
Memory Efficient Graph Convolutional Network
based Distributed Link Prediction

Damitha Senevirathne∗, Isuru Wijesiri∗, Suchitha Dehigaspitiya∗,
Miyuru Dayarathna‡∗, Sanath Jayasena∗, and Toyotaro Suzumura†¶§

∗Department of Computer Science & Engineering,
University of Moratuwa, Moratuwa, Sri Lanka

Email: {damithasenevirathne.16,isurumaduranga.16,suchitha.16,sanath}@cse.mrt.ac.lk
‡WSO2, Inc., USA

Email: miyurud@wso2.com
†IBM T.J. Watson Research Center, New York, USA / ¶MIT-IBM Watson AI Lab, Cambridge, MA, USA/

§Barcelona Supercomputing Center, Barcelona, Spain
Email: suzumura@acm.org

Abstract—Graph Convolutional Networks (GCN) have found
multiple applications of graph-based machine learning. However,
training GCNs on large graphs of billions of nodes and edges
with r ich node attr ibutes consume significant amount of time
and memory resources. This makes it impossible to train such
GCNs on general purpose commodity hardware. Such use cases
demand high-end servers with accelerators and ample amounts
of memory. In this paper we implement a memory efficient GCN
based link prediction on top of a distr ibuted graph database
server called JasmineGraph1. Our approach is based on federated
training on par titioned graphs with multiple parallel workers.
We conduct exper iments with three real wor ld graph datasets
called DBLP-V11, Reddit, and Twitter. We demonstrate that our
approach produces optimal per formance for a given hardware
setting. JasmineGraph was able to train a GCN on the largest
dataset DBLP-V11(>10GB) in 20 hours and 24 minutes for 5
training rounds and 3 epochs by par titioning it into 16 par titions
with 2 workers on a single server while the conventional training
method could not process it at all due to lack of memory. The
second largest dataset Reddit took 9 hours 8 minutes to train
with conventional training while JasmineGraph took only 3 hours
and 11 minutes with 8 par titions-4 workers in the same hardware
giving 3 times improved per formance. In case of Twitter dataset
JasmineGraph was able to give 5 times improved per formance.
(10 hours 31 minutes vs 2 hours 6 minutes;16 par titions-16
workers).

Index Terms—Machine Learning; Graph Databases; Dis-
tr ibuted Databases; Graph Theory; Graph Convolutional Neural
Networks; GraphSAGE; Deep Learning; Distr ibuted Learning;
Link Prediction;

I. INTRODUCTION

Recently, an increasing number of applications are found
which require processing large scale graphs of millions or even
billions of vertices [11]. Some of the notable examples include
social networks, web graphs, transaction networks, citation
graphs, etc [9] [27].
Traditional analytics on large scale graphs has been focusing

around the analysis of graph properties. Examples include
calculation of the graph structural properties such as Degree

1https://github.com/miyurud/jasminegraph

Distribution, Betweenness Centrality, Page Rank, k-core, tri-
angles, etc [9] [13]. Graph-based machine learning field has
emerged with significant potential to expand the horizons of
graph processing [5].
Graph Convolutional Networks (GCN), which is one of

the graph-based machine learning approaches, has gained
significant attention from the research community [19]. The
expectations of these GCN applications are expanding rapidly
and we can observe the demand for applications to handle
large scale graphs. These applications offer significantly higher
accuracy compared to the previous approaches for tasks such
as node classification, graph clustering, link prediction, etc.
Link prediction predicts the probability of having a link

between two nodes in a graph [22]. There are multiple
different ways for implementing GCN based link prediction
applications. For example node embedding construction can
be used along with similarity metrics and locality sensitive
hashing to conduct link prediction [16]. However, most of
these approaches are resource heavy and they require the use
of high-end servers and clusters. Graphs take more space in
memory and keeping the whole graph in memory is mandatory
with traditional approaches. These techniques are impossible
to run on commodity hardware on large scale graphs. Hence
it has become a significant issue to find techniques to run
such link prediction on top of large scale graphs. Even in the
current settings running such graph-based machine learning on
million scale graphs is a great challenge.
In this paper we propose a resource efficient approach for

link prediction using distributed learning which intelligently
utilizes the limited memory resources available in a computer
system. Our approach is based on graph partitioning and it
enables us to train any type of machine learning model for
tasks such as link prediction, node classification on large scale
graphs on top of which otherwise, we could not perform such
training.
In our approach we first partition a large graph using

Metis graph partitioner and then use the partitions for training
the machine learning model [17]. Use of Metis enables us

Senevirathne, Damitha; Wijesiri, Isuru; Dehigaspitiya, Suchitha; Dayarathna, Miyuru; Jayasena, Sanath; Suzumura, Toyotaro;, "Memory Efficient

Graph Convolutional Network based Distributed Link Prediction", Seventh International Workshop on High Performance Big Graph Data

Management, Analysis, and Mining, pp. 2977- 2986, 12 Dec. 2020 isbn: 978-1-7281-6251-5/20,

© 2020 IEEE

to partition the graph in a manner of minimizing the edge
cuts and minimizing the information loss. The edge cuts are
added into the graph partitions before training to reduce the
information loss. These partitions are scheduled to train on
distributed clients using our memory estimation algorithm
and intelligent scheduling algorithm to maximize resource
utilization. The distributed clients fetch global model weights
and train for a given number of epochs and send back to the
aggregator to aggregate. Then clients fetch the global model
again and repeat the procedure for a given number of rounds.

