Supplementary Materials for

Co-transesterification of waste cooking oil, algal oil and dimethyl carbonate over sustainable nanoparticle catalysts

Fanghua Li^{1,2}, Max J. Hülsey², Ning Yan², Yanjun Dai³, Chi-Hwa Wang^{1,2*}

¹NUS Environmental Research Institute, National University of Singapore, Singapore 138602, Singapore

²Department of Chemical and Biomolecular Engineering, National University of Singapore,

Singapore 117585, Singapore

³School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

*Corresponding Address. chewch@nus.edu.sg

Feedstock	Nano-catalyst	Particle size (nm)	Condition	FAMEs yield (%)	Ref.
WCO	Fe ₂ O ₃ -MnO- SO ₄ ²⁻ /ZrO ₂	14.0-25.5	180 °C, 4 h, 600 rpm, methanol ratio of 20:1 and catalyst ratio 3%	96.5	[1]
WCO	Copper doped zinc oxide nanocomposite	80	55 °C, 50 min, methanol ratio of 8:1 and catalyst ratio 12%	97.71	[2]
Palm oil	TiO ₂ -ZnO mixed oxide	28.4-34.2	60 °C, 5 h, methanol ratio of 6:1 and catalyst ratio 1%	92	[3]
Soybean oil	Ni _{0.5} Zn _{0.5} Fe ₂ O ₄	31.1-42.6	180 °C, 1 h, alcohol ratio of 12:1,	99.54	[4]
			catalyst ratio of 2%		
Castor oil	Ni doped ZnO	1.68-35.1	55 °C, 60 min, methanol ratio of 6:1 and catalyst ratio of 11%	95.2	[5]
WAO	CM-derived ash	100-800	80 °C, 20 min, DMC ratio of 6:1, catalyst ratio of 3% and methanol addition of 3%	95	This study
WAO ^a	CM-derived ash	90-106 µm	80 °C, 60 min, DMC ratio of 15:1, catalyst ratio of 9% and methanol addition of 9%	89	This study
WAO ^b	-	-	90 °C, 90 min, DMC ratio of 18:1, methanol addition of 9%	80	This study

Table A. 1. The performance of nanoparticle catalyst on oil transesterification process

Note: ^aNon-nanoparticle catalyst; ^bNon-catalytic transesterification.

Feedstock	Catalyst	Solvent	Condition	FAMEs yield (%)	Ref.
WCO	CM-derived ash 850°C	Methanol	65 °C, 6 h, 1400 rpm, methanol ratio of 15:1 and catalyst ratio of 7.5%	91	[6]
WCO	CM-derived biochar 500°C	Methanol	350 °C, methanol ratio of 20:1 and catalyst ratio of 5%	95	[7]
WCO	Waste eggshell 1000°C	Methanol	65 °C, 120 min,	87.8	[8]
			methanol ratio of 9:1 and catalyst ratio of 5%		
AO	CaO-based heterogeneous catalysts 700°C	Methanol	50 °C, 8.5 h, methanol ratio of 15.68 and catalyst ratio of 5.12%	86.4	[9]
Olive oil	Maize residue- derived biochar 450°C	DMC	380 °C, 2 h, 500 rpm and DMC ratio of 36	95.4	[10]
Canola oil	Triazabicyclod ecene catalyst	DMC	60 °C, 2 h, DMC ratio of 6:1 and catalyst ratio of 3%,	80	[11]
Soybean oil	Potassium methoxide	DMC	80 °C, 15 min, DMC ratio of 6:1, and catalyst ratio of 2%	91	[12]
WAO	CM-derived nanoparticle ash 850°C	DMC	80 °C, 20 min, 1400 rpm and DMC ratio of 6:1, catalyst ratio of 3% and methanol addition of 3%	95	This study

