simplest SIR model. But the same ideas apply more generally. There are many ways to fit a function to data, but all must involve some form of **optimization**, usually **minimization** of a particular function, a **loss function**; this is the basis of the vast field of **machine learning**. The loss function is a function of the model parameters; it measures *how far* the model *output* is from the data, for the given values of the parameters. We emphasise that this material is pedagogical; there is no suggestion that these specific techniques should be used actual calculations; rather, it is the underlying ideas that are important. """ # ╔═╡ 3cd69418-10bb-11eb-2fb5-e93bac9e54a9 md""" ## **Exercise 1**: _Calculus without calculus_ """ # ╔═╡ 17af6a00-112b-11eb-1c9c-bfd12931491d md""" Before we jump in to simulating the SIR equations, let's experiment with a simple 1D function. In calculus, we learn techniques for differentiating and integrating _symbolic_ equations, e.g. ``\frac{d}{dx} x^n = nx^{n-1}``. But in real applications, it is often impossible to apply these techniques, either because the problem is too complicated to solve symbolically, or because our problem has no symbolic expression, like when working with experimental results. Instead, we use ✨ _computers_ ✨ to approximate derivatives and integrals. Instead of applying rules to symbolic expressions, we use much simpler strategies that _only use the output values of our function_. As a first example, we will approximate the _derivative_ of a function. Our method is inspired by the analytical definition of the derivative! $$f'(a) := \lim_{h \rightarrow 0} \frac{f(a + h) - f(a)}{h}.$$ The finite difference method simply fixes a small value for $h$, say $h = 10^{-3}$, and then approximates the derivative as: $$f'(a) \simeq \frac{f(a + h) - f(a)}{h}.$$ """ # ╔═╡ 2a4050f6-112b-11eb-368a-f91d7a023c9d md""" #### Exercise 1.1 - _tangent line_ 👉 Write a function `finite_difference_slope` that takes a function `f` and numbers `a` and `h`. It returns the slope ``f'(a)``, approximated using the finite difference formula above. """ # ╔═╡ d217a4b6-12e8-11eb-29ce-53ae143a39cd function finite_difference_slope(f::Function, a, h=1e-3) return missing end # ╔═╡ f0576e48-1261-11eb-0579-0b1372565ca7 finite_difference_slope(sqrt, 4.0, 5.0) # ╔═╡ bf8a4556-112b-11eb-042e-d705a2ca922a md""" 👉 Write a function `tangent_line` that takes the same arguments `f`, `a` and `g`, but it **returns a function**. This function (``\mathbb{R} \rightarrow \mathbb{R}``) is the _tangent line_ with slope ``f'(a)`` (computed using `finite_difference_slope`) that passes through ``(a, f(a))``. """ # ╔═╡ cbf0a27a-12e8-11eb-379d-85550b942ceb function tangent_line(f, a, h) return missing end # ╔═╡ 2b79b698-10b9-11eb-3bde-53fc1c48d5f7 # this is our test function wavy(x) = .1x^3 - 1.6x^2 + 7x - 3; # ╔═╡ a732bbcc-112c-11eb-1d65-110c049e226c md""" The slider below controls ``h`` using a _log scale_. In the (mathematical) definition of the derivative, we take ``\lim_{h \rightarrow 0}``. This corresponds to moving the slider to the left. Notice that, as you decrease ``h``, the tangent line gets more accurate, but what happens if you make ``h`` too small? """ # ╔═╡ c9535ad6-10b9-11eb-0537-45f13931cd71 @bind log_h Slider(-16:0.01:.5, default=-.5) # ╔═╡ 7495af52-10ba-11eb-245f-a98781ba123c h_finite_diff = 10.0^log_h # ╔═╡ 327de976-10b9-11eb-1916-69ad75fc8dc4 zeroten = LinRange(0.0, 10.0, 300); # ╔═╡ abc54b82-10b9-11eb-1641-817e2f043d26 @bind a_finite_diff Slider(zeroten, default=4) # ╔═╡ 43df67bc-10bb-11eb-1cbd-cd962a01e3ee md""" $(html"") #### Exercise 1.2 - _antiderivative_ In the finite differences method, we approximated the derivative of a function: $$f'(a) \simeq \frac{f(a + h) - f(a)}{h}$$ We can do something very similar to approximate the 'antiderivate' of a function. Finding the antiderivative means that we use the _slope_ ``f'`` to compute ``f`` numerically! This antiderivative problem is illustrated below. The only information that we have is the **slope** at any point ``a \in \mathbb{R}``, and we have one **initial value**, ``f(1)``. """ # ╔═╡ d5a8bd48-10bf-11eb-2291-fdaaff56e4e6 # in this exercise, only the derivative is given wavy_deriv(x) = .3x^2 - 3.2x + 7; # ╔═╡ 0b4e8cdc-10bd-11eb-296c-d51dc242a372 @bind a_euler Slider(zeroten, default=1) # ╔═╡ 1d8ce3d6-112f-11eb-1343-079c18cdc89c md""" Using only this information, we want to **reconstruct** ``f``. By rearranging [the equation above](#theslopeequation), we get the _Euler method_: $$f(a+h) \simeq hf'(a) + f(a)$$ Using this formula, we only need to know the _value_ ``f(a)`` and the _slope_ ``f'(a)`` of a function at ``a`` to get the value at ``a+h``. Doing this repeatedly can give us the value at ``a+2h``, at ``a+3h``, etc., all from one initial value ``f(a)``. 👉 Write a function `euler_integrate_step` that applies this formula to a known function ``f'`` at ``a``, with step size ``h`` and the initial value ``f(a)``. It returns the next value, ``f(a+h)``. """ # ╔═╡ fa320028-12c4-11eb-0156-773e2aba8e58 function euler_integrate_step(fprime::Function, fa::Number, a::Number, h::Number) return missing end # ╔═╡ 2335cae6-112f-11eb-3c2c-254e82014567 md""" 👉 Write a function `euler_integrate` that takes takes a known function ``f'``, the initial value ``f(a)`` and a range `T` with `a == first(T)` and `h == step(T)`. It applies the function `euler_integrate_step` repeatedly, once per entry in `T`, to produce the sequence of values ``f(a+h)``, ``f(a+2h)``, etc. """ # ╔═╡ fff7754c-12c4-11eb-2521-052af1946b66 function euler_integrate(fprime::Function, fa::Number, T::AbstractRange) a0 = T[1] h = step(T) return missing end # ╔═╡ 4d0efa66-12c6-11eb-2027-53d34c68d5b0 md""" Let's try it out on ``f'(x) = 3x^2`` and `T` ranging from ``0`` to ``10``. We already know the analytical solution ``f(x) = x^3``, so the result should be an array going from (approximately) `0.0` to `1000.0`. """ # ╔═╡ b74d94b8-10bf-11eb-38c1-9f39dfcb1096 euler_test = let fprime(x) = 3x^2 T = 0 : 0.1 : 10 euler_integrate(fprime, 0, T) end # ╔═╡ ab72fdbe-10be-11eb-3b33-eb4ab41730d6 @bind N_euler Slider(2:40) # ╔═╡ d21fad2a-1253-11eb-304a-2bacf9064d0d md""" You see that our numerical antiderivate is not very accurate, but we can get a smaller error by choosing a smaller step size. Try it out! There are also alternative integration methods that are more accurate with the same step size. Some methods also use the second derivative, other methods use multiple steps at once, etc.! This is the study of Numerical Methods. """ # ╔═╡ 518fb3aa-106e-11eb-0fcd-31091a8f12db md""" ## **Exercise 2:** _Simulating the SIR differential equations_ Recall from the lectures that the ordinary differential equations (ODEs) for the SIR model are as follows: $$\begin{align*} \dot{s} &= - \beta s \, i \\ \dot{i} &= + \beta s \, i - \gamma i \\ \dot{r} &= +\gamma i \end{align*}$$ where ``\dot{s} := \frac{ds}{dt}`` is the derivative of $s$ with respect to time. Recall that $s$ denotes the *proportion* (fraction) of the population that is susceptible, a number between $0$ and $1$. We will use the simplest possible method to simulate these, namely the **Euler method**. The Euler method is not always a good method to solve ODEs accurately, but for our purposes it is good enough. In the previous exercise, we introduced the euler method for a 1D function, which you can see as an ODE that only depends on time. For the SIR equations, we have an ODE that only depends on the previous _value_, not on time, and we have 3 equations instead of 1. The solution is quite simple, we apply the euler method to *each* of the differential equations within a *single* time step to get new values for *each* of $s$, $i$ and $r$ at the end of the time