Using experiments conducted on a server, we demonstrate
how our approach enables us to train a single distributed ML
model which we could not achieve with naive scheduling.
We implement our solution on top of JasmineGraph, which
is a distributed graph database engine [16]. JasmineGraph is
a C/C++ based graph database borrowing several architectural
elements from Acacia [7] [10] distributed graph database
server. JasmineGraph was able to train a GCN on the largest
dataset DBLP-V11(>10GB) in 20 hours and 24 minutes
for 5 training rounds and 3 epochs by partitioning it into
16 partitions with 2 workers on a single server while the
conventional (i.e., naive) training method could not process it
at all due to lack of memory. The second largest dataset Reddit
took 9 hours 8 minutes to train with the baseline conventional
training while JasmineGraph took only 3 hours and 11 minutes
with 8 partitions-4 workers in the same hardware giving
3 times improved performance. In case of Twitter dataset
JasmineGraph was able to give 5 times improved performance.
(10 hours 31 minutes vs 2 hours 6 minutes;16 partitions-16
workers).

The contributions of this paper can be listed as follows,

• Memory Efficient Graph Neural Network Training - We
conduct machine learning model training concurrently in
multiple workers of JasmineGraph. In order to do this
we developed a memory efficient scheduling algorithm.
We conduct this in a distributed manner and obtain
better performance compared to the standard approach
of standalone training.

• Generic Machine Learning within a Graph Database -
We present a graph database server system architecture
where the users can run their custom-developed machine
learning models on top of the datasets stored in a
distributed graph database server. These models can be
used for any graph machine learning task such as link
prediction, node classification, etc.

• Performance optimizations - We implement and evaluate
the approach for link prediction based on GCNs. We
also describe multiple different performance optimiza-
tions which we conduct to do this process in resource
efficient manner.

The rest of the paper has been organized as follows. In the
next section we describe the related work. Section III describes
the system design. Section IV provides the implementation
details. Section V provides the evaluation of the proposed
approach. We provide a discussion of the results obtained in

Section VI. Section VII concludes the paper.

II. RELATED WORK

Link prediction is a technique to predict the future con-
nections of a network using the existing connections. Link
prediction uses a scoring function such as graph distance,
common neighbors, Katz index, Jaccard’s coefficient, etc. to
measure the likelihood of links.

Network embedding which is the process of representing the
network topology, node and edge information of a network in a
low-dimensional vector space is the first and the foremost step
of any machine learning based graph analytics task. Network
embeddings can be mainly discussed under three categories as
matrix factorization [29], random walk [25], and deep learning
approaches. Matrix factorization based algorithms obtain the
node embedding by factoring a matrix such as adjacency
matrix which represents the network connection. Random
walk based approaches like DeepWalk [25] and Node2Vec
[14] perform a random walk through the neighbourhood of
a selected node to compute the embedding. However, the
factorization and random walk embeddings are unable to
include node feature information. Moreover, the number of
model parameters of their learning models linearly grow with
the graph size.

Gori et al. [12] presented Graph Neural Networks (GNN)
for the first time, and it got further extended by Scarselli et al.
[26]. Under this approach, the neighbour information is propa-
gated through a recurrent architecture iteratively until reaching
a stable position. This approach is computationally expensive
due to having more iterations in the learning process. Several
alternatives to GNN are emerging in the last few years over-
coming the limitations of GNN. These approaches are Graph
Convolutional Networks (GCN), Graph Attention Networks
(GAN), Graph Generative Networks, Graph Autoencoders, and
Graph Spatial-temporal Networks.

Bruna et al. (2013) introduced a graph convolution variant
developed based on spectral graph theory [4] has done a
revolution by generalizing the convolution theory to graph
data. The methodology of GCN is learning a function to
generate the target node’s representation by aggregating its
own features and neighbour features. Then graph attention
model, graph generative model, graph autoencoders and graph
spatial-temporal models have been implemented centering the
GCN. Furthermore, GCN is categorized as spectral based,
spatial based, and pooling module approaches. GCN has
marked a significant success in learning graph data rather than
GNN, some challenges exist. Most of them are scalability,
graph complexity and computation efficiency. Karunarathna et
al. presented a data partitioning based solution to fix these
issues [16].

PyTorch-BigGraph (PBG) is a graph embedding system that
includes several modifications to the traditional multi-relation
embedding systems which allows for scaling to graphs of
billions of nodes and trillions of edges [21]. PBG uses a
block decomposition of adjacency matrix into N buckets. This
allows for training the edges from one bucket at a time. Then

PBG either swaps embeddings from each partition to disk to
reduce memory usage or if enough memory is available it
conducts distributed execution across multiple computers.

However, the node embedding methods in PBG do not
include the utilization of GCNs. Therefore, PBG is unable
to incorporate rich node feature information given available
in certain graph data to construct higher quality node em-
beddings. Furthermore, PBG depends on a shared file system
whereas our solution implemented on top of JasmineGraph
can scale to multiple independent host file systems that work
together to share the workload.

Euler is a distributed graph learning framework developed
by the Alibaba group which allows for node embedding
construction [1]. It allows for models developed in Tensorflow
to be trained on heterogeneous graphs. However, it is untested
for large graph datasets such as DBLP-V11. Similar to PBG,
it depends on a shared file system that runs on top of Hadoop
Distributed File System. We implement our solution to take
advantage of multiple host file systems that do not require
HDFS.

JanusGraph is a graph database capable of handling very
large graphs [3]. However, JasnusGraph is dependent on
Hadoop. Similar graph database systems include Acacia [10]
[8], Trinity [28], etc. are some other examples for distributed
graph databases. More importantly, neither system supports
node embedding construction, link prediction or machine
learning use cases on their graph data.

III. SYSTEM DESIGN

An overview of the design of JasmineGraph is shown in Fig-
ure 1. The system has been designed with two main component
categories: Master and Worker. Two types of communication
protocols have been designed for communication between
external clients and the JasmineGraph system, and another
between the Master and the Worker as well as between the
Workers themselves.