Table A. 2. Different reaction conditions in oil transesterification process

Conversion efficiency	TG conversion (wt%)	FAME content (wt%)			
Conditions					
Various catalyst loadings (wt%)					
0	85 ± 0.52	80 ± 0.50			
1	94 ± 0.45	86 ± 0.47			
3	98 ± 0.48	94 ± 0.44			
5	96 ± 0.42	92 ± 0.40			
Various methanol additions (wt%)					
0	98 ± 0.48	94 ± 0.44			
1	97 ± 0.44	94 ± 0.38			
3	98 ± 0.36	95 ± 0.40			
5	96 ± 0.45	94 ± 0.43			
7	98 ± 0.48	94 ± 0.35			
Catalyst reuse (cycle)					
0	98 ± 0.36	95 ± 0.40			
1st	98 ± 0.39	93 ± 0.30			
2nd	96 ± 0.48	90 ± 0.32			
3rd	92 ± 0.31	88 ± 0.34			
4th	88 ± 0.33	82 ± 0.42			

Table A. 3. The conversion efficiency for WAO co-transesterification using CM nano-catalyst

References:

- Alhassan, F.H., U. Rashid, and Y.H. Taufiq-Yap, Synthesis of waste cooking oil-based biodiesel via effectual recyclable bi-functional Fe₂O₃-MnO-SO₄²⁻/ZrO₂ nanoparticle solid catalyst, Fuel. 142 (2015) 38-45. https://doi.org/10.5650/jos.ess14228.
- [2] Gurunathan, B. and A. Ravi, Biodiesel production from waste cooking oil using copper doped zinc oxide nanocomposite as heterogeneous catalyst, Bioresour. Technol. 188 (2015) 124-127. https://doi.org/10.1016/j.biortech.2015.01.012.
- [3] Madhuvilakku, R. and S. Piraman, Biodiesel synthesis by TiO₂-ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process, Bioresour. Technol. 150 (2013) 55-59. https://doi.org/10.1016/j.biortech.2013.09.087.
- [4] Dantas, J., et al., Biodiesel production evaluating the use and reuse of magnetic nanocatalysts Ni_{0.5}Zn_{0.5}Fe₂O₄ synthesized in pilot-scale, Arabian J. Chem. 13 (2020) 3026-3042. https://doi.org/10.1016/j.arabjc.2018.08.012.
- [5] Baskar, G., I.A.E. Selvakumari, and R. Aiswarya, Biodiesel production from castor oil using heterogeneous Ni doped ZnO nanocatalyst, Bioresour. Technol. 250 (2018) 793-798. https://doi.org/10.1016/j.biortech.2017.12.010.
- [6] Maneerung, T., et al., Sustainable biodiesel production via transesterification of waste cooking oil by using CaO catalysts prepared from chicken manure, Energy Convers. Manag. 123 (2016) 487-497. https://doi.org/10.1016/j.enconman.2016.06.071.

- [7] Jung, J.-M., et al., Biodiesel production from waste cooking oil using biochar derived from chicken manure as a porous media and catalyst, Energy Convers. Manag. 165 (2018) 628-633. https://doi.org/10.1016/j.enconman.2018.03.096.
- [8] Peng, Y.-P., et al., Optimization of biodiesel production from waste cooking oil using waste eggshell as a base catalyst under a microwave heating system, Catal. 8 (2018): 81. https://doi.org/10.3390/catal8020081.
- [9] Malpani, M., A.K. Varma, and P. Mondal, Production of bio-oil from algal biomass and its upgradation to biodiesel using CaO-based heterogeneous catalysts, Int. J. Green Energy. 13 (2016) 969-976. https://doi.org/10.1080/15435075.2015.1088445.
- [10] Lee, J., et al., Establishing a green platform for biodiesel synthesis via strategic utilization of biochar and dimethyl carbonate, Bioresour. Technol. 241 (2017) 1178-1181. https://doi.org/10.1016/j.biortech.2017.05.187.
- Borton, J., et al., Conversion of High Free Fatty Acid Lipid Feedstocks to Biofuel Using Triazabicyclodecene Catalyst (Homogeneous and Heterogeneous), Energy Fuel. 33 (2019) 3322-3330. https://doi.org/10.1021/acs.energyfuels.9b00359.
- [12] Celante, D., J.V.D. Schenkel, and F. de Castilhos, Biodiesel production from soybean oil and dimethyl carbonate catalyzed by potassium methoxide, Fuel. 212 (2018) 101-107. https://doi.org/10.1016/j.fuel.2017.10.040.