step in terms of the values at the start of the time step. The euler discretised equations are: $$\begin{align*} s(t+h) &= s(t) - h\,\cdot\beta s(t) \, i(t) \\ i(t+h) &= i(t) + h\,\cdot(\beta s(t) \, i(t) - \gamma i(t)) \\ r(t+h) &= r(t) + h\,\cdot \gamma i(t) \end{align*}$$ 👉 Implement a function `euler_SIR_step(β, γ, sir_0, h)` that performs a single Euler step for these equations with the given parameter values and initial values, with a step size $h$. `sir_0` is a 3-element vector, and you should return a new 3-element vector with the values after the timestep. """ # ╔═╡ 1e5ca54e-12d8-11eb-18b8-39b909584c72 function euler_SIR_step(β, γ, sir_0::Vector, h::Number) s, i, r = sir_0 return [ missing, missing, missing, ] end # ╔═╡ 84daf7c4-1244-11eb-0382-d1da633a63e2 euler_SIR_step(0.1, 0.05, [0.99, 0.01, 0.00], 0.1) # ╔═╡ 517efa24-1244-11eb-1f81-b7f95b87ce3b md""" 👉 Implement a function `euler_SIR(β, γ, sir_0, T)` that applies the previously defined function over a time range $T$. You should return a vector of vectors: a 3-element vector for each point in time. """ # ╔═╡ 51a0138a-1244-11eb-239f-a7413e2e44e4 function euler_SIR(β, γ, sir_0::Vector, T::AbstractRange) # T is a range, you get the step size and number of steps like so: h = step(T) num_steps = length(T) return missing end # ╔═╡ 4b791b76-12cd-11eb-1260-039c938f5443 sir_T = 0 : 0.1 : 60.0 # ╔═╡ 0a095a94-1245-11eb-001a-b908128532aa sir_results = euler_SIR(0.3, 0.15, [0.99, 0.01, 0.00], sir_T) # ╔═╡ 51c9a25e-1244-11eb-014f-0bcce2273cee md""" Let's plot $s$, $i$ and $r$ as a function of time. """ # ╔═╡ b4bb4b3a-12ce-11eb-3fe5-ad7ccd73febb function plot_sir!(p, T, results; label="", kwargs...) s = getindex.(results, [1]) i = getindex.(results, [2]) r = getindex.(results, [3]) plot!(p, T, s; color=1, label=label*" S", lw=3, kwargs...) plot!(p, T, i; color=2, label=label*" I", lw=3, kwargs...) plot!(p, T, r; color=3, label=label*" R", lw=3, kwargs...) p end # ╔═╡ 58675b3c-1245-11eb-3548-c9cb8a6b3188 plot_sir!(plot(), sir_T, sir_results) # ╔═╡ 586d0352-1245-11eb-2504-05d0aa2352c6 md""" 👉 Do you see an epidemic outbreak (i.e. a rapid growth in number of infected individuals, followed by a decline)? What happens after a long time? Does everybody get infected? """ # ╔═╡ 589b2b4c-1245-11eb-1ec7-693c6bda97c4 default_SIR_parameters_observation = md""" blabla """ # ╔═╡ 58b45a0e-1245-11eb-04d1-23a1f3a0f242 md""" 👉 Make an interactive visualization in which you vary $\beta$ and $\gamma$. What relation should $\beta$ and $\gamma$ have for an epidemic outbreak to occur? """ # ╔═╡ 68274534-1103-11eb-0d62-f1acb57721bc # ╔═╡ 82539bbe-106e-11eb-0e9e-170dfa6a7dad md""" ## **Exercise 3:** _Numerical gradient_ For fitting we need optimization, and for optimization we will use *derivatives* (rates of change). In Exercise 1, we wrote a function `finite_difference_slope(f, a)` to approximate ``f'(a)``. In this exercise we will write a function to compute _partial derivatives_. """ # ╔═╡ b394b44e-1245-11eb-2f86-8d10113e8cfc md""" #### Exercise 3.1 👉 Write functions `∂x(f, a, b)` and `∂y(f, a, b)` that calculate the **partial derivatives** $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $(a, b)$ of a function $f : \mathbb{R}^2 \to \mathbb{R}$ (i.e. a function that takes two real numbers and returns one real). Recall that $\frac{\partial f}{\partial x}$ is the derivative of the single-variable function $g(x) := f(x, b)$ obtained by fixing the value of $y$ to $b$. You should use **anonymous functions** for this. These have the form `x -> x^2`, meaning "the function that sends $x$ to $x^2$". """ # ╔═╡ bd8522c6-12e8-11eb-306c-c764f78486ef function ∂x(f::Function, a, b) return missing end # ╔═╡ 321964ac-126d-11eb-0a04-0d3e3fb9b17c ∂x( (x, y) -> 7x^2 + y, 3, 7 ) # ╔═╡ b7d3aa8c-12e8-11eb-3430-ff5d7df6a122 function ∂y(f::Function, a, b) return missing end # ╔═╡ a15509ee-126c-11eb-1fa3-cdda55a47fcb ∂y( (x, y) -> 7x^2 + y, 3, 7 ) # ╔═╡ b398a29a-1245-11eb-1476-ab65e92d1bc8 md""" #### Exercise 3.2 👉 Write a function `gradient(f, a, b)` that calculates the **gradient** of a function $f$ at the point $(a, b)$, given by the vector $\nabla f(a, b) := (\frac{\partial f}{\partial x}(a, b), \frac{\partial f}{\partial y}(a, b))$. """ # ╔═╡ adbf65fe-12e8-11eb-04e9-3d763ba91a63 function gradient(f::Function, a, b) return missing end # ╔═╡ 66b8e15e-126c-11eb-095e-39c2f6abc81d gradient( (x, y) -> 7x^2 + y, 3, 7 ) # ╔═╡ 82579b90-106e-11eb-0018-4553c29e57a2 md""" ## **Exercise 4:** _Minimisation using gradient descent_ In this exercise we will use **gradient descent** to find local **minima** of (smooth enough) functions. To do so we will think of a function as a hill. To find a minimum we should "roll down the hill". #### Exercise 4.1 We want to minimize a 1D function, i.e. a function $f: \mathbb{R} \to \mathbb{R}$. To do so we notice that the derivative tells us the direction in which the function *increases*. Positive slope means that the minimum is to the left, negative slope means to the right. So our _gradient descent method_ is to take steps in the *opposite* direction, of a small size $\eta \cdot f'(x_0)$. 👉 Write a function `gradient_descent_1d_step(f, x0)` that performs a single gradient descrent step, from the point `x0` and using your function `finite_difference_slope` to approximate the derivative. The result should be the next guess for ``x``. """ # ╔═╡ a7f1829c-12e8-11eb-15a1-5de40ed92587 function gradient_descent_1d_step(f, x0; η=0.01) return missing end # ╔═╡ d33271a2-12df-11eb-172a-bd5600265f49 let f = x -> x^2 # the minimum is at 0, so we should take a small step to the left gradient_descent_1d_step(f, 5) end # ╔═╡ 8ae98c74-12e0-11eb-2802-d9a544d8b7ae @bind N_gradient_1d Slider(0:20) # ╔═╡ a53cf3f8-12e1-11eb-0b0c-2b794a7ac841 md" ``x_0 = `` $(@bind x0_gradient_1d Slider(-3:.01:1.5, default=-1, show_value=true))" # ╔═╡ 754e4c48-12df-11eb-3818-f54f6fc7176b md""" 👉 Write a function `gradient_descent_1d(f, x0)` that repeatedly applies the previous function (`N_steps` times), starting from the point `x0`, like in the vizualisation above. The result should be the final guess for ``x``. """ # ╔═╡ 9489009a-12e8-11eb-2fb7-97ba0bdf339c function gradient_descent_1d(f, x0; η=0.01, N_steps=1000) return missing end # ╔═╡ 34dc4b02-1248-11eb-26b2-5d2610cfeb41 let f = x -> (x - 5)^2 - 3 # minimum should be at x = 5 gradient_descent_1d(f, 0.0) end # ╔═╡ e3120c18-1246-11eb-3bf4-7f4ac45856e0 md""" Right now we take a fixed number of steps, even if the minimum is found quickly. What would be a better way to decide when to end the function? """ # ╔═╡ ebca11d8-12c9-11eb-3dde-c546eccf40fc better_stopping_idea = md""" blabla """ # ╔═╡ 9fd2956a-1248-11eb-266d-f558cda55702 md""" #### Exericse 4.2 Multivariable calculus tells us that the gradient $\nabla f(a, b)$ at a point $(a, b)$ is the direction in which the function *increases* the fastest. So again we should take a small step in the *opposite* direction. Note that the gradient is a *vector* which tells us which direction to move in the plane $(a, b)$. We multiply this vector with the scalar ``\eta`` to control the step size. 