The MetaDB of JasmineGraph is a standalone SQLite
database which is used for storing metadata such as vertex
(i.e., node) count, edge count, graph path, and other details of
the graphs that are being uploaded to JasmineGraph. The API
for accessing the MetaDB is called MetaDB Interface.

Master

Worker

Front-end Client

MetaDB Interface

Front-end Protocol

Back-end Protocol

Back-end

File Transfer
Service Graph Algorithms

Front-end

RDF Partitioner

Local Store

Central Store

JSON Attribute ParserMetis Partitioner

Model StorePython
Client

Python
Server

Fig. 1: Overview of JasmineGraph.

The modules RDF partitioner and JSON attribute parser
are used for processing the knowledge graphs (especially the
attributes). Once the graph structure has been extracted by

these two components, they get partitioned by using the Metis
Partitioner. The plain edge lists are directly partitioned using
the Metis Partitioner.

Each worker consists of three data stores: Local, Central,
and Model stores. The Local Store maintains the partitioned
sub graphs. Central store maintains the edges where the
starting and ending vertices stay in two different local stores.
The attributes of each local/central partition too gets stored
in the corresponding data store. During the machine learning
(ML) model training process, the ML models are created for
each partition. This means for a pair of local store and central
store partitions, a corresponding ML model is trained. Such
models get stored in the model store. The File Transfer Service
module conducts data transfers between the Master and the
Workers.

IV. IMPLEMENTATION

The system architecture of the JasmineGraph is shown
in Figure 2. We have extended the system with a set of
Python workers (this is a set of Python clients and a server
commonly denoted as Pi in Figure 2) which sits along with the
C/C++ workers. All the machine learning related processing
are conducted by the Python workers. Weight/gradient ex-
change during the ML model training process happens directly
between the Python workers.

Master
Metadata

store

Central
store

Local
store

Partitioned
graphs

…

Instance

Python
Worker

W
1

Intersecting
subgraph

ML Model
store

Local
sub-graph
attributes

Central
sub-graph
attributes

P
1

W
2

P
2

W
n

P
n

Performance
Data store

Worker

Fig. 2: Architecture of JasmineGraph.

One of the key improvements made to JasmineGraph system
compared to the previous version (described in [16]) is the
introduction of the ability to exchange the model parameters
and gradients across the Python workers. This increases the
accuracy of the model trained but simultaneously increases
the communication overhead during the system’s operation.
Furthermore, depending on the level of partitioning that can
be performed on a graph dataset, an approach which exchanges
model parameters allows us to train a single machine learning

model from all the graph partitions which provides more room
for extended tasks such as collaborative learning between
JasmineGraph clusters.

Furthermore, we have changed the machine learning system
architecture significantly in such a way that users of Jasmine-
Graph can upload offline developed and verified ML models
to the system. These model building code can be directly
exported from notebooks and upload them to the system as
Python script.

A. Federated Training

In our approach we use distributed (federated) learning
techniques since our data has been partitioned across workers.

Algorithm 1 Federated training - Workers/Hosts
Input: Model - M , List of graph partitions in the host - G,

List of clients in the host - C, Total memory capacity
of host - h, Number of local epochs - E , Learning rate
- η, Sample percentage - P , Batch size - B

Output: Trained Local model for every graph partition
G ← (reconstruct partitioned graphs of G with edge cuts)
L ← MEMESTIMATE(G); // Memory estimation per partition
using the memory estimation algorithm
S ← SCHEDULE(L, C, h); // Using the scheduling algorithm
M← {};
for each graph g ∈ G do
M[g]← INITIALIZE(M);

end
Function CLIENTTRAIN(c, w):
W ← [];
for each graph partition g ∈ S[c] do
M[g].weights← w;
graph← LOADTOMEMORY(g);
B ← (sample the graph and split batches with sample

percentage P and batch size B);
for each epoch e = 1, 2, ..., E do

for each batch b ∈ B do
TRAIN(M, η); // w ← w − η∇l(w; b)

end
end
Insert M[g].weights into W;
Delete graph from memory;

end
return W;

Python clients and Python server are the modules that
conduct the distributed (i.e., federated) graph learning. There
is one Python server for the distributed JasmineGraph setup
and it usually located in the master node. Python clients are
located in the worker nodes and there can be any number of
clients per worker node. This number is decided based on the
computation power and the number of partitioned sub graphs
stored in the particular worker node.

When the training process starts, Python server loads the
particular deep learning model (M) from the local model store
that to be trained and initialize model weights accordingly.

The model loaded to the Python server is called the Global
model. Then the initialized model weights are extracted from
the global model and sent to every Python client related to
JasmineGraph workers in the JasmineGraph cluster using the
defined communication protocols.

Then the clients in JasmineGraph worker nodes load the
same deep learning model (M) from the local model store to
the memory. A model (M[g]) is initialized per every graph
partition (g) to be trained upon. Before the training process is
started graph partitions are scheduled and assigned for each
client using our intelligent scheduling algorithm to maximize
the resource utilization, to increase parallel processing, and to
minimize the overall time taken for the training. The partition
scheduling algorithm is explained in Section IV-B. Moreover,
edge cuts stored in the central store are added to the partitioned
sub graph for minimizing the information loss before the
training.

