{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# FHIR for Research Workshop" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Exercise 1 " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Intro: see https://github.com/NIH-NCPI/fhir-101/blob/master/FHIR%20101%20-%20Practical%20Guide.ipynb as a great example\n", "\n", "## What is this notebook?\n", "\n", "(common overview of the FHIR Training)\n", "\n", "(overview of this specific notebook)\n", "\n", "\n", "\n", "\n", "### Icons in this Guide\n", " 📘 A link to a useful external reference related to the section the icon appears in \n", "\n", " ⚡️ A key takeaway for the section that this icon appears in \n", "\n", " 🖐 A hands-on section where you will code something or interact with the server \n", "\n", "\n", "(any required MITRE legalese should either go here or at the very bottom of the notebook)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Motivation / Purpose" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Scenario\n", "\n", "(this section describes the specifics of the use case: what is the problem statement, what is the basic approach we are going to take, etc)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Initial Setup" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# import any required libraries here.\n", "# - requests\n", "# - fhirclient: https://github.com/smart-on-fhir/client-py\n", "# - Pandas - DataFrames\n", "# - NumPy - basic data analysis\n", "# - matplotlib\n", "# - maybe seaborn for viz on top of matplotlib ?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 1 Connect to Client" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "sync to source server for data extraction" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 2 Query Data" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Submit query to source and retreive data. Save it locally" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 3 Mount Data onto Pandas Dataframe" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Take FHIR formatted data and convert it to a pandas dataframe for subsequent analysis." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This resource seems like a good one! https://github.com/dermatologist/fhiry" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Step 4 Exploratory Data Analysis " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Conduct some limited, EDA for demonstration purposes." ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Summary\n", "\n", "(A review of what was done in this notebook, possibly reinforcing how this kind of use case could be useful in the real world)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.4" } }, "nbformat": 4, "nbformat_minor": 5 }