👉 Write functions `gradient_descent_2d_step(f, x0, y0)` and `gradient_descent_2d(f, x0, y0)` that do the same for functions $f(x, y)$ of two variables. """ # ╔═╡ 852be3c4-12e8-11eb-1bbb-5fbc0da74567 function gradient_descent_2d_step(f, x0, y0; η=0.01) return missing end # ╔═╡ 8a114ca8-12e8-11eb-2de6-9149d1d3bc3d function gradient_descent_2d(f, x0, y0; η=0.01) return missing end # ╔═╡ 4454c2b2-12e3-11eb-012c-c362c4676bf6 @bind N_gradient_2d Slider(0:20) # ╔═╡ 4aace1a8-12e3-11eb-3e07-b5827a2a6765 md" ``x_0 = `` $(@bind x0_gradient_2d Slider(-4:.01:4, default=0, show_value=true))" # ╔═╡ 54a58f84-12e3-11eb-10b9-7d55a16c81ba md" ``y_0 = `` $(@bind y0_gradient_2d Slider(-4:.01:4, default=0, show_value=true))" # ╔═╡ a0045046-1248-11eb-13bd-8b8ad861b29a himmelbau(x, y) = (x^2 + y - 11)^2 + (x + y^2 - 7)^2 # ╔═╡ 92854562-1249-11eb-0b81-156982df1284 gradient_descent_2d(himmelbau, 0, 0) # ╔═╡ 7e318fea-12e7-11eb-3490-b17e0d4dbc50 md""" We also prepared a 3D visualisation if you like! It's a bit slow... """ # ╔═╡ 605aafa4-12e7-11eb-2d13-7f7db3fac439 run_3d_visualisation = false # ╔═╡ a03890d6-1248-11eb-37ee-85b0a5273e0c md""" 👉 Can you find different minima? """ # ╔═╡ 6d1ee93e-1103-11eb-140f-63fca63f8b06 # ╔═╡ 8261eb92-106e-11eb-2ccc-1348f232f5c3 md""" ## **Exercise 5:** _Learning parameter values_ In this exercise we will apply gradient descent to fit a simple function $y = f_{\alpha, \beta}(x)$ to some data given as pairs $(x_i, y_i)$. Here $\alpha$ and $\beta$ are **parameters** that appear in the form of the function $f$. We want to find the parameters that provide the **best fit**, i.e. the version $f_{\alpha, \beta}$ of the function that is closest to the data when we vary $\alpha$ and $\beta$. To do so we need to define what "best" means. We will define a measure of the distance between the function and the data, given by a **loss function**, which itself depends on the values of $\alpha$ and $\beta$. Then we will *minimize* the loss function over $\alpha$ and $\beta$ to find those values that minimize this distance, and hence are "best" in this precise sense. The iterative procedure by which we gradually adjust the parameter values to improve the loss function is often called **machine learning** or just **learning**, since the computer is "discovering" information in a gradual way, which is supposed to remind us of how humans learn. [Hint: This is not how humans learn.] #### Exercise 5.1 - _🎲 frequencies_ We generate a small dataset by throwing 10 dice, and counting the sum. We repeat this experiment many times, giving us a frequency distribution in a familiar shape. """ # ╔═╡ 65e691e4-124a-11eb-38b1-b1732403aa3d import Statistics # ╔═╡ 6f4aa432-1103-11eb-13da-fdd9eefc7c86 function dice_frequencies(N_dice, N_experiments) experiment() = let sum_of_rolls = sum(rand(1:6, N_dice)) end results = [experiment() for _ in 1:N_experiments] x = N_dice : N_dice*6 y = map(x) do total sum(isequal(total), results) end ./ N_experiments x, y end # ╔═╡ dbe9635a-124b-11eb-111d-fb611954db56 dice_x, dice_y = dice_frequencies(10, 20_000) # ╔═╡ 57090426-124e-11eb-0a17-1566ae96b7c2 md""" Let's try to fit a gaussian (normal) distribution. Its PDF with mean $\mu$ and standard deviation $\sigma$ is $$f_{\mu, \sigma}(x) := \frac{1}{\sigma \sqrt{2 \pi}}\exp \left[- \frac{(x - \mu)^2}{2 \sigma^2} \right]$$ 👉 _(Not graded)_ Manually fit a Gaussian distribution to our data by adjusting ``\mu`` and ``\sigma`` until you find a good fit. """ # ╔═╡ 66192a74-124c-11eb-0c6a-d74aecb4c624 md"μ = $(@bind guess_μ Slider(1:0.1:last(dice_x); default = last(dice_x) * 0.4, show_value=true))" # ╔═╡ 70f0fe9c-124c-11eb-3dc6-e102e68673d9 md"σ = $(@bind guess_σ Slider(0.1:0.1:last(dice_x)/2; default=12, show_value=true))" # ╔═╡ 41b2262a-124e-11eb-2634-4385e2f3c6b6 md"Show manual fit: $(@bind show_manual_fit CheckBox())" # ╔═╡ 0dea1f70-124c-11eb-1593-e535ab21976c function gauss(x, μ, σ) (1 / (sqrt(2π) * σ)) * exp(-(x-μ)^2 / σ^2 / 2) end # ╔═╡ 471cbd84-124c-11eb-356e-371d23011af5 md""" What we just did was adjusting the function parameters until we found the best possible fit. Let's automate this process! To do so, we need to quantify how _good or bad_ a fit is. 👉 Define a **loss function** to measure the "distance" between the actual data and the function. It will depend on the values of $\mu$ and $\sigma$ that you choose: $$\mathcal{L}(\mu, \sigma) := \sum_i [f_{\mu, \sigma}(x_i) - y_i]^2$$ """ # ╔═╡ 2fc55daa-124f-11eb-399e-659e59148ef5 function loss_dice(μ, σ) return missing end # ╔═╡ 3a6ec2e4-124f-11eb-0f68-791475bab5cd loss_dice(guess_μ + 3, guess_σ) > loss_dice(guess_μ, guess_σ) # ╔═╡ 2fcb93aa-124f-11eb-10de-55fced6f4b83 md""" 👉 Use your `gradient_descent_2d` function to find a local minimum of $\mathcal{L}$, starting with initial values $\mu = 30$ and $\sigma = 1$. Call the found parameters `found_μ` and `found_σ`. """ # ╔═╡ a150fd60-124f-11eb-35d6-85104bcfd0fe found_μ, found_σ = let # your code here missing, missing end # ╔═╡ ac320522-124b-11eb-1552-51c2adaf2521 let p = plot(dice_x, dice_y, size=(600,200), label="data") if show_manual_fit plot!(p, dice_x, gauss.(dice_x, [guess_μ], [guess_σ]), label="manual fit") end try plot!(p, dice_x, gauss.(dice_x, [found_μ], [found_σ]), label="optimized fit") catch end p end # ╔═╡ 3f5e88bc-12c8-11eb-2d74-51f2f5060928 md""" Go back to the graph to see your optimized gaussian curve! If your fit is close, then probability theory tells us that the found parameter ``\mu`` should be close to the _weighted mean_ of our data, and ``\sigma`` should approximate the _sample standard deviation_. We have already computed these values, and we check how close they are: """ # ╔═╡ 65aa13fe-1266-11eb-03c2-5927dbeca36e stats_μ = sum(dice_x .* dice_y) # ╔═╡ c569a5d8-1267-11eb-392f-452de141161b abs(stats_μ - found_μ) # ╔═╡ 6faf4074-1266-11eb-1a0a-991fc2e991bb stats_σ = sqrt(sum(dice_x.^2 .* dice_y) - stats_μ .^ 2) # ╔═╡ e55d9c1e-1267-11eb-1b3c-5d772662518a abs(stats_σ - found_σ) # ╔═╡ 826bb0dc-106e-11eb-29eb-03e7ddf9e4b5 md""" ## **Exercise 6:** _Putting it all together — fitting an SIR model to data_ In this exercise we will fit the (non-spatial) SIR ODE model from Exercise 1 to some data generated from the spatial model in Problem Set 4. If we are able to find a good fit, that would suggest that the spatial aspect "does not matter" too much for the dynamics of these models. If the fit is not so good, perhaps there is an important effect of space. (As usual in statistics, and indeed in modelling in general, we should be very cautious of making claims of this nature.) This fitting procedure will be different from that in Exercise 4, however: we no longer have an explicit form for the function that we are fitting -- rather, it is the output of an ODE! So what should we do? We will try to find the parameters $\beta$ and $\gamma$ for which *the output of the ODEs when we simulate it with those parameters* best matches the data! #### Exercise 6.1 Below the result from Homework 4, Exercise 3.2. These are the _average S, I, R fractions_ of running 20 simulations. Click on it! """ # ╔═╡ c56cc19c-12ca-11eb-3c6c-7f3ea98eeb4e hw4_results_transposed = (S = [0.99, 0.9895, 0.9895, 0.989, 0.9885, 0.9885, 0.9885, 0.988, 0.9865, 0.986, 0.9855, 0.9855, 0.9855, 0.9845, 0.9845, 0.9845, 0.984, 0.984, 0.984, 0.9835, 0.9835, 0.982, 0.982, 0.982, 0.982, 0.9815, 0.981, 0.9805, 0.98, 0.98, 0.98, 0.98, 0.9795, 0.9795, 0.979, 0.979, 0.979, 0.978, 0.9775, 0.9775, 0.977, 0.976, 0.9755, 0.9745, 0.9735, 0.9735, 0.973, 0.972, 0.972, 0.972, 0.971, 0.971, 0.9695, 0.968, 0.9675, 0.967, 0.9665, 0.966, 0.9655, 0.9645, 0.9645, 0.9645, 0.964, 0.9615, 0.9595, 0.959, 0.958, 0.9575, 0.9575, 0.9575, 0.9565, 0.956, 0.954, 0.9535, 0.9535, 0.951, 0.95, 0.949, 0.9485, 0.948, 0.947, 0.9465, 0.9465, 0.9455, 0.945, 0.9425, 0.9415, 0.9405, 0.9395, 0.9385, 0.938, 0.937, 0.9355, 0.9355, 0.935, 0.9325, 0.932, 0.93, 0.929, 0.927, 0.9265, 0.926, 0.9245, 0.924, 0.9235, 0.923, 0.9225, 0.9225, 0.922, 0.9215, 0.9195, 0.918, 0.915, 0.9125, 0.911, 0.907, 0.9055, 0.9045, 0.9025, 0.9005, 0.899, 0.898, 0.8965, 0.8955, 0.893, 0.892, 0.89, 0.8875, 0.885, 0.8835, 0.882, 0.8805, 0.8785, 0.8755, 0.8735, 0.869, 0.868, 0.868, 0.8645, 0.8625, 0.8605, 0.8575, 0.8545, 0.8505, 0.847, 0.8455, 0.8435, 0.8415, 0.84, 0.8385, 0.8365, 0.8345, 0.829, 0.826, 0.824, 0.822, 0.817, 0.8145, 0.814, 0.811, 0.8095, 0.8075, 0.805, 0.8005, 0.7985, 0.7965, 0.793, 0.7895, 0.7865, 0.785, 