Algorithm 2 Federated model aggregation - Server
Input: Model - M , Set of workers/hosts - H, Number of

Rounds - R
Output: Trained Global model
M← INITIALIZE(M);
w0 ←M.weights;
for each round r = 1, 2..., R do
W ← [];
for each worker h ∈ H in parallel do

for each client c ∈ h in parallel do
w ← CLIENTTRAIN(c, wr);
W .extend(w);

end
end
wr+1 ←

∑W.length
k=1

nk

n W[k];
end
M.weights← wR;

Then each Python client loads assigned partitioned sub
graphs into the memory one by one and train its deep learning
model (M[g]) for given number of epochs (E) with given
hyper parameters (learning rate η etc.). The training can be
done on either CPU or GPU depending on the resources
available in each client node.

Before starting the training weights of each model (M[g])
are set to the weights that were sent by the Python server.
After the training of each round partitioned graph models
are saved to the disk. In this manner we maintain a local
model per each graph partition. Here, a training round refers
to the period of training that Python clients do asynchronously
before synchronising their models by communicating with the
Python server. After completion of training of every partition
assigned, Python clients send local model weights related to
each partitioned graph model (M[g]) to the Python server
using defined communication protocols. See Algorithm 1 for
more details.

After receiving local model weights related to each and
every sub graph used for training, the Python server aggre-

gates them using the federated aggregation algorithm to get
weighted average of the model weights and updates the global
model. After the aggregation, the global model is saved to
the disk and weights (w) are sent back to Python clients
to repeat the same training process for given number of
training rounds (r) or until the global model converges. After
each training round we evaluate the global model with the
testing (or evaluation) data thus training can be early stopped
if over-fitting happens. Because of we save each and every
intermediate local and global models to the model store, the
training process can re-start where it stopped in case of system
failure or out of memory issue.

The model aggregation algorithm (Algorithm 2) is a cus-
tomized version of the Federated Averaging algorithm devel-
oped by McMahan et al. [24]. In each training round (r)
the aggregation algorithm takes the weighted average of the
weights of each graph partition (k) stored in array W; by
number of training examples used (nk) and applies the update
wr+1 ←

∑W.length
k=1

nk

n W [k]. n is equal to the total number of
training examples used for training (

∑W.length
k=1 nk).

B. Graph Partition Scheduling

Training the model (M) on a graph partition (g) requires
the entire graph partition to be accessible in memory to be
trained efficiently. However, once graph partitions are loaded
into the Python clients, they will consume much more space
in memory than what they would in storage. This leads to the
problem of being limited in the number of partitions that can
be held in memory at a given time.

We implement a scheduling algorithm that takes into consid-
eration the space consumption of graph partitions in memory
as well as the available resources to come up with a schedule
for the training process. An order of execution will be output
for each partition indicating when it should be taken into
memory in the training sequence. The scheduler will consider
the number of clients sharing a host machine as well as
the number of hosts in the JasmineGraph cluster, therein
generating a schedule for each client in each host. Therefore,
our scheduling algorithm (See Algorithm 3) is applicable to
both a horizontally scaled as well as a vertically scaled system.

The first step of the scheduling process is the estimation
of memory consumption for each of the graph partitions. The
memory estimation process is explained in Section IV-C. Next,
we use the memory estimation for each partition as well as the
number of clients in each host to get a schedule for loading
partitions into memory in such a way that training will be
done quickly while ensuring as much memory is utilized at
a given time. We make the assumption that the time taken to
train smaller partitions is less than the time taken for large
partitions. We use a best-first approach to ensure that the
largest partitions get assigned to the available memory first
so that a single large partition will not be left training in the
end which reduces overall memory utilization and increases
the time taken. This works well even for the cases of skewed
graph partitions where the size have significant variance. In
our partition scheduler shown in Algorithm 3, first we sort

the partition memory estimation list in the descending order
and then iterate through the sorted estimation list to assign
partitions to a free client in memory. Then in the simulation
part of the algorithm, we take the smallest partition that has
finished training and we remove it from the memory, mark
the corresponding client as free to train another partition. We
also update the training progress of the other partitions that
are already in memory (With the assumption that clients train
at the same rate).

C. Memory Estimation

Graphs consume more space when loaded into memory with
data science libraries than in the storage. This is due to the
memory usage of the data types used. Usually large graphs
contain billions of nodes.

Therefore, numerical data types that can handle up to
billions of integers has to be used. Moreover, training GCNs
on graphs using machine learning frameworks add more
memory overhead. Table I contains memory usage of few
common graph datasets when loaded using Numpy or Pandas
using int64 data type and trained with Tensorflow 2 and
StellarGraph [6] in our Python client implementation. Note
that we used GraphSAGE implementation of StellarGraph to
build the GCN [6].

In our memory estimation algorithm (see Algorithm 4), first
we calculate the graph size in memory using the partition
metadata; number of nodes (NN), number of edges (NE),
and number of node features (NF). mN ,mE and mF are the
size of numerical data types in bytes used to represent nodes,
edges, and node features in the implementation. Then memory
usage when training (memory usage of Python clients) can be
estimated by the estimation function F . This function should
be statistically determined by analyzing the memory usage
of suitable number of graphs or graph partitions. F may
depend on the implementation and libraries or frameworks
used. In our implementation we statistically found out that
F to be nearly perfect linear function of inMemGraphSize
(F(inMemGraphSize) = K1 ∗ inMemGraphSize + K2

with K1 = 3.53 and K2 = 1.58).

V. TESTING AND EVALUATION

In the following subsections we describe the process of
evaluation and the results gathered during the execution of
the process.

A. Experiment Environment

The evaluations were conducted on a server computer
having Intel(R) Xeon(R) CPU E7-4820 v3 @ 1.90GHz, 40
CPU cores (80 hardware threads via hyper threading), 64GB
RAM, 32KB L1 (d/i) cache, 256K L2 cache, and 25600K L3
cache. It had 1.8TB hard disk drive. It was running on Ubuntu
Linux version 16.04 with Linux kernel 4.4.0-148-generic.