0.7815, 0.779, 0.776, 0.769, 0.7655, 0.764, 0.7625, 0.7595, 0.7575, 0.754, 0.751, 0.7485, 0.743, 0.7395, 0.736, 0.7355, 0.732, 0.728, 0.725, 0.7235, 0.7215, 0.718, 0.7165, 0.7135, 0.7095, 0.709, 0.705, 0.7015, 0.699, 0.697, 0.694, 0.69, 0.685, 0.6835, 0.6805, 0.6795, 0.6765, 0.6745, 0.6735, 0.6705, 0.6665, 0.6625, 0.66, 0.656, 0.653, 0.65, 0.6465, 0.641, 0.639, 0.6365, 0.6335, 0.632, 0.6285, 0.6265, 0.623, 0.6195, 0.617, 0.6125, 0.609, 0.607, 0.6045, 0.601, 0.596, 0.591, 0.5905, 0.5885, 0.5825, 0.579, 0.576, 0.574, 0.5705, 0.569, 0.563, 0.559, 0.5565, 0.555, 0.5515, 0.546, 0.5455, 0.5435, 0.5395, 0.538, 0.535, 0.5315, 0.528, 0.525, 0.523, 0.519, 0.516, 0.513, 0.511, 0.509, 0.5065, 0.5045, 0.5015, 0.497, 0.4925, 0.488, 0.485, 0.4795, 0.473, 0.47, 0.465, 0.4595, 0.457, 0.454, 0.45, 0.447, 0.444, 0.4405, 0.4385, 0.4345, 0.431, 0.4275, 0.4245, 0.422, 0.421, 0.418, 0.414, 0.411, 0.4075, 0.404, 0.4015, 0.398, 0.3945, 0.3915, 0.39, 0.3875, 0.385, 0.3825, 0.379, 0.3765, 0.3725, 0.3685, 0.3655, 0.364, 0.359, 0.3555, 0.3555, 0.354, 0.351, 0.3495, 0.347, 0.345, 0.343, 0.341, 0.3365, 0.3325, 0.3325, 0.3275, 0.3255, 0.3225, 0.3205, 0.3195, 0.3175, 0.316, 0.313, 0.3125, 0.31, 0.308, 0.3055, 0.302, 0.301, 0.299, 0.297, 0.294, 0.29, 0.2895, 0.2855, 0.283, 0.2825, 0.279, 0.276, 0.273, 0.2695, 0.2665, 0.2655, 0.2635, 0.261, 0.2595, 0.258, 0.257, 0.254, 0.2535, 0.251, 0.25, 0.2465, 0.245, 0.2435, 0.2415, 0.2405, 0.238, 0.2365, 0.235, 0.2335, 0.2325, 0.23, 0.2275, 0.226, 0.2245, 0.2235, 0.223, 0.22, 0.218, 0.2165, 0.2135, 0.2135, 0.2095, 0.2075, 0.206, 0.205, 0.2045, 0.2025, 0.201, 0.2, 0.1985, 0.1985, 0.196, 0.1945, 0.1915, 0.1895, 0.188, 0.185, 0.184, 0.1835, 0.1835, 0.183, 0.183, 0.182, 0.182, 0.1805, 0.179, 0.1785, 0.177, 0.176, 0.1745, 0.174, 0.1735, 0.173, 0.1715, 0.171, 0.1685, 0.167, 0.1665, 0.165, 0.1645, 0.163, 0.162, 0.162, 0.1605, 0.1605, 0.16, 0.159, 0.158, 0.1555, 0.155, 0.1545, 0.1545, 0.152, 0.1505, 0.15, 0.149, 0.1475, 0.1465, 0.1445, 0.1435, 0.142, 0.1405, 0.14, 0.14, 0.139, 0.139, 0.1375, 0.137, 0.136, 0.1355, 0.135, 0.134, 0.1335, 0.133, 0.133, 0.1325, 0.1315, 0.1305, 0.13, 0.1295, 0.1295, 0.1275, 0.1265, 0.126, 0.126, 0.125, 0.124, 0.124, 0.1235, 0.1225, 0.1225, 0.1225, 0.122, 0.121, 0.1205, 0.1205, 0.1195, 0.1185, 0.117, 0.1145, 0.1135, 0.113, 0.113, 0.113, 0.112, 0.1105, 0.11, 0.109, 0.1085, 0.1055, 0.1055, 0.105, 0.105, 0.105, 0.105, 0.1035, 0.103, 0.1025, 0.102, 0.101, 0.1005, 0.0995, 0.099, 0.0975, 0.0965, 0.096, 0.096, 0.095, 0.095, 0.095, 0.0945, 0.0935, 0.0935, 0.0925, 0.091, 0.091, 0.0905, 0.09, 0.09, 0.09, 0.09, 0.0895, 0.0895, 0.0895, 0.088, 0.087, 0.0865, 0.0865, 0.086, 0.085, 0.085, 0.0845, 0.0845, 0.084, 0.084, 0.084, 0.084, 0.0835, 0.0825, 0.0825, 0.082, 0.082, 0.0815, 0.081, 0.081, 0.0805, 0.0795, 0.0795, 0.0795, 0.0795, 0.0795, 0.079, 0.0785, 0.078, 0.0775, 0.077, 0.076, 0.076, 0.076, 0.076, 0.076, 0.0755, 0.0755, 0.0755, 0.0755, 0.0755, 0.075, 0.075, 0.075, 0.075, 0.074, 0.074, 0.074, 0.0735, 0.0735, 0.0735, 0.0735, 0.073, 0.072, 0.072, 0.072, 0.072, 0.0715, 0.0715, 0.0715, 0.0705, 0.0705, 0.0695, 0.0695, 0.0695, 0.0695, 0.0695, 0.0695, 0.069, 0.069, 0.0685, 0.0685, 0.0685, 0.0685, 0.0685, 0.0685, 0.068, 0.0675, 0.0665, 0.0665, 0.0665, 0.0665, 0.0665, 0.066, 0.066, 0.066, 0.0655, 0.065, 0.065, 0.065, 0.0645, 0.0645, 0.0645, 0.0645, 0.064, 0.064, 0.0635, 0.0635, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.0625, 0.062, 0.062, 0.062, 0.062, 0.062, 0.062, 0.062, 0.062, 0.062, 0.062, 0.062, 0.0615, 0.0615, 0.0615, 0.0615, 0.0615, 0.0615, 0.061, 0.0605, 0.0605, 0.0605, 0.06, 0.0595, 0.0595, 0.0595, 0.059, 0.059, 0.0585, 0.0585, 0.0585, 0.0585, 0.0585, 0.0585, 0.0585, 0.0585, 0.0585, 0.0585, 0.0585, 0.0585, 0.0585, 0.058, 0.058, 0.058, 0.058, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.0575, 0.057, 0.057, 0.057, 0.057, 0.057, 0.057, 0.057, 0.057, 0.057, 0.057, 0.057, 0.057, 0.0565, 0.0565, 0.0565, 0.0565, 0.0565, 0.0565, 0.0565, 0.0565, 0.0565, 0.0565, 0.0565, 0.0565, 0.0565, 0.056, 0.056, 0.056, 0.056, 0.056, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.0555, 0.055, 0.055, 0.0545, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.054, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.053, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.0525, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.052, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.0515, 0.051, 0.051, 0.051, 0.051, 0.051, 0.051, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.0505, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.05], I = [0.01, 0.0105, 0.0105, 0.011, 0.0115, 0.0115, 0.0115, 0.0115, 0.013, 0.0135, 0.014, 0.014, 0.014, 0.015, 0.015, 0.015, 0.0155, 0.0155, 0.0155, 0.016, 0.016, 0.0175, 0.0175, 0.0175, 0.017, 0.0175, 0.018, 0.0185, 0.019, 0.019, 0.019, 0.019, 0.0195, 0.0195, 0.02, 0.02, 0.0195, 0.0205, 0.0205, 0.0205, 0.021, 0.022, 0.022, 0.023, 0.024, 0.024, 0.0245, 0.0255, 0.0255, 0.0255, 0.0265, 0.0265, 0.028, 0.0295, 0.03, 0.0305, 0.031, 0.0315, 0.032, 0.033, 0.033, 0.033, 0.0335, 0.036, 0.037, 0.0375, 0.0385, 0.039, 0.039, 0.039, 0.0395, 0.0395, 0.0415, 0.042, 0.0415, 0.0435, 0.0445, 0.0455, 0.0455, 0.046, 0.047, 0.0475, 0.0475, 0.0485, 0.0485, 0.051, 0.052, 0.053, 0.053, 0.054, 0.0545, 0.0555, 0.057, 0.057, 0.0575, 0.06, 0.0605, 0.0625, 0.0635, 0.0645, 0.065, 0.0655, 0.067, 0.0675, 0.068, 0.0685, 0.069, 0.069, 0.0695, 0.07, 0.072, 0.0735, 0.076, 0.0785, 0.0795, 0.0835, 0.0845, 0.0855, 0.0875, 0.0895, 0.091, 0.0915, 0.093, 0.0935, 0.096, 0.097, 0.0985, 0.101, 0.1035, 0.105, 0.1065, 0.108, 0.1095, 0.1125, 0.1135, 0.1175, 0.1185, 0.1185, 0.122, 0.124, 0.126, 0.1285, 0.1315, 0.1355, 0.1385, 0.14, 0.1415, 0.1435, 0.1445, 0.144, 0.146, 0.148, 0.1535, 0.1565, 0.1585, 0.1605, 0.1655, 0.1675, 0.168, 0.171, 0.172, 0.174, 0.176, 0.1795, 0.181, 0.1815, 0.1845, 0.188, 0.191, 0.192, 0.1955, 0.1975, 0.199, 0.206, 0.209, 0.21, 0.2105, 0.213, 0.215, 0.218, 0.2205, 0.2225, 0.2275, 0.2305, 0.2335, 0.2335, 0.2365, 0.24, 0.242, 0.242, 0.244, 0.2465, 0.2475, 0.2505, 0.2535, 0.2525, 0.256, 0.259, 0.261, 0.2625, 0.2645, 0.268, 0.273, 0.273, 0.2745, 0.2755, 0.278, 0.28, 0.281, 0.2835, 0.2865, 0.2905, 0.292, 0.295, 0.2975, 0.3, 0.303, 0.308, 0.3095, 0.3115, 0.313, 0.3145, 0.318, 0.319, 0.3225, 0.326, 0.328, 0.332, 0.333, 0.334, 0.3355, 0.3385, 0.3435, 0.348, 0.3475, 0.347, 0.353, 0.356, 0.3585, 0.36, 0.3635, 0.365, 0.371, 0.3745, 0.376, 0.3765, 0.379, 0.3835, 0.384, 0.386, 0.3875, 0.3875, 0.3895, 0.3915, 0.395, 0.397, 0.3975, 0.3995, 0.402, 0.4035, 0.4055, 0.4075, 0.409, 0.41, 0.4115, 0.416, 0.42, 0.424, 0.4255, 0.4305, 0.4355, 0.4375, 0.441, 0.445, 0.4465, 0.4475, 0.4505, 0.4535, 0.4565, 0.4595, 0.4605, 0.4635, 0.4665, 0.4695, 0.472, 0.474, 0.4745, 0.4775, 0.48, 0.483, 0.4835, 0.4865, 0.489, 0.491, 0.4935, 0.495, 0.4945, 0.4965, 0.4985, 0.5, 0.502, 0.5045, 0.508, 0.51, 0.5125, 0.514, 0.518, 0.52, 0.5185, 0.519, 0.5215, 0.522, 0.5225, 0.5235, 0.5245, 0.525, 0.529, 0.5315, 0.5315, 0.5345, 0.5355, 0.5375, 0.5385, 0.538, 0.54, 0.541, 0.5435, 0.5425, 0.5445, 0.545, 0.547, 0.549, 0.549, 0.55, 0.551, 0.553, 0.5565, 0.557, 0.56, 0.562, 0.5615, 0.564, 0.5655, 0.5655, 0.5665, 0.569, 0.567, 0.5665, 0.569, 0.568, 0.568, 0.5675, 0.5695, 0.569, 0.5705, 0.5695, 0.572, 0.5725, 0.574, 0.575, 0.5755, 0.5775, 0.5775, 0.5785, 0.5785, 0.579, 0.5805, 0.582, 0.583, 0.583, 0.583, 0.5815, 0.5825, 0.584, 0.585, 0.5855, 0.584, 0.5865, 0.587, 0.5875, 0.5875, 0.5865, 0.587, 0.587, 0.5875, 0.588, 0.5865, 0.588, 0.5885, 0.5905, 0.5915, 0.5925, 0.5945, 0.5935, 0.592, 0.5905, 0.5905, 0.5905, 0.5905, 0.59, 0.59, 0.5905, 0.589, 0.589, 0.5885, 0.5875, 0.5875, 0.585, 0.584, 0.584, 0.583, 0.5835, 0.583, 0.582, 0.5825, 0.582, 0.5825, 0.582, 0.581, 0.582, 0.581, 0.579, 0.5785, 0.5775, 0.5795, 0.58, 0.579, 0.576, 0.578, 0.579, 0.579, 0.578, 0.5795, 0.5795, 0.5805, 0.58, 0.5805, 0.5815, 0.5805, 0.5795, 0.5795, 0.5775, 0.5765, 0.576, 0.5765, 0.576, 0.5755, 0.5755, 0.5755, 0.575, 0.5745, 0.5745, 0.574, 0.573, 0.573, 0.5715, 0.568, 0.5695, 0.5705, 0.571, 0.5705, 0.5695, 0.5695, 0.569, 0.569, 0.569, 0.5685, 0.566, 0.565, 0.5655, 0.565, 0.564, 0.564, 0.563, 0.563, 0.565, 0.564, 0.564, 0.563, 0.563, 0.5635, 0.564, 0.563, 0.5635, 0.563, 0.5655, 0.564, 0.5635, 0.562, 0.562, 0.5605, 0.5605, 0.5595, 0.559, 0.5595, 0.5595, 0.559, 0.558, 0.557, 0.5575, 0.5575, 0.556, 0.5555, 0.5545, 0.5525, 0.5495, 0.549, 0.549, 0.5475, 0.5475, 0.548, 0.548, 0.548, 0.547, 0.5445, 0.5425, 0.5425, 0.5425, 0.5415, 0.541, 0.5415, 0.541, 0.5405, 0.5395, 0.5395, 0.54, 0.539, 0.539, 0.5375, 0.5365, 0.5355, 0.535, 0.5345, 0.534, 0.5345, 0.534, 0.533, 0.5325, 0.5315, 0.532, 0.5315, 0.5315, 0.5315, 0.531, 0.53, 0.5295, 0.528, 0.526, 0.5255, 0.5235, 0.524, 0.523, 0.5215, 0.521, 0.521, 0.5205, 0.5205, 0.5205, 0.52, 0.519, 0.5185, 0.517, 0.5165, 0.5145, 0.5135, 0.513, 0.513, 0.513, 0.513, 0.5135, 0.5125, 0.5125, 0.511, 0.5115, 0.5125, 0.5115, 0.511, 0.511, 0.51, 0.5095, 0.509, 0.509, 0.5065, 0.5065, 0.506, 0.5045, 0.504, 0.502, 0.4995, 0.4995, 0.4995, 0.4995, 0.4985, 0.4965, 0.493, 0.492, 0.492, 0.491, 0.49, 0.4905, 0.4905, 0.4905, 0.4905, 0.4895, 0.489, 0.488, 0.4875, 0.488, 0.486, 0.4855, 0.4855, 0.485, 0.484, 0.483, 0.4825, 0.483, 0.482, 0.4815, 0.481, 0.4815, 0.4805, 0.4785, 0.4775, 0.477, 0.475, 0.4735, 0.473, 0.4725, 0.471, 0.4705, 0.47, 0.469, 0.4675, 0.4675, 0.466, 0.466, 0.4645, 0.4635, 0.4625, 0.4615, 0.461, 0.46, 0.4595, 0.458, 0.458, 0.457, 0.457, 0.4565, 0.4545, 0.454, 0.453, 0.452, 0.451, 0.4495, 0.449, 0.448, 0.4465, 0.4465, 0.4455, 0.4455, 0.4455, 0.4455, 0.4455, 0.445, 0.444, 0.444, 0.4425, 0.4415, 0.44, 0.4385, 0.438, 0.437, 0.436, 0.4355, 0.435, 0.4345, 0.432, 0.4295, 0.4295, 0.428, 0.427, 0.426, 0.4255, 0.4245, 0.4215, 0.4215, 0.4205, 0.4205, 0.42, 0.4195, 0.4195, 0.4185, 0.4165, 0.4155, 0.4135, 0.412, 0.4125, 0.4105, 0.41, 0.409, 0.4075, 0.407, 0.407, 0.4065, 0.405, 0.4045, 0.404, 0.4035, 0.404, 0.4015, 0.4, 0.3995, 0.398, 0.398, 0.397, 0.397, 0.397, 0.396, 0.396, 0.395, 0.3945, 0.395, 0.394, 0.393, 0.393, 0.393, 0.392, 0.391, 0.3905, 0.39, 0.389, 0.3885, 0.388, 0.387, 0.386, 0.385, 0.384, 0.384, 0.3835, 0.3825, 0.3825, 0.3825, 0.3815, 0.3815, 0.38, 0.38, 0.3795, 0.379, 0.379, 0.378, 0.377, 0.3765, 0.376, 0.3755, 0.3735, 0.3715, 0.371, 0.3715, 0.371, 0.3705, 0.37, 0.37, 0.369, 0.369, 0.3675, 0.367, 0.367, 0.3655, 0.364, 0.3625, 0.3615, 0.361, 0.3605, 0.3605, 0.36, 0.3595, 0.359, 0.3575, 0.3575, 0.357, 0.3565, 0.355, 0.355, 0.354, 0.3535, 0.353, 0.352, 0.352, 0.3515, 0.351, 0.3495, 0.3495, 0.349, 0.348, 0.3475, 0.345, 0.344, 0.3435, 0.3425, 0.3425, 0.341, 0.3395, 0.3395, 0.339, 0.3375, 0.337, 0.336, 0.336, 0.3345, 0.3345, 0.334, 0.3335, 0.3335, 0.3325, 0.3325, 0.3315, 0.3295, 0.3285, 0.328, 0.328, 0.326, 0.326, 0.326, 0.326, 0.326, 0.3255, 0.325, 0.3235, 0.3225, 0.3215, 0.3215, 0.3215, 0.321, 0.3195, 0.318, 0.3175, 0.317, 0.3165, 0.316, 0.3155, 0.3155, 0.315, 0.3145, 0.3135, 0.3135, 0.313, 0.3105, 0.31, 0.31, 0.308, 0.3075, 0.3075, 0.3075, 0.307, 0.305, 0.3045, 0.3035, 0.3035, 0.3015, 0.3015, 0.3015, 0.3015, 0.301, 0.3, 0.2995, 0.2995, 0.299, 0.299, 0.298, 0.298, 0.297, 0.2965, 0.2945, 0.294, 0.293, 0.293, 0.2915, 0.2915, 0.291, 0.2905, 0.29, 0.289, 0.289, 0.288, 0.288, 0.288, 0.288, 0.288, 0.2865, 0.2855, 0.2855, 0.2845, 0.2835, 0.283, 0.282, 0.2815, 0.281, 0.281, 0.2805, 0.281, 0.2805, 0.2795, 0.2785, 0.278, 0.278, 0.2785, 0.2785, 0.277, 0.2765, 0.275, 0.2745, 0.2745, 0.2745, 0.274, 0.273, 0.273, 0.273, 0.2715, 0.27, 0.2695, 0.2695, 0.269, 0.2685, 0.268, 0.267, 0.266, 0.266, 0.265, 0.2645, 0.2645, 0.2635, 0.263, 0.2625, 0.2625, 0.262, 0.262, 0.2605, 0.26, 0.259, 0.2575, 0.2565, 0.2555, 0.255, 0.254, 0.253, 0.2525, 0.251, 0.2505, 0.2505, 0.2505, 0.25, 0.2495, 0.2495, 0.2495, 0.249, 0.249, 0.249, 0.2485, 0.2475, 0.246, 0.246, 0.245, 0.245, 0.2445, 0.2445, 0.244, 0.244, 0.2435, 0.2425, 0.242, 0.242, 0.2415, 0.2405, 0.239, 0.238, 0.2375, 0.2365, 0.2365, 0.2365, 0.236, 0.236, 0.2365, 0.2365, 0.2365, 0.2365, 0.236, 0.235, 0.2345, 0.234, 0.234, 0.2335, 0.2335, 0.233, 0.233, 0.2325, 0.232, 0.2315, 0.231, 0.2295, 0.2285], R = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.0015, 0.0015, 0.002, 0.002, 0.002, 0.002, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0025, 0.0035, 0.0035, 0.0035, 0.0035, 0.0035, 0.0035, 0.004, 0.0045, 0.0045, 0.0045, 0.005, 0.0055, 0.0055, 0.0055, 0.006, 0.006, 0.006, 0.006, 0.006, 0.006, 0.0065, 0.0065, 0.0065, 0.0065, 0.0075, 0.0075, 0.0075, 0.0075, 0.0075, 0.0075, 0.0075, 0.0075, 0.0075, 0.0075, 0.0075, 0.0085, 0.0085, 0.0085, 0.0085, 0.0085, 0.0085, 0.0085, 0.0085, 0.0085, 0.0085, 0.0085, 0.0085, 0.0085, 0.009, 0.009, 0.0095, 0.0095, 0.01, 0.01, 0.01, 0.01, 0.01, 0.0105, 0.0105, 0.011, 0.011, 0.011, 0.0115, 0.0115, 0.0115, 0.0115, 0.0115, 0.0115, 0.012, 0.012, 0.013, 0.0135, 0.0135, 0.0135, 0.0135, 0.0135, 0.0135, 0.014, 0.014, 0.014, 0.0145, 0.0145, 0.015, 0.015, 0.0155, 0.0175, 0.0175, 0.0175, 0.0175, 0.0175, 0.0175, 0.0175, 0.0175, 0.018, 0.018, 0.018, 0.0185, 0.0185, 0.019, 0.02, 0.0205, 0.022, 0.0225, 0.0225, 0.0225, 0.023, 0.023, 0.0235, 0.025, 0.025, 0.0255, 0.026, 0.027, 0.0275, 0.0275, 0.028, 0.0285, 0.029, 0.0295, 0.03, 0.0305, 0.031, 0.0315, 0.032, 0.033, 0.0345, 0.0345, 0.0355, 0.036, 0.036, 0.037, 0.0385, 0.039, 0.0395, 0.04, 0.0405, 0.0415, 0.042, 0.042, 0.0435, 0.045, 0.045, 0.0455, 0.0455, 0.0455, 0.046, 0.047, 0.047, 0.048, 0.049, 0.0495, 0.05, 0.0505, 0.051, 0.0515, 0.052, 0.0535, 0.0535, 0.0535, 0.0545, 0.0545, 0.0545, 0.055, 0.0555, 0.058, 0.059, 0.06, 0.0605, 0.0605, 0.061, 0.062, 0.0645, 0.0645, 0.065, 0.0655, 0.066, 0.066, 0.066, 0.066, 0.0665, 0.0675, 0.0685, 0.0695, 0.0705, 0.0705, 0.0705, 0.073, 0.0745, 0.0755, 0.077, 0.077, 0.078, 0.0795, 0.0815, 0.082, 0.0835, 0.0835, 0.0835, 0.0845, 0.0855, 0.087, 0.087, 0.0875, 0.088, 0.0895, 0.09, 0.0915, 0.0925, 0.094, 0.0955, 0.0965, 0.0985, 0.0995, 0.0995, 0.0995, 0.1, 0.101, 0.102, 0.1025, 0.103, 0.1035, 0.104, 0.1045, 0.1045, 0.106, 0.106, 0.109, 0.1095, 0.1095, 0.111, 0.112, 0.1135, 0.1155, 0.116, 0.1165, 0.1175, 0.119, 0.119, 0.1195, 0.1215, 0.122, 0.122, 0.123, 0.1245, 0.126, 0.127, 0.1275, 0.1285, 0.1305, 0.1315, 0.1325, 0.134, 0.1345, 0.136, 0.136, 0.138, 0.139, 0.14, 0.141, 0.1425, 0.1425, 0.143, 0.1435, 0.145, 0.1455, 0.147, 0.1475, 0.149, 0.15, 0.151, 0.152, 0.153, 0.1535, 0.1535, 0.1545, 0.155, 0.156, 0.157, 0.1585, 0.1615, 0.164, 0.1645, 0.1675, 0.17, 0.17, 0.1725, 0.174, 0.1755, 0.1765, 0.1775, 0.1785, 0.1805, 0.1815, 0.1825, 0.1825, 0.1835, 0.184, 0.1845, 0.186, 0.1865, 0.188, 0.1885, 0.1895, 0.1905, 0.191, 0.1925, 0.1935, 0.1955, 0.1975, 0.198, 0.1985, 0.201, 0.2025, 0.204, 0.2055, 0.2065, 0.2075, 0.209, 0.2105, 0.212, 0.2125, 0.2135, 0.215, 0.216, 0.217, 0.218, 0.219, 0.2195, 0.2205, 0.2225, 0.2245, 0.226, 0.2265, 0.2265, 0.2275, 0.228, 0.2295, 0.2305, 0.2325, 0.234, 0.2355, 0.238, 0.2385, 0.2415, 0.243, 0.2445, 0.246, 0.248, 0.25, 0.2515, 0.2525, 0.2535, 0.2545, 0.256, 0.257, 0.2575, 0.2585, 0.261, 0.2625, 0.2645, 0.265, 0.265, 0.2665, 0.2695, 0.27, 0.2705, 0.271, 0.273, 0.273, 0.274, 0.275, 0.2765, 0.2775, 0.278, 0.2795, 0.2805, 0.2815, 0.2835, 0.286, 0.287, 0.2875, 0.2885, 0.2895, 0.2905, 0.291, 0.292, 0.2925, 0.293, 0.2945, 0.2965, 0.297, 0.299, 0.3025, 0.303, 0.303, 0.303, 0.3035, 0.3055, 0.3065, 0.307, 0.3075, 0.3085, 0.309, 0.3115, 0.313, 0.3135, 0.3145, 0.3155, 0.3165, 0.3185, 0.32, 0.3205, 0.3225, 0.323, 0.324, 0.324, 0.3245, 0.3255, 0.327, 0.3275, 0.3285, 0.329, 0.3305, 0.3315, 0.333, 0.333, 0.3345, 0.336, 0.3375, 0.3385, 0.3385, 0.3395, 0.3405, 0.3425, 0.344, 0.345, 0.346, 0.348, 0.3485, 0.3505, 0.3525, 0.3555, 0.3565, 0.3575, 0.359, 0.36, 0.361, 0.361, 