Algorithm 3 Partition Scheduler
Input: Map of partition to its memory estimations - L, List

of clients - C, Total memory capacity of host c
Output: Map of partition to scheduled order per client in host

S
sortedMemoryList← (Sort L in descending order)
order ← 1
availableMemory ← (Get available memory of the host)
freeClients← C
S ← {}
while n(S) < n(sortedMemoryList) do

proceedToNextIter ← 0
foreach partition, memory (p,m) ∈ sortedMemoryList

do
if p /∈ S AND m < availableMemory AND
freeClients 6= ∅ then
w ← (Pop client from freeClients)
S[w][p]← order
availableMemory ← availableMemory −m
proceedToNextIter ← 1
simulatedMem[w][p] ← m // Client, Partition
and memory of partition yet to train

end
end
order ← order + proceedToNextIter
minRemainingMem ← (Minimum value of
simulatedMem)

foreach client, partition, memory yet to be trained
(w, p, r) ∈ simulatedMem do
m← L[p]
if r = minRemainingMem then

availableMemory ← availableMemory +m
Remove (p, r) from simulatedMem;
Insert w into freeClients;

else
simulatedMem[w][p]←
r −minRemainingMem

end
end

end
return S

TABLE I: Memory usage of graph datasets
Dataset Size in stor-

age (MB)
Size in mem-
ory (MB)

Memory takes to
train (GB)

Twitter [23] 157 640 3.84
DBLP-V11 [30] 9523 30266 107.48

B. Experiment Scenarios and Datasets

We implement the scenario of link prediction in few popular
graph datasets (their details are listed in Table II). The first
dataset is the DBLP-V11 citation graph which consists of
papers as vertices and citations between papers as edges (e.g.,
If paper X cites paper Y, then this adds an edge in the citation
graph) [30]. The dataset is accessible from [2] and consists of
4,107,340 papers and 36,624,464 citation relationships. The

total file size is 12GB. This dataset is originally available as
JSON objects. Since we require a plain edge list file to upload
to the JasmineGraph database server, format conversion was
done using a JSON parser. After JSON parsing the edgelist
file generated was 508MB and node features file was around
10GB. With link prediction, new possible citations among
papers can be predicted.

Algorithm 4 Memory Estimation
Input: List of graph partitions - G, Size of in-memory data

type used in bytes - mE ,mN ,mF

Output: Map of estimated memory usage of Python clients
in GB when training each graph partition - LM

LM ← {};
for each partition g ∈ G do
NN ← (Number of nodes in g)
NE ← (Number of edges in g)
NF ← (Number of node features in g)
MN ← NN ∗mN

ME ← 2 ∗ NE ∗mE

MF ← NN ∗ NF ∗mF

inMemGraphSize← (MN +ME+MF)/(1024∗1024∗
1024);
LM[g]← F(inMemGraphSize);

end

The second dataset is the Twitter dataset which is a social
graph that contains the information about the ego networks of
a subset of Twitter users [23]. Twitter is a large and popular
online social network where users can follow other users and
their activities as well as post online as “tweets” which can
mention other users or trending topics. More specifically, the
dataset is a directed graph where it contains the information of
which user (vertex) follows whom. Furthermore, each user’s
features indicate whether a user has interacted with another
Twitter user handle or a hashtag. These feature variables are
therefore boolean variables. The source dataset has a feature
list per ego net of Twitter handle and hashtags the users of
that ego net have mentioned in their tweets. However, these
feature lists are not the same for every ego net and combining
all these feature lists directly will lead to a very large set
of sparse attributes for a user node. Therefore, we decided
to filter and keep only the most frequently appearing features
based on a selected threshold. To be more specific, if a feature
in the original source dataset has appeared more than 50 times
across ego nets, we keep them as a user’s feature variable. This
resulted in 1007 features per vertex. Our experiment use case
revolves around one of the basic use cases of social networks
which is user recommendation. Since users are vertices and
edges indicate which user follows whom, our task of link
prediction is equivalent to suggesting new users to follow or
interact with.

The third dataset is the Reddit dataset which is a large online
discussion forum where discussions or posts related to certain
topics are contained within “subreddits” [20]. Reddit users can
follow subreddits to be able to see their posts and discussions

on their timeline. Our dataset is an undirected graph dataset
of social interactions which contains information about how
interacting users are shared across reddit posts in different
subreddits. Each node corresponds to a reddit post where an
edge between two nodes indicates that the two corresponding
two posts have a shared user in its comments. Moreover, the
nodes contain feature which describe the textual content in
the corresponding post. Similar to the other datasets, the node
features are boolean and each feature variable corresponds to
a word which were filtered by us based on the frequency.
With this dataset experiment, we aim to solve the use case of
content/post recommendation. With link prediction, users from
one post can be recommended another post to their timeline
from an already following subreddit or a new subreddit to
which might be interesting to the user.

TABLE II: Datasets.
Dataset name Vertices Edges No of

fea-
tures

Edgelist
File
Size
(MB)

Feature
Files
Size
(MB)

Twitter [23] 81,306 1,768,149 1007 16 157
Reddit [20] 232,965 11,606,919 602 145 270
DBLP-V11
[30]

4,107,340 36,624,464 948 508 9523

C. Training Process and the GCN Model Selection

Since we are focusing on Link prediction, we developed
a link prediction model with GraphSAGE [15] which can
be considered as an extension to GCN [19]. The model
architecture is shown in Figure 3 and it consists of two
GraphSAGE layers (shown as Node Embedding Generation)
with one link classification layer. The GraphSAGE layers are
supposed to generate node embeddings and feed to the link
classification layer as pairs.

Input graph

Node Embedding
Generation

Sigmoid

Activation Link Prediction

0/1
Inner

Product

Edge
Embedding
Generation

GraphSAGE

Link Classification Layer

...

Fig. 3: ML model architecture.

Before training on a graph G, first we randomly sample
fraction of all positive edges and same number of negative
edges from G to create a test set. Then we remove sample
edges from G and obtain reduced graph Gtest. Then create
evaluation and training sets in the same manner and obtain
reduced graphs Geval and Gtrain. As we do the example la-
beling in this manner the training process should be considered
as unsupervised.

Then in the training phase training examples with labels
along with Gtrain feed (batch size is 20) to the GraphSAGE
layers and they are supposed to generate node embeddings and
pass them to the link classification layer. Link classification
layer is supposed to do edge embedding by getting inner
product. The whole network is optimized end to end using
Adam optimizer [18] with learning rate 0.01 and Binary cross
entropy as the loss function.

Tensorflow 2 and Stellargraph [6] were used for the model
development. Moreover, we used the same model in every
experiment with every dataset because our main focus was to
evaluate our graph learning system but not getting the highest
accuracy possible.

D. Experiments and Results

First, we trained and tested the link prediction model on
the three datasets without our system (i.e., naive approach)
to get understanding of general model performance on the
datasets (See Table III). We could not train DBLP-V11 in our
experiment environment because the available memory was
not enough. We estimated the memory needed to train DBLP-
V11 to be 107GB but the server we used had only 64GB of
RAM.

TABLE III: General model performance

Dataset Accuracy Recall AUC F1 Precision
Twitter 0.7887 0.9869 0.9576 0.8350 0.7233
Reddit 0.7174 0.9026 0.8037 0.7616 0.6587
DBLP-V11 ** ** ** ** **

Second, we trained and tested the link prediction model on
the datasets on our system without using sheduling algorithm
and assigning one partition per client parallelly to understand
the effect of partitioning and federated training on evaluation
metrices.

TABLE IV: Twitter - partitioned training without scheduling

Partition
count

Accuracy Recall AUC F1 Precision

1 0.7887 0.9869 0.9576 0.8350 0.7233
2 0.7047 0.9831 0.9292 0.7700 0.6336
4 0.6395 0.9730 0.8672 0.7306 0.5861
8 0.6537 0.9844 0.8977 0.7412 0.5962
16 0.5936 0.9860 0.8441 0.7088 0.5538

TABLE V: Reddit - partitioned training without scheduling

Partition
count

Accuracy Recall AUC F1 Precision

1 0.7174 0.9026 0.8037 0.7616 0.6587
2 0.7020 0.9559 0.8458 0.7625 0.6344
4 0.6836 0.9534 0.8201 0.7510 0.6202

We trained Twitter with partition count up to 16 and Reddit
up to 4. The results are listed in Tables IV and V respectively.
The Reddit dataset can not be trained parallely with more than

4 clients in 64GB of memory. As explained earlier DBLP-V11
dataset can not be trained as well.

We observed that when increasing the number of partitions
the evaluation Accuracy, AUC, F1, and Precision dropped
heavily in the Twitter dataset. This may be due to the in-
formation loss due to partitioning and federated training. But
Reddit shows very slight amount of drop. Therefore, this may
be highly dependent on the dataset.

Finally, we trained and tested the link prediction model
on all three datasets using our system with the scheduling
algorithm assigning multiple partitions to each client. As
shown in the Table X the model was trained on Twitter dataset
using clients count 2 and 4 using partition values respectively
4, 8, and 16 as well as 8 and 16. Twitter dataset was trained
for 5 training rounds with each training round containing 3
epochs. Sampled train data percentage as well as the sampled
test data percentages were set to 0.1 for each partition.

The model was trained on Reddit dataset (Table XI) using
clients count 2 and 4 using partition values respectively 4, 8,
and 16 as well as 8 and 16. Reddit dataset was trained for 5
training rounds with each training round containing 3 epochs.
Sampled train data percentage as well as the sampled test data
percentages were set to 0.1 for each partition. As explained
above, unlike Twitter and Reddit datasets, we were unable
to train DBLP-V11 without partitioning due to the limited
computational resources. However, we were able to train on
the DBLP-V11 graph dataset using the proposed approach.

Here we train DBLP-V11 using two clients and 16 partitions
by assigning eight partitions per each client. We conduct
experiments for five training rounds with each training round
containing two epochs. We use the train data sampling rate as
0.01, and the test data sampling as 0.005 for each partition
for the experiments on this dataset. After training with the
described setup, we were able to train DBLP-V11 graphs
within 20 hours and 34 minutes. By further analyzing the
experiment environment, we observed that there is an unusual
memory growth issue occurring during the experiments. Due
to this reason, the DBLP-V11 dataset had to be trained on for
two stages. During the first stage, we trained up to training
round three and saved the model weights in the persistent
storage. Based on the saved weights for the last training
round (training round 3), we commenced the second stage and
trained for another two rounds to complete the five training
rounds. The results are shown in Table VI.

TABLE VI: DBLP-V11 performance

Dataset Accuracy Recall AUC F1 Precision
DBLP-V11 0.56529 0.99584 0.88943 0.69677 0.53630

As we can observe by increasing the number of partitions
and clients we can greatly reduce the training time (Table VII
and Table VIII). We have compared the best training times we
got compared to conventional method in Table IX.

When we compare the accuracy values shown in Tables X
and XI for Twitter and Reddit respectively we find that there is

TABLE VII: Partition count vs Execution time - Twitter.
Client count Partition Count Elapsed Time (seconds)
2 4 19186.66
2 8 16545.43
2 16 19575.20
4 8 11601.11
4 16 12922.13

TABLE VIII: Partition count vs Execution time - Reddit.
Client count Partition Count Elapsed Time (seconds)
2 4 23568.88
2 8 24268.64
2 16 22011.78
4 8 11505.92
4 16 15019.63

no significant accuracy drop when changing between partition
counts.