0.3615, 0.363, 0.3655, 0.3675, 0.3675, 0.368, 0.369, 0.3695, 0.3705, 0.372, 0.373, 0.374, 0.3745, 0.375, 0.376, 0.3765, 0.378, 0.3795, 0.3805, 0.381, 0.3815, 0.3825, 0.383, 0.3835, 0.385, 0.3855, 0.387, 0.387, 0.3875, 0.388, 0.389, 0.3895, 0.3905, 0.391, 0.3925, 0.395, 0.396, 0.3985, 0.3985, 0.4, 0.4025, 0.403, 0.403, 0.4035, 0.4035, 0.404, 0.4045, 0.4055, 0.406, 0.4075, 0.4085, 0.4105, 0.4115, 0.412, 0.413, 0.413, 0.413, 0.413, 0.414, 0.414, 0.4155, 0.4155, 0.4155, 0.4165, 0.417, 0.417, 0.4185, 0.419, 0.4195, 0.4205, 0.423, 0.424, 0.4245, 0.426, 0.4265, 0.4285, 0.431, 0.4315, 0.4315, 0.432, 0.433, 0.435, 0.4385, 0.4395, 0.4395, 0.441, 0.4425, 0.443, 0.443, 0.443, 0.443, 0.444, 0.445, 0.446, 0.4465, 0.4465, 0.449, 0.4495, 0.4495, 0.4505, 0.4515, 0.4525, 0.453, 0.453, 0.454, 0.455, 0.4555, 0.456, 0.457, 0.459, 0.46, 0.4605, 0.4625, 0.464, 0.4645, 0.465, 0.4665, 0.467, 0.4675, 0.4685, 0.47, 0.47, 0.4715, 0.472, 0.4735, 0.4745, 0.4755, 0.4765, 0.477, 0.478, 0.4785, 0.48, 0.48, 0.481, 0.4815, 0.482, 0.484, 0.4845, 0.4855, 0.4865, 0.488, 0.49, 0.4905, 0.4915, 0.4935, 0.494, 0.495, 0.495, 0.4955, 0.4955, 0.496, 0.4965, 0.4975, 0.4975, 0.499, 0.5, 0.5015, 0.503, 0.5035, 0.5045, 0.5055, 0.506, 0.5065, 0.5075, 0.51, 0.5125, 0.5125, 0.5145, 0.5155, 0.5165, 0.517, 0.518, 0.521, 0.521, 0.522, 0.522, 0.5225, 0.523, 0.523, 0.524, 0.526, 0.527, 0.529, 0.5305, 0.5305, 0.5325, 0.533, 0.534, 0.5355, 0.536, 0.536, 0.5365, 0.538, 0.5385, 0.539, 0.5395, 0.5395, 0.542, 0.5435, 0.544, 0.5455, 0.5455, 0.5465, 0.5465, 0.5465, 0.5475, 0.5475, 0.5485, 0.549, 0.549, 0.55, 0.551, 0.551, 0.551, 0.5525, 0.5535, 0.554, 0.5545, 0.5555, 0.556, 0.5565, 0.5575, 0.5585, 0.5595, 0.5605, 0.561, 0.5615, 0.563, 0.5635, 0.5635, 0.5645, 0.5645, 0.566, 0.566, 0.5665, 0.567, 0.567, 0.568, 0.569, 0.5695, 0.57, 0.5705, 0.5725, 0.5745, 0.575, 0.5755, 0.576, 0.5765, 0.577, 0.577, 0.578, 0.578, 0.5795, 0.58, 0.58, 0.5815, 0.583, 0.5845, 0.5855, 0.586, 0.5865, 0.5865, 0.587, 0.5875, 0.588, 0.5895, 0.5895, 0.59, 0.5905, 0.592, 0.592, 0.593, 0.5935, 0.594, 0.595, 0.595, 0.596, 0.5965, 0.598, 0.598, 0.5985, 0.5995, 0.6, 0.6025, 0.6035, 0.604, 0.605, 0.605, 0.6065, 0.608, 0.608, 0.6085, 0.61, 0.6105, 0.6115, 0.6115, 0.613, 0.613, 0.6135, 0.614, 0.614, 0.615, 0.615, 0.616, 0.618, 0.619, 0.6195, 0.6195, 0.6215, 0.6215, 0.6215, 0.6215, 0.6215, 0.622, 0.6225, 0.624, 0.625, 0.626, 0.6265, 0.6265, 0.627, 0.6285, 0.63, 0.6305, 0.631, 0.6315, 0.632, 0.6325, 0.6325, 0.633, 0.6335, 0.6345, 0.6345, 0.635, 0.6375, 0.638, 0.638, 0.64, 0.6405, 0.6405, 0.6405, 0.641, 0.643, 0.6435, 0.6445, 0.6445, 0.6465, 0.6465, 0.6465, 0.6465, 0.647, 0.648, 0.6485, 0.6485, 0.649, 0.649, 0.65, 0.65, 0.651, 0.6515, 0.6535, 0.654, 0.655, 0.655, 0.6565, 0.6565, 0.657, 0.6575, 0.658, 0.659, 0.659, 0.6605, 0.6605, 0.6605, 0.6605, 0.6605, 0.662, 0.663, 0.663, 0.664, 0.665, 0.6655, 0.6665, 0.667, 0.6675, 0.6675, 0.668, 0.668, 0.6685, 0.6695, 0.6705, 0.671, 0.671, 0.671, 0.671, 0.6725, 0.673, 0.6745, 0.675, 0.675, 0.675, 0.6755, 0.6765, 0.6765, 0.6765, 0.678, 0.6795, 0.68, 0.68, 0.6805, 0.681, 0.6815, 0.6825, 0.6835, 0.6835, 0.6845, 0.685, 0.685, 0.686, 0.6865, 0.687, 0.687, 0.6875, 0.6875, 0.689, 0.6895, 0.6905, 0.692, 0.693, 0.694, 0.6945, 0.6955, 0.6965, 0.697, 0.6985, 0.699, 0.699, 0.699, 0.6995, 0.7, 0.7, 0.7, 0.7005, 0.7005, 0.7005, 0.701, 0.702, 0.7035, 0.7035, 0.7045, 0.7045, 0.705, 0.705, 0.7055, 0.7055, 0.706, 0.707, 0.7075, 0.7075, 0.708, 0.709, 0.7105, 0.7115, 0.712, 0.713, 0.713, 0.713, 0.7135, 0.7135, 0.7135, 0.7135, 0.7135, 0.7135, 0.714, 0.715, 0.7155, 0.716, 0.716, 0.7165, 0.7165, 0.717, 0.717, 0.7175, 0.718, 0.7185, 0.719, 0.7205, 0.7215]); # ╔═╡ 249c297c-12ce-11eb-2054-d1e926335148 hw4_results = collect.(zip(hw4_results_transposed...)) # ╔═╡ 04364dee-12cb-11eb-2f94-bfd3fb405907 hw4_T = 1:length(hw4_results) # ╔═╡ 480fde46-12d4-11eb-2dfb-1b71692c7420 md""" 👉 _(Not graded)_ Manually fit the SIR curves to our data by adjusting ``\beta`` and ``\gamma`` until you find a good fit. """ # ╔═╡ 4837e1ae-12d2-11eb-0df9-21dcc1892fc9 md"β = $(@bind guess_β Slider(0.00:0.0001:0.1; default = 0.05, show_value=true))" # ╔═╡ a9630d28-12d2-11eb-196b-773d8498b0bb md"γ = $(@bind guess_γ Slider(0.00:0.0001:0.01; default = 0.005, show_value=true))" # ╔═╡ 23c53be4-12d4-11eb-1d39-8d11b4431993 md"Show manual fit: $(@bind show_manual_sir_fit CheckBox())" # ╔═╡ 6016fccc-12d4-11eb-0f58-b9cd331cc7b3 md""" 👉 To do this automatically, we will again need to define a loss function $\mathcal{L}(\beta, \gamma)$. This will compare *the solution of the SIR equations* with parameters $\beta$ and $\gamma$ with your data. This time, instead of comparing two vectors of numbers, we need to compare two vectors of _vectors_, the S, I, R values. """ # ╔═╡ 754b5368-12e8-11eb-0763-e3ec56562c5f function loss_sir(β, γ) return missing end # ╔═╡ ee20199a-12d4-11eb-1c2c-3f571bbb232e loss_sir(guess_β, guess_γ) # ╔═╡ 38b09bd8-12d5-11eb-2f7b-579e9db3973d md""" 👉 Use this loss function to find the optimal parameters ``\beta`` and ``\gamma``. """ # ╔═╡ 6e1b5b6a-12e8-11eb-3655-fb10c4566cdc found_β, found_γ = let # your code here missing, missing end # ╔═╡ b94b7610-106d-11eb-2852-25337ce6ec3a if student.name == "Jazzy Doe" || student.kerberos_id == "jazz" md""" !!! danger "Before you submit" Remember to fill in your **name** and **Kerberos ID** at the top of this notebook. """ end # ╔═╡ 112eb7b2-1428-11eb-1c60-15105fa0e5fa md""" ## Exercise XX - Lecture transcript (MIT students only) Please see the link for hw 6 transcript document on [Canvas](https://canvas.mit.edu/courses/5637). We want each of you to correct about 500 lines, but don’t spend more than 20 minutes on it. See the the beginning of the document for more instructions. :point_right: Please mention the name of the video(s) and the line ranges you edited: """ # ╔═╡ 5ac7dcea-1429-11eb-1429-0fdbd4e9b5b1 lines_i_edited = md""" Abstraction, lines 1-219; Array Basics, lines 1-137; Course Intro, lines 1-144 (_for example_) """ # ╔═╡ b94f9df8-106d-11eb-3be8-c5a1bb79d0d4 md"## Function library Just some helper functions used in the notebook." # ╔═╡ b9586d66-106d-11eb-0204-a91c8f8355f7 hint(text) = Markdown.MD(Markdown.Admonition("hint", "Hint", [text])) # ╔═╡ 0f0b7ec4-112c-11eb-3399-59e22df07355 hint(md""" Remember that [functions are objects](https://www.youtube.com/watch?v=_O-HBDZMLrM)! For example, here is a function that returns the square root function: ```julia function the_square_root_function() f = x -> sqrt(x) return f end ``` """) # ╔═╡ b9616f92-106d-11eb-1bd1-ede92a617fdb almost(text) = Markdown.MD(Markdown.Admonition("warning", "Almost there!", [text])) # ╔═╡ b969dbaa-106d-11eb-3e5a-81766a333c49 still_missing(text=md"Replace `missing` with your answer.") = Markdown.MD(Markdown.Admonition("warning", "Here we go!", [text])) # ╔═╡ b9728c20-106d-11eb-2286-4f670c229f3e keep_working(text=md"The answer is not quite right.") = Markdown.MD(Markdown.Admonition("danger", "Keep working on it!", [text])) # ╔═╡ b97afa48-106d-11eb-3c2c-cdee1d1cc6d7 yays = [md"Fantastic!", md"Splendid!", md"Great!", md"Yay ❤", md"Great! 🎉", md"Well done!", md"Keep it up!", md"Good job!", md"Awesome!", md"You got the right answer!", md"Let's move on to the next section."] # ╔═╡ b98238ce-106d-11eb-1e39-f9eda5df76af correct(text=rand(yays)) = Markdown.MD(Markdown.Admonition("correct", "Got it!", [text])) # ╔═╡ 3df7d63a-12c4-11eb-11ca-0b8db4bd9121 let result = euler_integrate_step(x -> x^2, 10, 11, 12) if result isa Missing still_missing() elseif !(result isa Number) keep_working(md"Make sure that you return a number.") else if result ≈ 6358 correct() elseif result ≈ 1462 almost(md"Use ``f'(a+h)``, not ``f'(a)``.") else keep_working() end end end # ╔═╡ 15b50428-1264-11eb-163e-23e2f3590502 if euler_test isa Missing still_missing() elseif !(euler_test isa Vector) || (abs(length(euler_test) - 101) > 1) keep_working(md"Make sure that you return a vector of numbers, of the same size as `T`.") else if abs(euler_test[1] - 0) > 1 keep_working() elseif abs(euler_test[50] - 5^3) > 20 keep_working() elseif abs(euler_test[end] - 10^3) > 100 keep_working() else correct() end end # ╔═╡ ed344a8c-12df-11eb-03a3-2922620fd20f let result1 = gradient_descent_1d_step(x -> x^2, 10; η=1) result2 = gradient_descent_1d_step(x -> x^2, 10; η=2) if result1 isa Missing still_missing() elseif !(result1 isa Real) keep_working(md"You need to return a number.") else if result2 < result1 < 10.0 correct() else keep_working() end end end # ╔═╡ f46aeaf0-1246-11eb-17aa-2580fdbcfa5a let result = gradient_descent_1d(10) do x (x - 5pi) ^ 2 + 10 end if result isa Missing still_missing() elseif !(result isa Real) keep_working(md"You need to return a number.") else error = abs(result - 5pi) if error > 5.0 almost(md"It's not accurate enough yet. Maybe you need to increase the number of steps?") elseif error > 0.02 keep_working() else correct() end end end # ╔═╡ 106670f2-12d6-11eb-1854-5bf0fc6f4dfb let if (found_β isa Missing) || (found_γ isa Missing) still_missing() else if isnan(found_β) || isnan(found_γ) hint(md"The found parameters are `NaN`, which means that floating point errors led to an invalid value. Try setting ``\eta`` much lower, try `1e-6`, `1e-7`, etc.") else diffb = abs(found_β - 0.019) diffc = abs(found_γ - 0.0026) if diffb > .1 || diffc > .01 almost(md"Try using initial values that are closer to the expected result. (For example, the values that you found using the sliders.)") elseif diffb > .01 || diffc > .001 almost(md"Try using initial values that are closer to the expected result. (For example, the values that you found using the sliders.) You can also experiment with a different loss function. Are you using the absolute error, instead of the square of the error? A parabolic loss function is 'easier to optimize' using gradient descent than a cone-shaped one.") else correct(md""" If you made it this far, congratulations -- you have just taken your first step into the exciting world of scientific machine learning! """) end end end end # ╔═╡ b989e544-106d-11eb-3c53-3906c5c922fb not_defined(variable_name) = Markdown.MD(Markdown.Admonition("danger", "Oopsie!", [md"Make sure that you define a variable called **$(Markdown.Code(string(variable_name)))**"])) # ╔═╡ cd7583b0-1261-11eb-2a98-537bfab2463e if !@isdefined(finite_difference_slope) not_defined(:finite_difference_slope) else let result = finite_difference_slope(sqrt, 4.0, 5.0) if result isa Missing still_missing() elseif !(result isa Real) keep_working(md"Make sure that you return a number.") else if result ≈ 0.2 correct() else keep_working() end end end end # ╔═╡ 66198242-1262-11eb-1b0f-37c58199c754 if !@isdefined(tangent_line) not_defined(:tangent_line) else let result = tangent_line(sqrt, 4.0, 5.0) if result isa Missing still_missing() elseif !(result isa Function) keep_working(md"Make sure that you return a function.") else if finite_difference_slope(result, 14.0, 15.0) ≈ 0.2 if result(4.0) ≈ 2.0 correct() else almost(md"The tangent line should pass through $(a, f(a))$.") end else keep_working() end end end end # ╔═╡ 5ea6c1f0-126c-11eb-3963-c98548f0b36e if !@isdefined(∂x) not_defined(:∂x) else let result = ∂x((x, y) -> 2x^2 + 3y^2, 6, 7) if result isa Missing still_missing() elseif !(result isa Number) keep_working(md"Make sure that you return a number.") else if abs(result - 24) < 1.0 correct() else keep_working() end end end end # ╔═╡ c82b2148-126c-11eb-1c03-c157c9bd7eba if !@isdefined(∂y) not_defined(:∂y) else let result = ∂y((x, y) -> 2x^2 + 3y^2, 6, 7) if result isa Missing still_missing() elseif !(result isa Number) keep_working(md"Make sure that you return a number.") else if abs(result - 42) < 1.0 correct() else keep_working() end end end end # ╔═╡ 46b07b1c-126d-11eb-0966-6ff5ab87ac9d if !@isdefined(gradient) not_defined(:gradient) else let result = gradient((x, y) -> 2x^2 + 3y^2, 6, 7) if result isa Missing still_missing() elseif !(result isa Vector) keep_working(md"Make sure that you return a 2-element vector.") else if abs(result[1] - 24) < 1 && abs(result[2] - 42) < 1 correct() else keep_working() end end end end # ╔═╡ a737990a-1251-11eb-1114-c57ceee75181 if !@isdefined(found_μ) not_defined(:found_μ) elseif !@isdefined(found_σ) not_defined(:found_σ) else let if (found_μ isa Missing) || (found_σ isa Missing) still_missing() else diff_μ = abs(stats_μ - found_μ) diff_σ = abs(stats_σ - found_σ) if diff_μ > 1 || diff_σ > 1 keep_working() elseif diff_μ > .2 || diff_σ > .2 almost(md"The fit is close, but we can do better. Try increasing ``\eta`` ") else correct() end end end end # ╔═╡ 05bfc716-106a-11eb-36cb-e7c488050d54 TODO = html"TODO" # ╔═╡ df42aa9e-10c9-11eb-2c19-2d7ce40a1c6c as_mime(m::MIME) = x -> PlutoUI.Show(m, repr(m, x)) # ╔═╡ 15b60272-10ca-11eb-0a28-599ed78cf98a """ Return the argument, but force it to be shown as SVG. This is an optimization for Plots.jl GR plots: it makes them less jittery and keeps the page DOM small. """ as_svg = as_mime(MIME"image/svg+xml"()) # ╔═╡ 3d44c264-10b9-11eb-0895-dbfc22ba0c37 let p = plot(zeroten, wavy, label="f(x)") scatter!(p, [a_finite_diff], [wavy(a_finite_diff)], label="a", color="red") vline!(p, [a_finite_diff], label=nothing, color="red", linestyle=:dash) scatter!(p, [a_finite_diff+h_finite_diff], [wavy(a_finite_diff+h_finite_diff)], label="a + h", color="green") try result = tangent_line(wavy, a_finite_diff, h_finite_diff) plot!(p, zeroten, result, label="tangent", color="purple") catch end plot!(p, xlim=(0,10), ylim=(-2, 8)) end |> as_svg # ╔═╡ 70df9a48-10bb-11eb-0b95-95a224b45921 let slope = wavy_deriv(a_euler) p = plot(LinRange(1.0 - 0.1, 1.0 + 0.1, 2), wavy, label=nothing, lw=3) scatter!(p, [1], wavy, label="f(1)", color="blue", lw=3) # p = plot() x = [a_euler - 0.2,a_euler + 0.2] for y in -4:10 plot!(p, x, slope .* (x .- a_euler) .+ y, label=nothing, color="purple", opacity=.6) end vline!(p, [a_euler], color="red", label="a", linestyle=:dash) plot!(p, xlim=(0,10), ylim=(-2, 8)) end |> as_svg # ╔═╡ 990236e0-10be-11eb-333a-d3080a224d34 let a = 1 h = .3 history = euler_integrate(wavy_deriv, wavy(a), range(a; step=h, length=N_euler)) slope = wavy_deriv(a_euler) p = plot(zeroten, wavy, label="exact solution", lw=3, opacity=.1, color="gray") # p = plot() last_a = a + (N_euler-1)*h vline!(p, [last_a], color="red", label="a", linestyle=:dash) try plot!(p, a .+ h .* (1:N_euler), history, color="blue", label=nothing) scatter!(p, a .+ h .* (1:N_euler), history, color="blue", label="appromixation", markersize=2, markerstrokewidth=0) plot!(p, [0,10], ([0,10] .- (last_a+h)) .* wavy_deriv(last_a+h) .+ history[end], label="tangent", color="purple") catch end plot!(p, xlim=(0,10), ylim=(-2, 8)) end |> as_svg # ╔═╡ 90114f98-12e0-11eb-2011-a3207bbc24f6 function gradient_1d_viz(N_gradient_1d, x0) f = x -> x^4 + 3x^3 - 3x + 5. x = LinRange(-3, 1.5, 200) history = accumulate(1:N_gradient_1d, init=x0) do old, _ gradient_descent_1d_step(f, old, η=.025) end all = [x0, history...] # slope = wavy_deriv(a_euler) p = plot(x, f, label="f(x)", lw=3, opacity=.6, color="gray") # p = plot() plot!(p, all, f, color="blue", opacity=range(.5,step=.2,length=length(all)), label=nothing) scatter!(p, all, f, color="blue", label="gradient descent", markersize=3, markerstrokewidth=0) as_svg(p) end # ╔═╡ 88b30f10-12e1-11eb-383d-4f095625cd16 gradient_1d_viz(N_gradient_1d, x0_gradient_1d) # ╔═╡ 5e0f16b4-12e3-11eb-212f-e565f97adfed function gradient_2d_viz_3d(N_gradient_2d, x0, y0) history = accumulate(1:N_gradient_2d, init=[x0, y0]) do old, _ gradient_descent_2d_step(himmelbau, old...) end all = [[x0, y0], history...] p = surface(-4:0.4:5, -4:0.4:4, himmelbau) trace = [himmelbau(s...) for s in all] plot!(p, first.(all), last.(all), trace, color="blue", opacity=range(.5,step=.2,length=length(all)), label=nothing) scatter!(p, first.(all), last.(all), trace, color="blue", label="gradient descent", markersize=3, markerstrokewidth=0) as_svg(p) end # ╔═╡ 9ae4ebac-12e3-11eb-0acc-23113f5264a9 if run_3d_visualisation let # we temporarily change the plotting backend to an interactive one plotly() # we dont use the sliders because this plot is quite slow x0 = 0.5 N = 20 y0 = -3 p = gradient_2d_viz_3d(N, x0, y0) gr() p end end # ╔═╡ b6ae4d7e-12e6-11eb-1f92-c95c040d4401 function gradient_2d_viz_2d(N_gradient_2d, x0, y0) history = accumulate(1:N_gradient_2d, init=[x0, y0]) do old, _ gradient_descent_2d_step(himmelbau, old...) end all = [[x0, y0], history...] p = heatmap(-4:0.4:5, -4:0.4:4, himmelbau) plot!(p, first.(all), last.(all), color="blue", opacity=range(.5,step=.2,length=length(all)), label=nothing) scatter!(p, first.(all), last.(all), color="blue", label="gradient descent", markersize=3, markerstrokewidth=0) as_svg(p) end # ╔═╡ fbb4a9a4-1248-11eb-00e2-fd346f0056db gradient_2d_viz_2d(N_gradient_2d, x0_gradient_2d, y0_gradient_2d) # ╔═╡ 496b8816-12d3-11eb-3cec-c777ba81eb60 let p = plot() plot_sir!(p, hw4_T, hw4_results, label="hw4", opacity=.7) if show_manual_sir_fit guess_results = euler_SIR(guess_β, guess_γ, [0.99, 0.01, 0.00], hw4_T) plot_sir!(p, hw4_T, guess_results, label="manual", linestyle=:dash, lw=2) end try @assert !(found_β isa Missing) && !(found_γ isa Missing) found_results = euler_SIR(found_β, found_γ, [0.99, 0.01, 0.00], hw4_T) plot_sir!(p, hw4_T, found_results, label="optimized", linestyle=:dot, lw=2) catch end as_svg(p) end # ╔═╡ Cell order: # ╟─048890ee-106a-11eb-1a81-5744150543e8 # ╟─0565af4c-106a-11eb-0d38-2fb84493d86f # ╟─056ed7f2-106a-11eb-3543-31a5cb560e80 # ╟─0579e962-106a-11eb-26b5-2160f461f4cc # ╠═0587db1c-106a-11eb-0560-c3d53c516805 # ╟─05976f0c-106a-11eb-03a4-0febbc18fae8 # ╠═05b01f6e-106a-11eb-2a88-5f523fafe433 # ╟─0d191540-106e-11eb-1f20-bf72a75fb650 # ╟─3cd69418-10bb-11eb-2fb5-e93bac9e54a9 # ╟─17af6a00-112b-11eb-1c9c-bfd12931491d # ╟─2a4050f6-112b-11eb-368a-f91d7a023c9d # ╠═d217a4b6-12e8-11eb-29ce-53ae143a39cd # ╠═f0576e48-1261-11eb-0579-0b1372565ca7 # ╟─cd7583b0-1261-11eb-2a98-537bfab2463e # ╟─bf8a4556-112b-11eb-042e-d705a2ca922a # ╟─0f0b7ec4-112c-11eb-3399-59e22df07355 # ╠═cbf0a27a-12e8-11eb-379d-85550b942ceb # ╟─66198242-1262-11eb-1b0f-37c58199c754 # ╟─abc54b82-10b9-11eb-1641-817e2f043d26 # ╟─3d44c264-10b9-11eb-0895-dbfc22ba0c37 # ╠═2b79b698-10b9-11eb-3bde-53fc1c48d5f7 # ╟─a732bbcc-112c-11eb-1d65-110c049e226c # ╟─c9535ad6-10b9-11eb-0537-45f13931cd71 # ╟─7495af52-10ba-11eb-245f-a98781ba123c # ╟─327de976-10b9-11eb-1916-69ad75fc8dc4 # ╟─43df67bc-10bb-11eb-1cbd-cd962a01e3ee # ╠═d5a8bd48-10bf-11eb-2291-fdaaff56e4e6 # ╟─0b4e8cdc-10bd-11eb-296c-d51dc242a372 # ╟─70df9a48-10bb-11eb-0b95-95a224b45921 # ╟─1d8ce3d6-112f-11eb-1343-079c18cdc89c # ╠═fa320028-12c4-11eb-0156-773e2aba8e58 # ╟─3df7d63a-12c4-11eb-11ca-0b8db4bd9121 # ╟─2335cae6-112f-11eb-3c2c-254e82014567 # ╠═fff7754c-12c4-11eb-2521-052af1946b66 # ╟─4d0efa66-12c6-11eb-2027-53d34c68d5b0 # ╠═b74d94b8-10bf-11eb-38c1-9f39dfcb1096 # ╟─15b50428-1264-11eb-163e-23e2f3590502 # ╟─ab72fdbe-10be-11eb-3b33-eb4ab41730d6 # ╟─990236e0-10be-11eb-333a-d3080a224d34 # ╟─d21fad2a-1253-11eb-304a-2bacf9064d0d # ╟─518fb3aa-106e-11eb-0fcd-31091a8f12db # ╠═1e5ca54e-12d8-11eb-18b8-39b909584c72 # ╠═84daf7c4-1244-11eb-0382-d1da633a63e2 # ╟─517efa24-1244-11eb-1f81-b7f95b87ce3b # ╠═51a0138a-1244-11eb-239f-a7413e2e44e4 # ╠═4b791b76-12cd-11eb-1260-039c938f5443 # ╠═0a095a94-1245-11eb-001a-b908128532aa # ╟─51c9a25e-1244-11eb-014f-0bcce2273cee # ╟─58675b3c-1245-11eb-3548-c9cb8a6b3188 # ╟─b4bb4b3a-12ce-11eb-3fe5-ad7ccd73febb # ╟─586d0352-1245-11eb-2504-05d0aa2352c6 # ╠═589b2b4c-1245-11eb-1ec7-693c6bda97c4 # ╟─58b45a0e-1245-11eb-04d1-23a1f3a0f242 # ╠═68274534-1103-11eb-0d62-f1acb57721bc # ╟─82539bbe-106e-11eb-0e9e-170dfa6a7dad # ╟─b394b44e-1245-11eb-2f86-8d10113e8cfc # ╠═bd8522c6-12e8-11eb-306c-c764f78486ef # ╠═321964ac-126d-11eb-0a04-0d3e3fb9b17c # ╟─5ea6c1f0-126c-11eb-3963-c98548f0b36e # ╠═b7d3aa8c-12e8-11eb-3430-ff5d7df6a122 # ╠═a15509ee-126c-11eb-1fa3-cdda55a47fcb # ╟─c82b2148-126c-11eb-1c03-c157c9bd7eba # ╟─b398a29a-1245-11eb-1476-ab65e92d1bc8 # ╠═adbf65fe-12e8-11eb-04e9-3d763ba91a63 # ╠═66b8e15e-126c-11eb-095e-39c2f6abc81d # ╟─46b07b1c-126d-11eb-0966-6ff5ab87ac9d # ╟─82579b90-106e-11eb-0018-4553c29e57a2 # ╠═a7f1829c-12e8-11eb-15a1-5de40ed92587 # ╠═d33271a2-12df-11eb-172a-bd5600265f49 # ╟─ed344a8c-12df-11eb-03a3-2922620fd20f # ╟─8ae98c74-12e0-11eb-2802-d9a544d8b7ae # ╟─88b30f10-12e1-11eb-383d-4f095625cd16 # ╟─a53cf3f8-12e1-11eb-0b0c-2b794a7ac841 # ╟─90114f98-12e0-11eb-2011-a3207bbc24f6 # ╟─754e4c48-12df-11eb-3818-f54f6fc7176b # ╠═9489009a-12e8-11eb-2fb7-97ba0bdf339c # ╠═34dc4b02-1248-11eb-26b2-5d2610cfeb41 # ╟─f46aeaf0-1246-11eb-17aa-2580fdbcfa5a # ╟─e3120c18-1246-11eb-3bf4-7f4ac45856e0 # ╠═ebca11d8-12c9-11eb-3dde-c546eccf40fc # ╟─9fd2956a-1248-11eb-266d-f558cda55702 # ╠═852be3c4-12e8-11eb-1bbb-5fbc0da74567 # ╠═8a114ca8-12e8-11eb-2de6-9149d1d3bc3d # ╠═92854562-1249-11eb-0b81-156982df1284 # ╠═4454c2b2-12e3-11eb-012c-c362c4676bf6 # ╟─fbb4a9a4-1248-11eb-00e2-fd346f0056db # ╟─4aace1a8-12e3-11eb-3e07-b5827a2a6765 # ╟─54a58f84-12e3-11eb-10b9-7d55a16c81ba # ╠═a0045046-1248-11eb-13bd-8b8ad861b29a # ╟─7e318fea-12e7-11eb-3490-b17e0d4dbc50 # ╠═605aafa4-12e7-11eb-2d13-7f7db3fac439 # ╟─9ae4ebac-12e3-11eb-0acc-23113f5264a9 # ╟─5e0f16b4-12e3-11eb-212f-e565f97adfed # ╟─b6ae4d7e-12e6-11eb-1f92-c95c040d4401 # ╟─a03890d6-1248-11eb-37ee-85b0a5273e0c # ╠═6d1ee93e-1103-11eb-140f-63fca63f8b06 # ╟─8261eb92-106e-11eb-2ccc-1348f232f5c3 # ╠═65e691e4-124a-11eb-38b1-b1732403aa3d # ╟─6f4aa432-1103-11eb-13da-fdd9eefc7c86 # ╠═dbe9635a-124b-11eb-111d-fb611954db56 # ╟─ac320522-124b-11eb-1552-51c2adaf2521 # ╟─57090426-124e-11eb-0a17-1566ae96b7c2 # ╟─66192a74-124c-11eb-0c6a-d74aecb4c624 # ╟─70f0fe9c-124c-11eb-3dc6-e102e68673d9 # ╟─41b2262a-124e-11eb-2634-4385e2f3c6b6 # ╠═0dea1f70-124c-11eb-1593-e535ab21976c # ╟─471cbd84-124c-11eb-356e-371d23011af5 # ╠═2fc55daa-124f-11eb-399e-659e59148ef5 # ╠═3a6ec2e4-124f-11eb-0f68-791475bab5cd # ╟─2fcb93aa-124f-11eb-10de-55fced6f4b83 # ╠═a150fd60-124f-11eb-35d6-85104bcfd0fe # ╟─3f5e88bc-12c8-11eb-2d74-51f2f5060928 # ╠═c569a5d8-1267-11eb-392f-452de141161b # ╠═e55d9c1e-1267-11eb-1b3c-5d772662518a # ╟─a737990a-1251-11eb-1114-c57ceee75181 # ╟─65aa13fe-1266-11eb-03c2-5927dbeca36e # ╟─6faf4074-1266-11eb-1a0a-991fc2e991bb # ╟─826bb0dc-106e-11eb-29eb-03e7ddf9e4b5 # ╟─04364dee-12cb-11eb-2f94-bfd3fb405907 # ╟─249c297c-12ce-11eb-2054-d1e926335148 # ╟─c56cc19c-12ca-11eb-3c6c-7f3ea98eeb4e # ╟─496b8816-12d3-11eb-3cec-c777ba81eb60 # ╟─480fde46-12d4-11eb-2dfb-1b71692c7420 # ╟─4837e1ae-12d2-11eb-0df9-21dcc1892fc9 # ╟─a9630d28-12d2-11eb-196b-773d8498b0bb # ╟─23c53be4-12d4-11eb-1d39-8d11b4431993 # ╟─6016fccc-12d4-11eb-0f58-b9cd331cc7b3 # ╠═754b5368-12e8-11eb-0763-e3ec56562c5f # ╠═ee20199a-12d4-11eb-1c2c-3f571bbb232e # ╟─38b09bd8-12d5-11eb-2f7b-579e9db3973d # ╠═6e1b5b6a-12e8-11eb-3655-fb10c4566cdc # ╟─106670f2-12d6-11eb-1854-5bf0fc6f4dfb # ╟─b94b7610-106d-11eb-2852-25337ce6ec3a # ╟─112eb7b2-1428-11eb-1c60-15105fa0e5fa # ╠═5ac7dcea-1429-11eb-1429-0fdbd4e9b5b1 # ╟─b94f9df8-106d-11eb-3be8-c5a1bb79d0d4 # ╟─b9586d66-106d-11eb-0204-a91c8f8355f7 # ╟─b9616f92-106d-11eb-1bd1-ede92a617fdb # ╟─b969dbaa-106d-11eb-3e5a-81766a333c49 # ╟─b9728c20-106d-11eb-2286-4f670c229f3e # ╟─b97afa48-106d-11eb-3c2c-cdee1d1cc6d7 # ╟─b98238ce-106d-11eb-1e39-f9eda5df76af # ╟─b989e544-106d-11eb-3c53-3906c5c922fb # ╟─05bfc716-106a-11eb-36cb-e7c488050d54 # ╟─df42aa9e-10c9-11eb-2c19-2d7ce40a1c6c # ╟─15b60272-10ca-11eb-0a28-599ed78cf98a