CPU and memory behavior of the entire system while
running the experiments are highlighted in Figures 4, 5,
6, and 7. All these four charts indicate that after the use
of our scheduling algorithm the memory usage efficiency
increased (more free memory) while CPU usage also increased
indicating the system’s ability to handle large workloads.

Twitter - Without Scheduling - 4 Clients - 4 Partitions

(a)

(b)

Twitter - With Scheduling - 4 Clients - 16 Partitions

Fig. 4: Twitter - Naive vs scheduling memory consumption comparison.

VI. DISCUSSION

When comparing the evaluation metric values related to the
test cases we do not find significant differences in terms of
whether they are being partitioned or unpartitioned. But there
was an unavoidable evaluation metric value loss due to the
information loss that occurred during the partitioning process.
However, this is an acceptable loss when compared to the
considerable speedup that is achieved when increasing the
parallelism of training is taken into account. Moreover, we
have not spent a significant portion of time on fine tuning
model or training parameters since our main focus is efficient
use of system resources. Therefore, it is possible to increase

Twitter - Without Scheduling - 4 Clients - 4 Partitions

(a)

Twitter - With Scheduling - 4 Clients - 16 Partitions

(b)

Fig. 5: Twitter - Naive vs scheduling CPU usage comparison.

Reddit - Without Scheduling - 4 Clients - 4 Partitions

(a)

(b)

Reddit - With Scheduling - 4 Clients - 16 Partitions

Fig. 6: Reddit - Naive vs scheduling memory consumption comparison.

Reddit - Without Scheduling - 4 Clients - 4 Partitions

Reddit - With Scheduling - 4 Clients - 16 Partitions

(a)

(b)

Fig. 7: Reddit - Naive vs scheduling CPU usage comparison.

TABLE IX: General model performance
Dataset Training time (Con-

ventional)
Training time (With
JasmineGraph)

Twitter 10h 31min 2h 6min (16 clients-16
partitions)

Reddit 9h 8min 3h 11min(4 clients-8
partitions)

TABLE X: Twitter - partitioned training with scheduling

Client
count

Partition
count

Accuracy Recall AUC F1 Precision

2 4 0.6512 0.9659 0.8728 0.7352 0.5936
2 8 0.6042 0.9802 0.8539 0.7137 0.5620
2 16 0.6056 0.9957 0.9166 0.7166 0.5599
4 8 0.5900 0.9852 0.8656 0.7067 0.5514
4 16 0.6009 0.9941 0.8800 0.7142 0.5578

the performances of these models by hyperparameter tuning,
increasing the number communication rounds and the number
of epochs used in a communication round.

In the current setup the number of communication rounds
and epochs were decided based on the experimental setup
capacity. It is possible to increase those numbers by using
higher computational resources. As seen in the experimental
results with the DBLP-V11 dataset, we encounter a memory
growth as training rounds proceed. We suspect that this
growth is caused by certain Python library dependencies that
exist during the training process. We believe that with the
replacement of these dependencies with more primitive yet
equally efficient libraries, we would be able to eliminate the
memory growth. However, this does not mean that large graphs
cannot be handled. Since our solution saves the model at the
end of each training round, it is possible to restart the training
process from where training stopped last.

Considering the training time of the graph datasets this can
be reduced with the use of GPUs. In the current experiment
setup models were trained using CPUs. However in the current
setup there are multiple GraphSAGE models are training in
parallel manner, due to this reason use of multiple GPUs is
recommended. Furthermore, while capable of scaling horizon-
tally to multiple hosts, our experiment results only speak of
the performance of a vertically scaled system. This will be
addressed as future work related to this research work and
experiments.

VII. CONCLUSION

Resource efficient machine learning based graph data pro-
cessing has become a significant challenge in high perfor-
mance graph data management and mining recently. In this
paper we describe a resource efficient implementation of graph
convolutional network (GCN) based link prediction conducted
on top of an open source distributed graph database server.
Our implementation is accessible from 2. We implement our
solution in such a way so that anyone can train a graph
machine learning model for use cases such as node embedding,

2https://github.com/miyurud/jasminegraph

TABLE XI: Reddit - partitioned training with scheduling

Client
count

Partition
count

Accuracy Recall AUC F1 Precision

2 4 0.6927 0.9598 0.8331 0.7577 0.6262
2 8 0.6947 0.9545 0.8377 0.7576 0.6281
2 16 0.6830 0.9436 0.7753 0.7485 0.6209
4 8 0.6753 0.9630 0.7953 0.7479 0.6113
4 16 0.6271 0.9215 0.6631 0.7146 0.5878

link prediction, node classification, etc. written in Tensorflow
in a distributed manner in a resource constrained environment.
We use a graph partitioning scheme in order to divide the
graph into subgraphs with minimal information loss that can
be trained in parallel. Using our scheduling algorithm, we
organize the partitions in such a way to ensure that the memory
is not overloaded while improving efficiency of the training
process. We conduct our experiments on link prediction use
cases on the real world datasets from Twitter, Reddit, and
DBLP-V11 utilizing the well known GraphSAGE mechanism.
We show that our solution performs well while providing
significant speedup. JasmineGraph was able to train a GCN
on the largest dataset DBLP-V11(>10GB) in 20 hours and
24 minutes for 5 training rounds and 3 epochs by partitioning
it into 16 partitions with 2 workers on a single server while
the conventional training method could not process it at all
due to lack of memory. The second largest dataset Reddit
took 9 hours 8 minutes to train with conventional training
while JasmineGraph took only 3 hours and 11 minutes in
the same hardware giving 3 times improved performance. In
case of Twitter dataset JasmineGraph was able to give 5 times
improved performance. In future work, we plan to conduct
more experiments on more real world datasets utilizing GPUs
as well as horizontal scaling. Additionally, we plan to address
the memory growth issue by re-evaluating the dependencies
and replacing them as needed. We also hope to extend this
work to the domain of privacy preserving federated learning
between different organizations.

REFERENCES

[1] Alibaba. Euler. URL: https://github.com/alibaba/euler, 2019.
[2] AMiner. Citation network dataset. URL: https://aminer.org/citation,

2019.
[3] Apache Software Foundation. Janusgraph. URL: https://janusgraph.org/,

2020.
[4] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and

locally connected networks on graphs. In 2nd International Conference
on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-
16, 2014, Conference Track Proceedings, 2014.

[5] I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy. Machine
learning on graphs: A model and comprehensive taxonomy, 2020.

[6] C. Data61. Stellargraph machine learning library. https://github.com/
stellargraph/stellargraph, 2018.

[7] M. Dayarathna, S. Bandara, N. Jayamaha, M. Herath, A. Madhushan,
S. Jayasena, and T. Suzumura. An x10-based distributed streaming graph
database engine. In 2017 IEEE 24th International Conference on High
Performance Computing (HiPC), pages 243–252, Dec 2017.

[8] M. Dayarathna, I. Herath, Y. Dewmini, G. Mettananda, S. Nandasiri,
S. Jayasena, and T. Suzumura. Acacia-rdf: An x10-based scalable
distributed rdf graph database engine. In 2016 IEEE 9th International
Conference on Cloud Computing (CLOUD), pages 521–528, 2016.

[9] M. Dayarathna, C. Houngkaew, H. Ogata, and T. Suzumura. Scalable
performance of scalegraph for large scale graph analysis. In 2012 19th
International Conference on High Performance Computing, pages 1–9,
Dec 2012.

[10] M. Dayarathna and T. Suzumura. Towards scalable distributed graph
database engine for hybrid clouds. In 2014 5th International Workshop
on Data-Intensive Computing in the Clouds, pages 1–8, Nov 2014.

[11] M. Dayarathna and T. Suzumura. High-Performance Graph Data
Management and Mining in Cloud Environments with X10, pages 173–
210. Springer International Publishing, Cham, 2017.

[12] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning
in graph domains. In Proceedings. 2005 IEEE International Joint
Conference on Neural Networks, 2005., volume 2, pages 729–734 vol.
2, July 2005.

[13] D. Gregor and A. Lumsdaine. The parallel bgl: A generic library for
distributed graph computations. In Parallel Object-Oriented Scientific
Computing (POOSC), pages 1–8, 2005.

[14] A. Grover and J. Leskovec. Node2vec: Scalable feature learning for
networks. In Proceedings of the 22Nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16, pages
855–864, New York, NY, USA, 2016. ACM.

[15] W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation
learning on large graphs. CoRR, abs/1706.02216, 2017.

[16] A. Karunarathna, D. Senarath, A. Madhushanki, C. Weerakkody, M. Da-
yarathna, S. Jayasena, and T. Suzumura. Scalable graph convolutional
network based link prediction on a distributed graph database server.
In 2020 IEEE 13th International Conference on Cloud Computing
(CLOUD), pages 107–115, 2020.

[17] G. Karypis and V. Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM J. Sci. Comput., 20(1):359–392,
Dec. 1998.

[18] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2015.

[19] T. N. Kipf and M. Welling. Semi-supervised classification with graph
convolutional networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings, 2017.

[20] S. Kumar, W. L. Hamilton, J. Leskovec, and D. Jurafsky. Community
interaction and conflict on the web. In Proceedings of the 2018 World
Wide Web Conference on World Wide Web, pages 933–943, 2018.

[21] A. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt, A. Bose, and
A. Peysakhovich. Pytorch-biggraph: A large-scale graph embedding
system. CoRR, abs/1903.12287, 2019.

[22] D. Liben-Nowell and J. Kleinberg. The link prediction problem for
social networks. In Proceedings of the Twelfth International Conference
on Information and Knowledge Management, CIKM ’03, pages 556–
559, New York, NY, USA, 2003. ACM.

[23] J. McAuley and J. Leskovec. Learning to discover social circles in ego
networks. NIPS’12, pages 539–547, USA, 2012. Curran Associates Inc.

[24] H. B. McMahan, E. Moore, D. Ramage, and B. A. y Arcas. Fed-
erated learning of deep networks using model averaging. CoRR,
abs/1602.05629, 2016.

[25] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
KDD ’14, pages 701–710, New York, NY, USA, 2014. ACM.

[26] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini.
The graph neural network model. IEEE Transactions on Neural
Networks, 20(1):61–80, Jan 2009.

[27] M. Sha, Y. Li, B. He, and K.-L. Tan. Accelerating dynamic graph
analytics on gpus. Proc. VLDB Endow., 11(1):107–120, Sept. 2017.

[28] B. Shao, H. Wang, and Y. Li. Trinity: A distributed graph engine on a
memory cloud. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’13, page 505–516, New
York, NY, USA, 2013. Association for Computing Machinery.

[29] X. Shen, S. Pan, W. Liu, Y.-S. Ong, and Q.-S. Sun. Discrete network
embedding. In Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI-18, pages 3549–3555, 7
2018.

[30] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. Arnetminer:
Extraction and mining of academic social networks. In KDD’08, pages
990–998, 2008.

https://github.com/alibaba/euler
https://aminer.org/citation
https://janusgraph.org/
https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph

