{ "cells": [ { "cell_type": "markdown", "id": "95111061-d9a8-48d6-bce5-a84a1a69b9b4", "metadata": {}, "source": [ "## Beer Alcohol per Calorie (APC)\n", "\n", "A friend found a nice table of beer alcohol by volume and calories so I thought I'd try something obvious. Maybe alcohol isn't what drinking beer is all about, but it's definitely also about calories. They don't call it a beer belly for nothing. So maybe **APC** should be a thing? If you've ever wondered about how alcohol and calories play together in your favorite brew, you may find the interactive plotly charts at the bottom of this notebook interesting." ] }, { "cell_type": "code", "execution_count": 1, "id": "6e64d63c-4158-4a4f-b9b0-c5e53096f2ee", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Requirement already satisfied: plotly in c:\\program files\\python\\python 3.7.8\\lib\\site-packages (5.8.2)\n", "Requirement already satisfied: tenacity>=6.2.0 in c:\\program files\\python\\python 3.7.8\\lib\\site-packages (from plotly) (8.0.1)\n", "Note: you may need to restart the kernel to use updated packages.\n" ] } ], "source": [ "pip install plotly" ] }, { "cell_type": "code", "execution_count": 2, "id": "31aa9b67-1f17-424e-88d5-81c51e8015ef", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import lxml\n", "from matplotlib import pyplot\n", "import plotly.express as px" ] }, { "cell_type": "markdown", "id": "21fc0699-7730-44fe-be55-c6569369af27", "metadata": {}, "source": [ "**Thank you homebrewacademy.com for the simple to import table!**" ] }, { "cell_type": "code", "execution_count": 3, "id": "1563c4f7-c79c-49ba-9aaa-db1d8db71eff", "metadata": {}, "outputs": [], "source": [ "beer = pd.read_html('https://homebrewacademy.com/beer-alcohol-content-list/')" ] }, { "cell_type": "code", "execution_count": 4, "id": "4b24abf9-58b0-4207-af12-64ffbb1e7fb8", "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Total tables: 2\n" ] } ], "source": [ "print(f'Total tables: {len(beer)}')" ] }, { "cell_type": "code", "execution_count": 5, "id": "de2f6cd5-e221-4aee-b868-77344c8d5cdd", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
BrandCaloriesABV
0Abita Amber1284.5
1Abita Golden1254.2
2Abita Jockamo IPA1906.5
3Abita Light1184.0
4Abita Purple Haze1284.2
\n", "
" ], "text/plain": [ " Brand Calories ABV\n", "0 Abita Amber 128 4.5\n", "1 Abita Golden 125 4.2\n", "2 Abita Jockamo IPA 190 6.5\n", "3 Abita Light 118 4.0\n", "4 Abita Purple Haze 128 4.2" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Need the first table, and need to strip off the '%' symbol and make it a float\n", "df = beer[0]\n", "df['ABV'] = df['ABV'].str[:-1]\n", "df['ABV'] = df['ABV'].astype('float')\n", "df.head()" ] }, { "cell_type": "code", "execution_count": 6, "id": "0547ef55-308b-4d11-9a8d-c5f893378c0d", "metadata": {}, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "customdata": [ [ "Abita Amber" ], [ "Abita Golden" ], [ "Abita Jockamo IPA" ], [ "Abita Light" ], [ "Abita Purple Haze" ], [ "Abita Restoration" ], [ "Abita Turbodog" ], [ "Amstel Light" ], [ "Anchor Porter" ], [ "Anchor Steam" ], [ "Augustiner Amber Lager" ], [ "Bass Ale" ], [ "Beach Bum Blonde Ale" ], [ "Beck's" ], [ "Beck's Light" ], [ "Blatz Beer" ], [ "Blue Moon Belgian White" ], [ "Blue Moon Full Moon Winter Ale" ], [ "Blue Moon Harvest Moon Pumpkin Ale" ], [ "Blue Moon Honey Moon Summer Ale" ], [ "Blue Moon Rising Moon Spring Ale" ], [ "Blue Point Toasted Lager" ], [ "Boddington's Ale" ], [ "Brooklyn Black Chocolate Stout" ], [ "Brooklyn Brown Ale" ], [ "Brooklyn East India Pale Ale" ], [ "Brooklyn Lager" ], [ "Brooklyn Monster" ], [ "Brooklyn Pennant Pale Ale" ], [ "Brooklyn Pilsner" ], [ "Brooklyn Summer Ale" ], [ "Brooklyn Winter Ale" ], [ "Bud American Ale" ], [ "Bud Ice" ], [ "Bud Light" ], [ "Bud Light Chelada Clamato" ], [ "Bud Light Lime" ], [ "Bud Light Platinum" ], [ "Budweiser" ], [ "Budweiser Chelada" ], [ "Budweiser Select" ], [ "Budweiser Select 55" ], [ "Busch" ], [ "Busch Ice" ], [ "Busch Light" ], [ "Carling Black Label" ], [ "Coors Banquet" ], [ "Coors Extra Gold" ], [ "Coors Light" ], [ "Corona Extra" ], [ "Corona Familiar" ], [ "Corona Light" ], [ "Corona Premier" ], [ "Cristal (Peru)" ], [ "Cusquena" ], [ "Deschutes Black Butte Porter" ], [ "Deschutes Fresh Squeezed IPA" ], [ "Deschutes Inversion IPA" ], [ "Deschutes Mirror Pond Ale" ], [ "Dogfish Head 120 Minute IPA" ], [ "Dogfish Head 60 Minute IPA" ], [ "Dogfish Head 90 Minute IPA" ], [ "Dogfish Head Midas Touch" ], [ "Dogfish Head Red & White" ], [ "Dogfish Head Shelter Pale Ale" ], [ "Efes Pils" ], [ "Firestone DBA" ], [ "Flying Dog Doggie Style Pale Ale" ], [ "Flying Dog Double Dog" ], [ "Flying Dog Gonzo" ], [ "Flying Dog Horn Dog" ], [ "Flying Dog In Heat Wheat" ], [ "Flying Dog Kerberos Tripel" ], [ "Flying Dog Old Scratch Amber Lager" ], [ "Flying Dog Raging Bitch" ], [ "Flying Dog Road Dog" ], [ "Flying Dog Snake Dog IPA" ], [ "Flying Dog Tire Bite Golden Ale" ], [ "Foster's" ], [ "Foster's Premium Ale" ], [ "Genesee Beer" ], [ "Genesee Cream Ale" ], [ "Genesee Ice" ], [ "Genesee Red" ], [ "George Killian's Irish Red" ], [ "Grolsch Amber Ale" ], [ "Grolsch Blonde Lager" ], [ "Grolsch Light Lager" ], [ "Grolsch Premium Lager" ], [ "Guinness Draught" ], [ "Guinness Extra Stout" ], [ "Hamm's Beer" ], [ "Hamm's Special Light" ], [ "Harbin" ], [ "Harp Lager" ], [ "Heineken" ], [ "Heineken Light" ], [ "Hiland Light" ], [ "Hoegaarden Belgian White" ], [ "Irish Red Ale" ], [ "Iron City" ], [ "Iron City Light" ], [ "Keystone Ice" ], [ "Keystone Light" ], [ "Keystone Premium" ], [ "Kirin" ], [ "Kirin Light" ], [ "Lagunitas Brown Shugga'" ], [ "Lagunitas Hop Stoopid" ], [ "Lagunitas IPA" ], [ "Lagunitas Little Sumpin' Sumpin' Ale" ], [ "Lech" ], [ "Leinenkugel Amber Light" ], [ "Leinenkugel Creamy Dark" ], [ "Leinenkugel Honey Weiss" ], [ "Leinenkugel Light" ], [ "Leinenkugel Northwoods Lager" ], [ "Leinenkugel Original" ], [ "Leinenkugel Red" ], [ "Leinenkugel Sunset Wheat" ], [ "Lowenbrau Dark" ], [ "Lowenbrau Special Beer" ], [ "Magic Hat #9" ], [ "Michael Shea's" ], [ "Michelob AmberBock" ], [ "Michelob Beer" ], [ "Michelob Dunkelweisse" ], [ "Michelob Golden Draft" ], [ "Michelob Golden Draft Light" ], [ "Michelob Honey Lager" ], [ "Michelob Light" ], [ "Michelob Pale Ale" ], [ "Michelob Porter" ], [ "Michelob Ultra" ], [ "Michelob Ultra Amber" ], [ "Michelob Ultra Lime Cactus" ], [ "Michelob Ultra Pure Gold" ], [ "Mickey's Ice" ], [ "Miller Fortune" ], [ "Miller Genuine Draft (MGD)" ], [ "Miller High Life" ], [ "Miller High Life Light" ], [ "Miller Lite" ], [ "Miller64" ], [ "Milwaukee's Best (Premium)" ], [ "Milwaukee's Best Ice (Beast Ice)" ], [ "Milwaukee's Best Light" ], [ "Modelo Especial" ], [ "Molson Canadian" ], [ "Molson Canadian 67" ], [ "Molson Canadian Light" ], [ "Molson Ice" ], [ "Natty Daddy" ], [ "Natural Ice" ], [ "Natural Light" ], [ "Negra Modelo" ], [ "New Belgium 1554" ], [ "New Belgium 2 Below" ], [ "New Belgium Abbey" ], [ "New Belgium Blue Paddle" ], [ "New Belgium Fat Tire" ], [ "New Belgium Mothership Wit" ], [ "New Belgium Skinny Dip" ], [ "New Belgium Sunshine Wheat" ], [ "New Belgium Trippel" ], [ "New Planet Tread Lightly Ale" ], [ "Newcastle Brown Ale" ], [ "Old Milwaukee Beer" ], [ "Old Milwaukee Light" ], [ "Olympia Premium Lager" ], [ "Ommegang Three Philosophers" ], [ "Omission IPA" ], [ "Omission Lager" ], [ "Omission Pale Ale" ], [ "Omission Ultimate Light" ], [ "Pabst Blue Ribbon" ], [ "Pabst Extra Light Low Alcohol" ], [ "Pacifico" ], [ "Peroni Nastro Azzurro" ], [ "Pete's Wicked Ale" ], [ "Pilsner Urquell" ], [ "Puppers Premium Lager" ], [ "Presidente" ], [ "Red Bridge" ], [ "Red Dog" ], [ "Red Stripe" ], [ "Redd's Apple Ale" ], [ "Redhook ESB" ], [ "Redhook IPA" ], [ "Redhook Slim Chance" ], [ "Rock Bottom Illuminator Doppelback" ], [ "Rogue Dead Guy Ale" ], [ "Rolling Rock Extra Pale" ], [ "Rolling Rock Green Light" ], [ "Rolling Rock Premium Beer" ], [ "Russian River Pliny the Elder" ], [ "Sam Adams Black Lager" ], [ "Sam Adams Blackberry Witbier" ], [ "Sam Adams Boston Ale" ], [ "Sam Adams Boston Lager" ], [ "Sam Adams Brown Ale" ], [ "Sam Adams Cherry Wheat" ], [ "Sam Adams Coastal Wheat" ], [ "Sam Adams Cream Stout" ], [ "Sam Adams Hefeweizen" ], [ "Sam Adams Honey Porter" ], [ "Sam Adams Imperial Double Bock" ], [ "Sam Adams Imperial Stout" ], [ "Sam Adams Imperial White" ], [ "Sam Adams IPA" ], [ "Sam Adams Irish Red" ], [ "Sam Adams Light" ], [ "Sam Adams Octoberfest" ], [ "Sam Adams Pale Ale" ], [ "Sam Adams Scotch Ale" ], [ "Sam Adams Summer Ale" ], [ "Sam Adams White Ale" ], [ "Sam Adams Winter Lager" ], [ "Schaefer Beer" ], [ "Schlitz Beer" ], [ "Schlitz Light" ], [ "Sculpin IPA" ], [ "Shipyard Light" ], [ "Shock Top" ], [ "Sierra Nevada Anniversary Ale" ], [ "Sierra Nevada Bigfoot" ], [ "Sierra Nevada Celebration Ale" ], [ "Sierra Nevada Draft Ale" ], [ "Sierra Nevada Early Spring Beer" ], [ "Sierra Nevada Harvest Ale" ], [ "Sierra Nevada India Pale Ale" ], [ "Sierra Nevada Pale Ale" ], [ "Sierra Nevada Pale Bock" ], [ "Sierra Nevada Porter" ], [ "Sierra Nevada Stout" ], [ "Sierra Nevada Summerfest" ], [ "Sierra Nevada Wheat Beer" ], [ "Signature Stroh Beer" ], [ "Smithwick's" ], [ "Smuttynose Fineskind IPA" ], [ "Sol Cerveza" ], [ "Southpaw Light" ], [ "St. Pauli Girl" ], [ "St. Pauli Girl Special Dark" ], [ "Stella Artois" ], [ "Stone Pale Ale" ], [ "Strauss Endless Summer Light" ], [ "Stroh's Beer" ], [ "Stroh's Light" ], [ "Tsingtao" ], [ "Tuborg Deluxe Dark Export" ], [ "Tuborg Export Quality" ], [ "Tyskie" ], [ "Victoria" ], [ "Weinhard's Amber Light" ], [ "Weinhard's Blonde Lager" ], [ "Weinhard's Hefeweizen" ], [ "Weinhard's Pale Ale" ], [ "Weinhard's Private Reserve" ], [ "Widmer Hefeweizen" ], [ "Winter's Bourbon Cask Ale" ], [ "Wyder's Apple Cider" ], [ "Wyder's Pear Cider" ], [ "Yuengling Lager" ], [ "Yuengling Light Lager" ], [ "Yuengling Lord Chesterfield Ale" ], [ "Yuengling Oktoberfest" ], [ "Yuengling Porter" ], [ "Yuengling Porter" ], [ "Yuengling Premium Beer" ] ], "hovertemplate": "Calories=%{x}
ABV=%{y}
Brand=%{customdata[0]}", "legendgroup": "", "marker": { "color": "#636efa", "symbol": "circle" }, "mode": "markers", "name": "", "orientation": "v", "showlegend": false, "type": "scatter", "x": [ 128, 125, 190, 118, 128, 167, 168, 99, 209, 153, 135, 156, 163, 143, 64, 153, 164, 180, 180, 157, 161, 175, 148, 320, 190, 200, 170, 305, 160, 155, 150, 205, 182, 123, 110, 151, 116, 137, 145, 186, 99, 55, 114, 136, 95, 138, 147, 152, 102, 149, 154, 99, 90, 132, 141, 192, 225, 228, 170, 450, 209, 294, 307, 310, 168, 170, 166, 150, 313, 271, 314, 138, 238, 154, 221, 163, 188, 129, 146, 161, 148, 162, 156, 148, 168, 160, 120, 97, 142, 125, 153, 142, 110, 144, 155, 150, 99, 97, 153, 196, 140, 95, 142, 104, 111, 147, 95, 335, 285, 194, 230, 143, 110, 170, 149, 105, 163, 152, 166, 165, 160, 160, 153, 145, 155, 164, 167, 152, 110, 174, 123, 187, 187, 95, 95, 95, 85, 157, 186, 140, 141, 107, 96, 64, 142, 173, 96, 145, 136, 67, 113, 160, 183, 130, 95, 170, 205, 200, 200, 140, 160, 155, 110, 145, 215, 125, 150, 145, 110, 146, 290, 195, 140, 175, 99, 144, 67, 145, 149, 174, 156, 120, 147, 160, 147, 153, 165, 179, 188, 125, 288, 216, 142, 83, 132, 236, 191, 176, 188, 175, 159, 180, 167, 190, 182, 192, 320, 316, 328, 175, 180, 119, 180, 160, 200, 160, 175, 200, 142, 146, 110, 228, 97, 168, 190, 330, 214, 157, 190, 215, 231, 175, 218, 194, 225, 158, 153, 153, 150, 200, 128, 123, 148, 150, 154, 188, 110, 149, 113, 157, 163, 156, 149, 135, 135, 161, 151, 147, 150, 159, 165, 150, 136, 140, 99, 158, 168, 160, 160, 141 ], "xaxis": "x", "y": [ 4.5, 4.2, 6.5, 4, 4.2, 5, 5.6, 4.1, 5.6, 4.9, 4.3, 5, 5.4, 5, 2.3, 4.8, 5.36, 5.52, 5.76, 5.12, 5.4, 5.3, 4.7, 10, 5.6, 6.9, 5.2, 10.1, 5, 5.1, 5, 6.1, 5.3, 5.5, 4.2, 4.2, 4.2, 6, 5, 5, 4.3, 2.4, 4.3, 5.9, 4.1, 4.3, 5, 4.97, 4.2, 4.6, 4.8, 4.1, 4, 4.6, 4.8, 5.2, 6.4, 6.8, 5, 18, 6, 9, 9, 10, 5, 5, 5, 5.5, 11.5, 9.2, 10.2, 4.7, 8.5, 5.5, 8.3, 6, 7.1, 5.1, 5, 5.5, 4.5, 5.1, 5.9, 4.9, 5.4, 5.4, 2.8, 3.6, 5, 4.27, 5, 4.7, 3.8, 4.6, 5.2, 5, 4.2, 4, 4.9, 5.7, 4.5, 4.15, 5.9, 4.13, 4.43, 5, 3.2, 9.7, 8, 6.2, 7.5, 4.9, 4.14, 4.94, 4.92, 4.19, 4.94, 4.67, 4.94, 4.9, 5, 5.2, 5.1, 4.62, 5.2, 5, 5.5, 4.7, 4.1, 4.9, 4.3, 5.6, 5.9, 4.2, 4, 4, 4.3, 5.8, 6.9, 4.6, 4.6, 4.1, 4.2, 2.8, 4.8, 5.9, 4.1, 4.4, 5, 3, 3.9, 5.6, 8, 5.9, 4.2, 5.4, 5.6, 6.6, 7, 4.8, 5.2, 4.8, 4.2, 4.8, 7.8, 5, 4.7, 4.6, 3.82, 4.7, 9.7, 6.7, 4.6, 5.8, 4.2, 4.74, 2.5, 4.4, 5.1, 5.3, 4.4, 4, 5, 4.8, 5, 4.9, 5, 5.77, 6.5, 3.9, 6.67, 6.8, 4.6, 3.7, 4.5, 8, 4.9, 5.5, 5.4, 5, 5.35, 5.4, 5.3, 4.9, 5.4, 5.45, 9.5, 9.2, 10.3, 5.93, 5.5, 4.3, 5.4, 5.4, 5.4, 5.3, 5.4, 5.8, 4.6, 4.7, 4.2, 7, 3.9, 5.2, 5.9, 9.6, 6.8, 5, 5.9, 6.7, 6.9, 5.6, 7, 5.6, 5.8, 5, 4.4, 4.8, 4.5, 6.9, 4.2, 5, 4.9, 4.8, 5.2, 5.64, 3.3, 4.6, 4.4, 4.8, 5.1, 5, 5.3, 4.04, 4.2, 5.1, 4.9, 4.6, 4.8, 4.9, 6, 5, 5, 4.5, 3.8, 5.4, 5.4, 4.7, 4.7, 4.5 ], "yaxis": "y" } ], "layout": { "height": 400, "legend": { "tracegroupgap": 0 }, "margin": { "t": 60 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "width": 400, "xaxis": { "anchor": "y", "autorange": true, "domain": [ 0, 1 ], "range": [ 25.16187050359712, 479.83812949640287 ], "title": { "text": "Calories" }, "type": "linear" }, "yaxis": { "anchor": "x", "autorange": true, "domain": [ 0, 1 ], "range": [ 1.138962472406181, 19.16103752759382 ], "title": { "text": "ABV" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAGQCAYAAAA6I1YxAAAAAXNSR0IArs4c6QAAIABJREFUeF7tvQ2UXGWZ7/tUVSfpIEw6wJAGZRLQOwnO8RL0umA8oyCso6KjCGcNTFgzIrggC1wHBK4ocGWOeBWEA6j3Kgu5wuiZI5A54qCjKMcPcOYIHMch+DGEGZFkVExQIBk+0gnpqrueqt6dXbt2ddWu5+mq/fb7q7VmOXTqffb7/v4bsn+9349Ko9FoCB8IQAACEIAABCAAAQhAAAIFCFQQiQK0+CoEIAABCEAAAhCAAAQg0CSASHAjQAACEIAABCAAAQhAAAKFCSAShZHRAAIQgAAEIAABCEAAAhBAJLgHIAABCEAAAhCAAAQgAIHCBBCJwshoAAEIQAACEIAABCAAAQggEtwDEIAABCAAAQhAAAIQgEBhAohEYWQ0gAAEIAABCEAAAhCAAAQQCe4BCEAAAhCAAAQgAAEIQKAwAUSiMDIaQAACEIAABCAAAQhAAAKIBPcABCAAAQhAAAIQgAAEIFCYACJRGBkNIAABCEAAAhCAAAQgAAFEgnsAAhCAAAQgAAEIQAACEChMAJEojIwGEIAABCAAAQhAAAIQgAAiwT0AAQhAAAIQgAAEIAABCBQmgEgURkYDCEAAAhCAAAQgAAEIQACR4B6AAAQgAAEIQAACEIAABAoTQCQKI6MBBCAAAQhAAAIQgAAEIIBIcA9AAAIQgAAEIAABCEAAAoUJIBKFkdEAAhCAAAQgAAEIQAACEEAkuAcgAAEIQAACEIAABCAAgcIEEInCyGgAAQhAAAIQgAAEIAABCCAS3AMQgAAEIAABCEAAAhCAQGECiERhZDSAAAQgAAEIQAACEIAABBAJ7gEIQAACEIAABCAAAQhAoDABRKIwMhpAAAIQgAAEIAABCEAAAogE9wAEIAABCEAAAhCAAAQgUJgAIlEYGQ0gAAEIQAACEIAABCAAAUSCewACEIAABCAAAQhAAAIQKEwAkSiMjAYQgAAEIAABCEAAAhCAACLBPQABCEAAAhCAAAQgAAEIFCaASBRGRgMIQAACEIAABCAAAQhAAJHgHoAABCAAAQhAAAIQgAAEChNAJAojowEEIAABCEAAAhCAAAQggEhwD0AAAhCAAAQgAAEIQAAChQkgEoWR0QACEIAABCAAAQhAAAIQQCS4ByAAAQhAAAIQgAAEIACBwgQQicLIaAABCEAAAhCAAAQgAAEIIBLcAxCAAAQgAAEIQAACEIBAYQKIRGFkNIAABCAAAQhAAAIQgAAEEAnuAQhAAAIQgAAEIAABCECgMAFEojAyGkAAAhCAAAQgAAEIQAACiAT3AAQgAAEIQAACEIAABCBQmAAiURgZDSAAAQhAAAIQgAAEIAABRIJ7AAIQgAAEIAABCEAAAhAoTACRKIyMBhCAAAQgAAEIQAACEIAAIsE9AAEIQAACEIAABCAAAQgUJoBIFEZGAwhAAAIQgAAEIAABCEAAkeAegAAEIAABCEAAAhCAAAQKE0AkCiOjAQQgAAEIQAACEIAABCCASHAPQAACEIAABCAAAQhAAAKFCSAShZHRAAIQgAAEIAABCEAAAhBAJLgHIAABCEAAAhCAAAQgAIHCBBCJwshoAAEIQAACEIAABCAAAQggEtwDEIAABCAAAQhAAAIQgEBhAohEYWQ0gAAEIAABCEAAAhCAAAQQCe4BCEAAAhCAAAQgAAEIQKAwAUSiMDIaQAACEIAABCAAAQhAAAKIBPcABCAAAQhAAAIQgAAEIFCYACJRGBkNIAABCEAAAhCAAAQgAAFEwngPPPHUTmMFmlsJ1KoVOXDZEtn2zJS1FO0jIbDPkposXlST7c/tjmTEDNNKYPl+i2Vq17Ts3D1tLUX7SAhM7r9Unnxmp9QbkQw40GEecsDSQHtejm4jEsYcEAkjQIfmiIQDxMhKIBKRBe4wXETCAWJkJRCJMAJHJGw5IRI2foJIGAE6NEckHCBGVgKRiCxwh+EiEg4QIyuBSIQROCJhywmRsPFDJIz8PJojEh4U46qBSMSVt8doEQkPinHVQCTCyBuRsOWESNj4IRJGfh7NEQkPinHVQCTiyttjtIiEB8W4aiASYeSNSNhyQiRs/BAJIz+P5oiEB8W4aiASceXtMVpEwoNiXDUQiTDyRiRsOSESNn6IhJGfR3NEwoNiXDUQibjy9hgtIuFBMa4aiEQYeSMStpwQCRs/RMLIz6M5IuFBMa4aiERceXuMFpHwoBhXDUQijLwRCVtOiISNHyJh5OfRHJHwoBhXDUQirrw9RotIeFCMqwYiEUbeiIQtJ0TCxg+RMPLzaI5IeFCMqwYiEVfeHqNFJDwoxlUDkQgjb0TClhMiYeOHSBj5eTRHJDwoxlUDkYgrb4/RIhIeFOOqgUiEkTciYcsJkbDxQySM/DyaIxIeFOOqgUjElbfHaBEJD4px1UAkwsgbkbDlhEjY+CESRn4ezREJD4px1UAk4srbY7SIhAfFuGogEmHkjUjYckIkbPwQCSM/j+aIhAfFuGogEnHl7TFaRMKDYlw1EIn8vB/fXJHx8YYcPFmO+wGRsOWASNj4IRJGfh7NEQkPinHVQCTiyttjtIiEB8W4aiAS7XmrQNy2oSZTU62fT0w0ZN2p0yMXCkTC9u8lImHjh0gY+Xk0RyQ8KMZVA5GIK2+P0SISHhTjqoFItOd9/Sdrsn1Hpe2Ha1bX5fTT6iO9MRAJG35EwsYPkTDy82iOSHhQjKsGIhFX3h6jRSQ8KMZVA5Foz/uKK8c6boDxcZHLLtkz0hsDkbDhRyRs/BAJIz+P5oiEB8W4aiASceXtMVpEwoNiXDUQid4isWKFyHvXIxIh/5uBSBjTe+KpncYKNLcSQCSsBONrj0jEl7l1xIiElWB87RGJ9szvvKsmGx9un9p03LF1Of5YpjaF/G8HImFMD5EwAnRojkg4QIysBCIRWeAOw0UkHCBGVgKR6Az8+w9UZdOjrV2bjljdkKPWNkZ+VzC1yRYBImHjx9QmIz+P5oiEB8W4aiASceXtMVpEwoNiXDUQiTDyRiRsOSESNn6IhJGfR3NEwoNiXDUQibjy9hgtIuFBMa4aiEQYeSMStpwQCRs/RMLIz6M5IuFBMa4aiERceXuMFpHwoBhXDUQijLwRCVtOiISNHyJh5OfRHJHwoBhXDUQirrw9RotIeFCMqwYiEUbeiIQtJ0TCxg+RMPLzaI5IeFCMqwYiEVfeHqNFJDwoxlUDkQgjb0TClhMiYeOHSBj5eTRHJDwoxlUDkYgrb4/RIhIeFOOqgUiEkTciYcsJkbDxQySM/DyaIxIeFOOqgUjElbfHaBEJD4px1UAkwsgbkbDlhEjY+CESRn4ezREJD4px1UAk4srbY7SIhAfFuGogEmHkjUjYckIkbPwQCSM/j+aIhAfFuGogEnHl7TFaRMKDYlw1EIkw8kYkbDkhEjZ+iISRn0dzRMKDYlw1EIm48vYYLSLhQTGuGohEGHkjEracEAkbP0TCyM+jOSLhQTGuGohEXHl7jBaR8KAYVw1EIoy8EQlbToiEjR8iYeTn0RyR8KAYVw1EIq68PUaLSHhQjKsGIhFG3oiELSdEwsYPkTDy82iOSHhQjKsGIhFX3h6jRSQ8KMZVA5EII29EwpYTImHjh0gY+Xk0RyQ8KMZVA5GIK2+P0SISHhTjqoFIhJE3ImHLCZGw8UMkjPw8miMSHhTjqoFIxJW3x2gRCQ+KcdVAJMLIG5Gw5YRI2PghEkZ+Hs0RCQ+KcdVAJOLK22O0iIQHxbhqIBJh5I1I2HJCJGz8EAkjP4/miIQHxbhqIBJx5e0xWkTCg2JcNRCJMPJGJGw5IRI2foiEkZ9Hc0TCg2JcNRCJuPL2GC0i4UExrhqIRBh5IxK2nBAJGz9EwsjPozki4UExrhqIRFx5e4wWkfCgGFcNRCKMvBEJW06IhI0fImHk59EckfCgGFcNRCKuvD1Gi0h4UIyrBiIRRt6IhC0nRMLGD5Ew8vNojkh4UIyrBiIRV94eo0UkPCjGVQORCCNvRMKWEyJh44dIGPl5NEckPCjGVQORiCtvj9EiEh4U46qBSISRNyJhywmRsPFDJIz8PJojEh4U46qBSMSVt8doEQkPinHVQCTCyBuRsOWESNj4IRJGfh7NEQkPinHVQCTiyttjtIiEB8W4aiASYeSNSNhyQiRs/BAJIz+P5oiEB8W4aiASceXtMVpEwoNiXDUQiTDyRiRsOSESNn6IhJGfR3NEwoNiXDUQibjy9hgtIuFBMa4aiEQYeSMStpwQCRs/RMLIz6M5IuFBMa4aiERceXuMFpHwoBhXDUQijLwRCVtOiISNHyJh5OfRHJHwoBhXDUQirrw9RotIeFCMqwYiEUbeiIQtJ0TCxg+RMPLzaI5IeFCMqwYiEVfeHqNFJDwoxlUDkQgjb0TClhMiYeOHSBj5eTRHJDwoxlUDkYgrb4/RIhIeFOOqgUiEkTciYcsJkbDxQySM/DyaIxIeFOOqgUjElbfHaBEJD4px1UAkwsgbkbDlhEjY+CESRn4ezREJD4px1UAk4srbY7SIhAfFuGogEmHkjUjYckIkbPwQCSM/j+aIhAfFuGogEnHl7TFaRMKDYlw1EIkw8kYkbDkhEjZ+iISRn0dzRMKDYlw1EIm48vYYLSLhQTGuGohEGHkjEracEAkbP0TCyM+jOSLhQTGuGohEXHl7jBaR8KAYVw1EIoy8EQlbTohEit/1N22QVYdOyilvfcPsTx/b8oSsv+Q6+fW2p2Z/9qojDpcbr75Qli/bD5Gw3X8urREJF4xRFUEkoorbZbCIhAvGqIogEmHEjUjYckIkROTOr39PPnTNLU2SH7nkrA6RuPyqm+Wjl54tL195SAftJ57aaUuA1mYCiIQZYXQFEInoIjcPGJEwI4yuACIRRuSIhC0nRKKPNxKIhO0mm+/WiMR8E1549RGJhZfpfI8IkZhvwguvPiIRRqaIhC0nRKIPkUhPbUpPa9KmvJGw3YAerREJD4px1UAk4srbY7SIhAfFuGogEmHkjUjYckIkeohEFq+uo9j65NPy4fefJUvHF8u/vfCiLQFamwlUKyL7LBmT56b2mGtRIA4Ci2oVqdWqMrV7Oo4BM0ozgaWLa7Jnui4vTjfMtSgQB4F9ly6S53e+KNwx5c77d/ZZVO4Olrx3iERBkdDF19d+5na56rKzm4utn0UkRn6LVyoV2We8Js/vRCRGHkYgHVg0VhV9k4VIBBJYCbo5vqQme/Y0mjLBBwL9EGiKxNSL0sAk+sE1su/sh0iY2CMSRpFgapPp/nNpzNQmF4xRFWFqU1RxuwyWqU0uGKMqwtSmMOJmapMtJ0Sih0h8897/Ja847GWzOzbp1Cb9XLT+1Ob/IhK2G9CjNSLhQTGuGohEXHl7jBaR8KAYVw1EIoy8EQlbTohEZvtXxXnwigPkpmsubsrDDzZukne/7+pZym874ZjZ9RGIhO3m82qNSHiRjKcOIhFP1l4jRSS8SMZTB5EII2tEwpYTImHjxxsJIz+P5oiEB8W4aiASceXtMVpEwoNiXDUQiTDyRiRsOSESNn6IhJGfR3NEwoNiXDUQibjy9hgtIuFBMa4aiEQYeSMStpwQCRs/RMLIz6M5IuFBMa4aiERceXuMFpHwoBhXDUQijLwRCVtOiISNHyJh5OfRHJHwoBhXDUQirrw9RotIeFCMqwYiEUbeiIQtJ0TCxg+RMPLzaI5IeFCMqwYiEVfeHqNFJDwoxlUDkQgjb0TClhMiYeOHSBj5eTRHJDwoxlUDkYgrb4/RIhIeFOOqgUiEkTciYcsJkbDxQySM/DyaIxIeFOOqgUjElbfHaBEJD4px1UAkwsgbkbDlhEjY+CESRn4ezREJD4px1UAk4srbY7SIhAfFuGogEmHkjUjYckIkbPwQCSM/j+aIhAfFuGogEnHl7TFaRMKDYlw1EIkw8kYkbDkhEjZ+iISRn0dzRMKDYlw1EIm48vYYLSLhQTGuGohEGHkjEracEAkbP0TCyM+jOSLhQTGuGohEXHl7jBaR8KAYVw1EIoy8EQlbToiEjR8iYeTn0RyR8KAYVw1EIq68PUaLSHhQjKsGIhFG3oiELSdEwsYPkTDy82iOSHhQjKsGIhFX3h6jRSQ8KMZVA5EII29EwpYTImHjh0gY+Xk0RyQ8KMZVA5GIK2+P0SISHhTjqoFIhJE3ImHLCZGw8UMkjPw8miMSHhTjqoFIxJW3x2gRCQ+KcdVAJMLIG5Gw5YRI2PghEkZ+Hs0RCQ+KcdVAJOLK22O0iIQHxbhqIBJh5I1I2HJCJGz8EAkjP4/miIQHxbhqIBJx5e0xWkTCg2JcNRCJMPJGJGw5IRI2foiEkZ9Hc0TCg2JcNRCJuPL2GC0i4UExrhqIRBh5IxK2nBAJGz9EwsjPozki4UExrhqIRFx5e4wWkfCgGFcNRCKMvBEJW06IhI0fImHk59EckfCgGFcNRCKuvD1Gi0h4UIyrBiIRRt6IhC0nRMLGD5Ew8vNojkh4UIyrBiIRV94eo0UkPCjGVQORCCNvRMKWEyJh44dIGPl5NEckPCjGVQORiCtvj9EiEh4U46qBSISRNyJhywmRsPFDJIz8PJojEh4U46qBSMSVt8doEQkPinHVQCTCyBuRsOWESNj4IRJGfh7NEQkPinHVQCTiyttjtIiEB8W4aiASYeSNSNhyQiRs/BAJIz+P5oiEB8W4aiASceXtMVpEwoNiXDUQiTDyRiRsOSESNn6IhJGfR3NEwoNiXDUQibjy9hgtIuFBMa4aiEQYeSMStpwQCRs/RMLIz6M5IuFBMa4aiERceXuMFpHwoBhXDUQijLwRCVtOiISNHyJh5OfRHJHwoBhXDUQirrw9RotIeFCMqwYiEUbeiIQtJ0TCxg+RMPLzaI5IeFCMqwYiEVfeHqNFJDwoxlUDkQgjb0TClhMiYeOHSBj5eTRHJDwoxlUDkYgrb4/RIhIeFOOqgUiEkTciYcsJkbDxQySM/DyaIxIeFOOqgUjElbfHaBEJD4px1UAkwsgbkbDlhEjY+CESRn4ezREJD4px1UAk4srbY7SIhAfFuGogEmHkjUjYckIkbPwQCSM/j+aIhAfFuGogEnHl7TFaRMKDYlw1EIkw8kYkbDkhEjZ+iISRn0dzRMKDYlw1EIm48vYYLSLhQTGuGohEGHkjEracEAkbP0TCyM+jOSLhQTGuGohEXHl7jBaR8KAYVw1EIoy8EQlbToiEjR8iYeTn0RyR8KAYVw1EIq68PUaLSHhQjKsGIhFG3oiELSdEwsYPkTDy82iOSHhQjKsGIhFX3h6jRSQ8KMZVA5EII29EwpYTImHjh0gY+Xk0RyQ8KMZVA5GIK2+P0SISHhTjqoFIhJE3ImHLCZGw8UMkjPw8miMSHhTjqoFIxJW3x2gRCQ+KcdVAJMLIG5Gw5YRI2PghEkZ+Hs0RCQ+KcdVAJOLK22O0iIQHxbhqIBJh5I1I2HJCJGz8EAkjP4/miIQHxbhqIBJx5e0xWkTCg2JcNRCJMPJGJGw5IRI2foiEkZ9Hc0TCg2JcNRCJuPL2GC0i4UExrhqIRBh5IxK2nBAJGz9EwsjPozki4UExrhqIRFx5e4wWkfCgGFcNRCKMvBEJW06IhI0fImHk59EckfCgGFcNRCKuvD1G6yESz2yvyJYtIvq/a1bX5eBJj55Ro6wEEImyJtPeL0TClhMiYeOHSBj5eTRHJDwoxlUDkYgrb4/RWkXi8c0VuW1DTaam9vbmuGPrcvyxdY/uUaOEBBCJEoaS0yVEwpYTImHjh0gY+Xk0RyQ8KMZVA5GIK2+P0VpF4pbP12TzlkpHV668Yo9H96hRQgKIRAlDQSTcQ0EkjEifeGqnsQLNrQQQCSvB+NojEvFlbh0xImElGF97RCKMzHkjYcsJkbDx442EkZ9Hc0TCg2JcNRCJuPL2GC0i4UExrhqIRBh5IxK2nBAJGz9EwsjPozki4UExrhqIRFx5e4zWKhK6RuLWL9TausIaCY9kylsDkShvNumeIRK2nBAJGz9EwsjPozki4UExrhqIRFx5e4zWKhLaB92t6ZFNFZnaJXLYyoYctqrh0TVqlJQAIlHSYDLdQiRsOSESNn6IhJGfR3NEwoNiXDUQibjy9hith0h49IMa4RBAJMLICpGw5TR0kXhmx7Ny7gdvaPb6xqsvlOXL9rONYMStWWw94gBEBJEYfQah9QCRCC2x0fcXkRh9BqH1AJEIIzFEwpbT0EWi+Xp3RiZ+/MjPm73/y098UF67do1tJCNqjUiMCHzqsojE6DMIrQeIRGiJjb6/iMToMwitB4hEGIkhEracRiIS6S5ff9MG+dxtX2/+6D3r3ioXrT/VNqIht0Ykhgw853KIxOgzCK0HiERoiY2+v4jE6DMIrQeIRBiJIRK2nEYuEkn3f7Bxk7z7fVc3//FVRxwezLQnRMJ2A3q0RiQ8KMZVA5GIK2+P0SISHhTjqoFIhJE3ImHLqTQikQxj59Ru+Ytrb5F/feLJIGQCkbDdgB6tEQkPinHVQCTiyttjtIiEB8W4aiASYeSNSNhyKp1IhLYYG5Gw3YAerREJD4px1UAk4srbY7SIhAfFuGogEmHkjUjYciqNSDC1yRZkzK0RiZjTH2zsiMRg3GJuhUjEnP5gY0ckBuM27FaIhI34SEUimcb0tW8/0BwFi61tYcbaGpGINfnBx41IDM4u1paIRKzJDz5uRGJwdsNsiUjYaI9EJB7b8oSsv+Q6+fW2p5q9Z/tXW4ixt0YkYr8Dio8fkSjOLPYWiETsd0Dx8SMSxZmNogUiYaM+dJEIbQ1EL7yskehFaP7/HJGYf8YL7QqIxEJLdP7HU3aReGZ7RZZPNOYfBFfomwAi0TeqkX4RkbDhH7pI2LpbvtaIxOgzQSRGn0FoPUAkQkts9P0to0jsnBK5/Y6aPL6l0gQ0Pi5y4pum5ai1CMXo7xgRRKIMKfTuAyLRm9Fc3yiNSKQPpvvIJWfJKW99g21kQ2qNSAwJ9ByXQSRGn0FoPUAkQkts9P31Egl9c/DAgxXZurUik5MNWXtkXQ6eHGx833+gKt+4p9rWWGXiskv2DFaQVq4EEAlXnPNWDJGwoR2JSKTXSKg0HHrIQfJ3D/6oeap1sgD7mNe8cugyoTKz6tDJjuve+fXvyYeuuaVJ+m0nHCMffv9ZsnR8cfOfEQnbDejRGpHwoBhXDUQirrw9RttNJPStgEqBfg5bNfebAP3uDZ8ak6mpvT3SB/9zz5keaFrSLZ+vyeaZtxHpMZ75rumeffFgQo25CSASYdwhiIQtp6GLRFYUkof09IJr3Qr2r796b9sDu22Yc7dOi0L2bYj25bqbNswejqeyoR+VHkRiPlPpvzYi0T8rvtkigEhwJxQlkCcSj2yqype/Up0Vg4mJhqw7dbrrGwb9/m0b2t8gaD+OO7Yuxx9bL9ol+eIdVdn0aGe9c8/ZM/BbjsKdoEFXAohEGDcHImHLaegioYutL/3YzfL+8/5UXr7yEMn+sw5H31hc+5nb5arLzpbly/azjbBA67w3EtmfZcWCNxIFAM/TVxGJeQK7gMsiEgs43HkaWp5IfOzjYzK1q/2Ca1bX5fTT6qJvH+69rzr7tmLVqoYsWSIdU5GyIqHtHniwKps3t95yaLtjjq7L0vHOgT20sSJf/kqt7Q8mljXkogum54kCZYsQQCSK0BrddxEJG3tEIsUvKw1506xUci6/6mb56KVnN0UIkbDdgB6tEQkPinHVQCTiyttjtHkiccWVYx2lV61syFlnTOe+LXjNa+rywx92vkE4+R17F0jfeVdNNj7ckojks/bIhpxyUr4cqEw89HCr5sSEyBuPrQ80TcqDETXaCSASYdwRiIQtJ0SiD5H4k7cfJ69du6b5zaxIPPPcblsCtDYTqFYqst8+i2TH82RhhhlJgSVjVRkbq8rzUyxKjSRy8zBfMj4mL+6py+49e6cgvf/y9gd+vcjhq0TOPbsheX92yMEi+n//8I97u5N8P/nJhz5SaVtDoT8fXyrykf+LnZjMIQ65wMS+i2XHc7uF5IYMvuDllu/bWvPKZzACiEQfIpFe+J0ViZ27eIU82K3n16pSEVmyqCpTu4vPMfbrBZVCIlCrVUQFVB8M+UCgHwKLF1Vleroh0/W9j4V/taEhD/5D+2PiKW+vyBtfX5H/dEnnvbX/cpEPX1qVp54Refppkf33FzlgefvV89rpN/6fazrfZPTTb74zOgLji2uy68VpaWASowuhjysvXdI+PbCPJnwlRWAkInHuB2+QHz/y8zmDeNURh88ucB5WYqyRGBZp3+swtcmXZwzVmNoUQ8qdY3x8c6W5y5HulLRmdaPQFKBuuzbpFqybt+gZDhU5bGV99gyH6z9Zk+072t9YJOsn5qKft4C6n3a9EtVtZzc92nrbofUG3XK213X4870EmNoUxt3A1CZbTkMXCVt357d1nkiwa9P8Mveojkh4UIyrBiIRV9462ru/WZX7H9z7W32ViTPf1f/uRkXPkfj1VpHb7tgrEytWiJx+Wu9tXrPtdPH0utO67wTVT5IqULd+of23roPuFNXP9fhOiwAiEcadgEjYciqdSOguTvrGQj83Xn3hUHZtSm//qtc9eMUBctM1FzcXU+uHcyRsN9l8t0Yk5pvwwquPSCy8TOcake6EdNU1nQuj51rEnK1XVCSS9npt/eTtutSrz0XaZU+5npwUOfkdLVHqdt7ElVewRmg+/01AJOaTrl9tRMLGsjQiob/5f/f7rm6OJvsgbxvi/LZm16b55dtPdUSiH0p8J00AkYjrfsj7jbwSSHZY6ofGoCLRT+3sd/S8ia3bWj+dXCFyxJrea3nydntSmTjvnD3y6ZvGZNtMvfS1EIlB0um/DSLRP6tRfhORsNEfuUjodKLP3fb12VGkD6azDW04rRGJ4XCe6yqIxOgzCK0HiERoidn6O8o3EkV7/p37qs3zJ9KffqYh5a3JCbhWAAAgAElEQVTJ0BoqC7yRKJqCz/cRCR+O810FkbARHolIJNOXkgXXKg+vOOylzSlNF68/dXarVdvQhtMakRgOZ0Ri9JwXUg8QiYWUZn9j6VgjsUTkzDPmb41Ef73q/FaeEOiJ2RedP/cOgXO9dWCNxKBp2NohEjZ+w2qNSNhID10kuq2BSH6OSNgCjbE1byRiTN02ZkTCxi/U1rqQ+ZFHq7J8WUNWrRKXXZu8WeQdcpe8WZjrWllR0u+mp27prk2PbKo0T+I+gl2bvGPLrYdIDAWz+SKIhA3hyETi9w45SD78/rNk6XjrIBBEwhZkzK0RiZjTH2zsiMRg3OajlU472rq1tU3q5GSj8KLk+ehTXs35WiOhcjM1VWmeSr18opG7nkF3fHrv+rkXRitHnRL1881V2TXVEqUT3zxdWp7Dym2U10EkRkm//2sjEv2zyvvm0EUiLQ06tSlZWL3/xH5MbbJlGW1rRCLa6AceOCIxMDrXhvoQfesXxmZPctYtWU9+R72vxcWuHemjmLdIZHdZ0i7oWoiDV4h8+a5q882BfsaXiJx8UjmZ9IEt6q8gEmHEj0jYchqJSKS7zGJrW4C0FkEkuAuKEkAkihKbn+/nHb7Wz3qA+enN3FW9RUIPsvvGPZ2nVZ97zp7m4Xbbt7f6k7ypGMWYuaaNACJh4zes1oiEjfTIRSLpfnr717edcEzbtCfbEOe3NYut55dvP9URiX4o8Z00AUSiHPfDoOsBvHuvi5F37BBZsaLR9cTnfkRC37Bs21aRZct6T9PK251Jx3Xmu6blsFUN7yFSbwQEEIkRQB/gkojEANBSTUojEkmfRnEgnQUhImGh59MWkfDhGFMVRKIcaeftNKRTeS77wHAOStPpRTq1auvWvTx0IfK60zrPbeglEtnFzvpm5dxzuq9RQCTKcQ/OZy8Qifmk61cbkbCxLJ1I2IYz/NaIxPCZZ6+ISIw+g9B6gEiUI7G8h+k/PLouJ7659wFsHiOYa3qRngid/swlEvom4sbPdp6cPdf5D3ltJpY15KIL5t7m1WPc1BgOAURiOJytV0EkbAQRCRs/QSSMAB2aIxIOECMrgUiUJ/CHNlbk8S2ttQKHrazLUWuHN62n21uBdad2Lm6eSyQGPTlbZWLjw1X59daKrFrVEJWopePlyYae2AggEjZ+w2qNSNhIIxI2foiEkZ9Hc0TCg2JcNRCJuPLuNtoi04u830iQwMIngEiEkTEiYcsJkbDxQySM/DyaIxIeFOOqgUjElXe30eohbTfeVJvdalW/1+3Mhl5rJG75fE02b2mdh5F8dAem7BQpyMdDAJEII2tEwpYTImHjh0gY+Xk0RyQ8KMZVA5GIK++5Rqsy8dDDLQHQhd5Hrc2fXtRLJLS9rrlIzn846shGoZOzSWThEUAkwsgUkbDlhEjY+CESRn4ezREJD4px1VioIqFz9ct8OnTId1k/IhHy+Oi7PwFEwp/pfFREJGxUEQkbP0TCyM+jOSLhQTGuGgtNJLK7D3XbwjSulH1Hi0j48oyhGiIRRsqIhC0nRMLGD5Ew8vNojkh4UIyrxkISiW5bj578jumh7oC00O8gRGKhJ+w/PkTCn+l8VEQkbFQRCRs/RMLIz6M5IuFBMa4aoxAJfeCfmmrNxfc8uVi3T/3yV2odAc51hkFcafuMFpHw4RhTFUQijLQRCVtOiISNHyJh5OfRHJHwoBhXjWGLRHab0clJkTPftcflzIBuZxggEr73NCLhyzOGaohEGCkjEracEAkbP0TCyM+jOSLhQTGuGsMUiW5Tj97yprq87hj7Cc47p0Ru+ORY2xammiZbj/re04iEL88YqiESYaSMSNhyQiRs/BAJIz+P5oiEB8W4agxTJLq9MVh7ZENOOWnaBbxuYfrd+6qyfbvI+LiekNxwnT7l0snAiyASgQc4gu4jEiOAPsAlEYkBoKWaIBI2foiEkZ9Hc0TCg2JcNcogEkw9CuueQyTCyqsMvUUkypBC7z4gEr0ZzfUNRMLGD5Ew8vNojkh4UCxHDZ2mc+99VXnk0Yps314R3cZUH7i9Twcepkgo2U/fNCbbtrUztk490ilTLVZVmZhoiB6A9sZj7VOlynEnDNaL+WSCSAyWScytEIkw0kckbDkhEjZ+iISRn0dzRMKDYjlqZBcla6/0Ifmi832mACWjHLZIqCA9tLEqm7eI6EJrFSSrHF3/yZps39HaBSr5eK27KMfdULwXH/t451oRr21wEYniecTeApEI4w5AJGw5IRI2foiEkZ9Hc0TCg2I5atzy+Zps3tL+cKw9u/D8aVk+0XDr5LBFwq3jM4W6LeBetbIhZ53hK13efZ+vet3WoqxZXZfTT7O/qUEk5iu5hVsXkQgjW0TClhMiYeOHSBj5eTRHJDwolqNGiCKhbxv+5q7WFCP96BuUk99Rn9fFzohE5/2KSJTj32F6sZcAIhHG3YBI2HJCJGz8EAkjP4/miIQHxXLUyJ3atKwhF13g+1t2zzcSeX0eHxe57JI98wqVqU2deJnaNK+3HMULEkAkCgIb0dcRCRt4RMLGD5Ew8vNojkh4UCxHDf3t/t3frMmmTZXmuQg6VefEN0+b1xNkR+cpEt3eolgXU/dKRN9K3HlXaxH3+BKRo9bW5cQ326fw9Lpumf98PpkwtanMyZezb4hEOXPJ9gqRsOWESNj4IRJGfh7NEQkPinHVGIZIeK/riCuh8o0WkShfJmXvESJR9oRa/UMkbDkhEjZ+iISRn0dzRMKDYlw1PEXioY0V+fJXam0AJxymY+mc/wcerMjUVEUmJxtyzNEN1wXncSVuHy0iYWcYWwVEIozEEQlbToiEjR8iYeTn0RyR8KAYVw1PkVByuk5i82Y9+0K3d9XpWLaH/ryFw/OxDW5cqdtGi0jY+MXYGpEII3VEwpYTImHjh0gY+Xk0RyQ8KMZVw1skvOnlLeDWa5z5rul53Q3KexwLqR4isZDSHM5YEInhcLZeBZGwEUQkbPwQCSM/j+aIhAfFuGqUXSTuvKsmGx/uPE8DkRjdfYpIjI59qFdGJMJIDpGw5YRI2PghEkZ+Hs0RCQ+KcdUou0h8/4GqfOOe1rkU6Q8LuEd3nyISo2Mf6pURiTCSQyRsOSESNn6IhJGfR3NEwoNiXDXKLhK6De5td7Sf8v2WN9XldcfEvb3rKO9SRGKU9MO8NiIRRm6IhC0nRMLGD5Ew8vNojkh4UAyjxt3frMpDD1dlakrkiNV1Oe7Y+kBnTJRdJJI0ntneWsB92KpGGAEt4F4iEgs43HkaGiIxT2CdyyISNqCIhI0fImHk59EckfCgWP4aedN9BtnJSA8te+yxMdH7ZmL5tByxxv+3/PpGYeOM8Ogp12uPrMvS8d6MB23XuzLfsBJAJKwE42uPSISROSJhywmRsPFDJIz8PJojEh4Uy1/D4wTpRzZV5bYN7WsP9K3G8cf6yYTKwA2fGmu+NUk+k5Mi552zZ07I2u7Gz9Zk+/a9i6xVQi48f09fElL+BMPuISIRdn6j6D0iMQrqxa+JSBRnlm6BSNj4IRJGfh7NEQkPiuWtodOZ7n+w9fDfnODTEKmkNjQ695w9fU9vuulzNfnVLysiM+2TCUMfuWLuh/widLotlO6141Ke5OhYxxaL7Hmx1QOdzvXOk/p7u1Gkz3y3NwFEojcjvtFOAJEI445AJGw5IRI2foiEkZ9Hc0TCg2I5a+SdGp0IhbpA0ROkP/zRMZmebh+ryoRFJFQctm6ryKKxhlQrFXnscZHfPtW5dWuvNx+5Z0do5zKlWHQ9mnsVkRgN95CvikiEkR4iYcsJkbDxQySM/DyaIxIeFMtZo9vBbPqb+jVr6vLGORZb61oI/Rw8uXdsV1w5ljvQKwd8I/HFO6qy6dH2tyV6gfQbk+SCvd5IPPyjqnzpb1LTrnIkQmutWtmQs87I2FA541tQvUIkFlScQxkMIjEUzOaLIBI2hIiEjR8iYeTn0RyR8KBYzhqDnPCsAnHbhr1rDXSdwbpTWydCf+SqMXlxZppQesSDioSKSfN5P/XQr6st9J/TMrFihch71889fUrfvuhBdEm7Lh4ha1bX5fTT/NZ0lDN5n17pupMHHqzK5s2t1zqrVjWa8jnIB5EYhFrcbRCJMPJHJGw5IRI2foiEkZ9Hc0TCg2I5azy+uSK3fqHW1rnxJSIXXtB9AXL6LUHSMNnd6XOfr8mWLe1zhZYsFrn8g8XXSKiw3PjZ/DcciVysXNVoLuTuZ/vWWWlqiDR0GUeygCMztenkd0zLUWvZDrafOzbvhPBeU8y61UUk+iHOd9IEEIkw7gdEwpYTImHjh0gY+Xk0RyQ8KJa3hi5Cvv/Biuycqsjv7FeXlx+u05UaMr5UZGpnq98TEyLLJ1oP19d/sibbd3SuUdC3Dl9PFm7PPIfrb/9ffnhdzvizwX5L/bGPj4n+1jtvKpO+qnjLm/s/RC5PmrSbL3tpQxbN+Mqa1Q0OpStwq+ZNZetnB628SyASBcDz1SYBRCKMGwGRsOWESNj4IRJGfh7NEQkPiuWvoYez3fqFatv2qI2ZKUQ6fenkd9SbZ0J02yZWRWKuPxuEQHY6UrrGAQeKnHNWsa1bs29TWA8xSCp72+SJhL7RuuwDxd9AIRK2LGJsjUiEkToiYcsJkbDxQySM/DyaIxIeFMtfI2+aSrrXyfSlvHUVa49syCknTcunbxqTbds6xzroGgmt9IMfVuWrX2s/m2JyRUPOW997QbTu+PTooxV5ZofIwSsazZO69TM1VZHx8Ubf29qWP73R9DDv7dSga0wQidFkGPJVEYkw0kMkbDkhEjZ+iISRn0dzRMKDYvlrdHub0Frt3Op/IgT6puChh1sP9zod6Ki1rbMXctdPLGvIRRf0fuifi5BOv3ro4ZYA6LQrFYJeJ1nnnRsxyEnd5U9udD1sLry/Y+9UN90ueN1p0wMJGiIxuhxDvTIiEUZyiIQtJ0TCxg+RMPLzaI5IeFAsf408CdBeJx7Rz5QVnR71xTtqs28ltI0+WPazGNqbULc3LL22ifXuRwz1NHf9JOtoBhkzIjEItbjbIBJh5I9I2HJCJGz8EAkjP4/miIQHxfLXyF2MnNpmVd8CHLxC5Lvfq8rWrSK6buIPj26dNZH9TL1Qkz17qrLv7+TsBTskFN3ECJEYUgAFL4NIFATG11lsHcg9gEjYgkIkbPwQCSM/j+aIhAfFMGqoTDy+pdJccK07JY0vaW2/pGsS1qxpyA2fGpOpqfax5G2Xus+SmixeVJPtz+1u+7JOhUkOmNPfXuvaivn66PqIb9zTvrai19a289UX6vYmgEj0ZsQ32gnwRiKMOwKRsOWESNj4IRJGfh7NEQkPiv3X0O1Oe83/77+a3zfz3lhodX0rceKb299K5IlEXvu8tn49luYBdBsfbk27UYk4+aTWzlN8ykcAkShfJmXvESJR9oRa/UMkbDkhEjZ+iISRn0fzhSQSdyfnHMyAecub+j+HwINltobOLddTonWqkC5GqNREGjPPuYetbMifnjZdGqmwikS3xdzrTq3Ll79SnX3TccTqurzzpN6LqecjD2qOjgAiMTr2oV4ZkQgjOUTClhMiYeOHSBj5eTQPQST0t/gPPNiau68HYumUmezCz3u+VZW/+5+tqS7pA87OPWdPc5cZfajX315v3lyRVata024si0f1wXvTozpNSGTVKu1T58Nx2zz+1O5ISW7Jtqp5OequRJu3iDz1TEV+8QuRnTtbv3lXAdEH8SJ9V34bH67K5s2tw+d0J6aHf6TTnFq8Dl9Vlzf9h7rc8MkxmdrV3pt+pzZ1E4klS0R2ZWoOejqyx/1OjdEQQCRGwz3kqyISYaSHSNhyQiRs/BAJIz+P5mUXCX0IvvGztbaD1HTcF54/PfswnXf2QcJG30ro9qXZ+f+6mPjC84sdeJbUTG892lwF0BA59GUNOec97dug6snN+mCe4xDNUt0OTEvP/08OjUtnPZeA5N0T2Yf8vP7otqvK6rv3qcBURLf6XLu2IcfnLLZ+5uma7HmxKr+7Yu9i67zFz0XHPcj9rIKoMjeKnaMG6W+sbRCJWJMffNyIxODshtkSkbDRRiRs/BAJIz+P5mUXiW5TbtK/1c47KC15iNWpNc9sl46Fucou77ft/TBNHsyzD8o6bWfdaXvn6Ocd6JWu300kup75MNN4v/0a8mfrpuXe+6rym99WpF7XA9lEVq+u5y5wzp5QnCcnWrrXwXLZ07HTJ2JrTnrmQPqNxhte35Dv/d3MIRWpgXucOK2Cefsdtebi8eQzaJ79ZM53bAQQCRu/GFsjEmGkjkjYckIkbPwQCSM/j+ZlFwk9HO3LX6l1DDUtEtkH5eTLugD33PXT8tDDleZDd/Yz6BQbfdDXB9jOR+R2OUmv2ch7eO92/V4isXixSLWqB7i1j0jFRrdrTb9F0J2UbvzsWF+3SlokVAweeLAye0q09lXfViS7Ms0yHhe57JI9zX/Uh/vNm3U9REMmJ1snS+dJnscDf96uTdqH9JuqvgbNl4ZCAJEYCuYFdRFEIow4EQlbToiEjR8iYeTn0bzsItHtQTi9kDpvWs2iMZE/O711WFreKcjKbtAzB3S3IBWc9FqMJIujj27IK1e33kroSct6QrSuy3hxj8juXRVZurTRlABdp6G7Gm3d2tIRXbuQrHtIj2d2A9Xk/6mILB6TZr3sR7+iD+/nndP+h+kpVkmbSkOkUZk91FqqFZH//KE9orx/89uq3PXVqryYOiZC3z4ceEBDfvmrTn1KBERFIjsefYvxlb+tyvPPt678B3/QkGP/yL6zEudIePzbP7waiMTwWC+UKyESYSSJSNhyQiRs/BAJIz+P5mUXCR1j9hTj7NQYffi99fN7FwrnbQWaffBcs7oup6emIRVhqQ/HN/9/VXnuhfaH6uxbB334PvecvWs50tdoTgXaUGt7q6DTsHT7Uh2PThPavqMi2ZoqC/u+RGYfzNM1k6lW2SlKG75Ukx//pFN8ZqdmNUReuUZk8XhjdjtVrZtyl+ZlVCR++1S+SDQz+EL7ORQqe/pJn/egcnXmu4otFs/LJrtDV/KdQeWwSP58tzgBRKI4s9hbIBJh3AGIhC0nRMLGD5Ew8vNoPkqR0IdPnXL0620VWb6s9Vv6vJOUdZz63ampmZ2LVnUedJb+bbhOq8k7qyGpMT7emnbT7dOtX/oWQnc/0v7+3svq8vPNVdmT82YgXXfffRvy56dPt11P6//XL9bk2ecqom8GkjlSKh7paUL62/3P/1WtuQYi/Rlb1JAXX5x5oE8v1GjoG4mGnLe+fdG3Tv3qti5Ct6NtVFVOGvLC852SkG738pc35LHH2r+TCFneGwIdT3b6lY6j6GLxvJzy1s6sWCHy3vU9AvH4l4YahQkgEoWRRd8AkQjjFkAkbDkhEjZ+iISRn0fzUYpE3mJkj/nzVi55/Xr96+ryd99vX2exeInIkf+uLk9srcju3RX5zW9E9Jk/+Vayo9M++zTkuDc0mtuuqsQkO0ilHWC6IVKriJxy0rSsXLl3mlPe+g9tN1YT2TPjC8mjvf588SKRt791WlavbslUMjWsq0jMdCItNGl+6T7qVrqP/bwqP/2niuzaVZHf//26HPv61ra33dZ15O3c5LHYWvuoMnH/zDoOFShdx1HGw/6s9+NCaI9ILIQUhzsGRGK4vAe9GiIxKLlWO0TCxg+RMPLzaD4qkei29sEy5ciDR7d+HXBAQ57KmdZz/HF1+c69mYXcM0/P+j/6AK/rD/R/9c3DxH4N2fGs/mDvm4ik3+mH/WSKTq5I6OF2MzWz6zSSGvo24Mx3tc7Q6PpGIj13qctercmPdT2HitCtX2hf+J6sVem1QDydzagz9rhPqFGMACJRjBffFkEkwrgLEAlbToiEjR8iYeTn0XxUItFtW1ev31YPyubOu6rNBdL6W/7mQ/TMk/SyZQ3ZsaNz6s/y5SLPPNN+teThWx/qdUGzasbsm4qZh/fmdzLl0s/yyuGoI/VU6M4dq2aFo4eMJFOIdNrRI4+2xjT7aYjUZ/qWJzLJz97xx9Pyf7y61ek8WUimY+UtaNfr6xkPei5F+sM6hkHvznDbIRLhZjeqniMSoyJf7LqIRDFe2W8jEjZ+iISRn0fzUYmE9j3ZTSg9jvRuTB7jK1Ijb6vZ5Jf2r/qDhvz4p+3rEvTPOjeVzUiFvj1IflRpCYX+c7epRMlXX/rShvxqZoekRBwSsVE5WbpEOk6hzo5VJefC/9RaM/CpT9dyF0pn3KJpT8t+pyGvfrWKTPvp33lbuWr7ZHG3yqFui7trSmRyRUOOWtuip1u1JudL6MncHB5X5K5cGN9FJBZGjsMcBSIxTNqDXwuRGJydtkQkbPwQCSM/j+ajFAn9Lfbd36w0dyfSz1yLcHUx9XzPf++2E9ArDm/I2/+43nwYn06tY07WQHRsA5ua2qQP5jq62d/+J382Mz2pLcPUGwbdmek53TI1b8pRQ5oH3922oVNj0tOjtMYlF7dEIrvzVXLd/fYVefa59jtJBUDXqmQ/3aYv9TrIzuM+pUbYBBCJsPMbRe8RiVFQL35NRKI4s3QLRKIHv8e2PCHrL7lOfr3tqdlvvuqIw+XGqy+U5cv2QyRs959L61GKRK8BZE8v1mk0605tnQ0xH59uInHSH0/LN75VlV0zu0alr523iDn9s/T0qLR46G5JlfylFc3yiUjkecSyZSIXX7BH/uYrVfnHjV2K6A5OhzTk3LNbQpDdIld/pusevv/gzDSuFFLle9YZnSKRN31p0EP95iM/apaXACJR3mzK2jNEoqzJtPcLkbDlhEj0IRKXX3WzfPTSs+XlKw/p+PYTT+20JUBrM4FRioSKgm6nunmzyPjS1ryf7Tta28Dq2wk9Wfn+B9sflNNbpKYHrw/Vj29pfffwVXU56e3te6bq2Q8bH67Iwz+qSLUmsv/+rYf1J7eJPL2jIjtfEGnos3M19RJA1zhI603Izl2pKUp6kZk/a75tmOlIc11FZt3BzFdnpzel1zfod5NPMtWpuSi7IXLgQSJP/bb1pyodSQFt8+ojG83dnfTzo5+K/OAfavLLX+ohdTNnRczYx4lvqsthq+pNxrqV7IpJkZe8pNF8q3LwCuVcl6uu6Tz1eq51KsrxJz+pSq1WlYMP3jNvUme+sSlQKgKIRKniCKIziEQQMQkiYcsJkUAkbHdQCVqPUiRyp8rMPASrMOhOSck6gTSqC89vP+Ttc5+vyZbMgl7dDlQPg9OPCkuy5Wrrybw11agpAzMP/rNbqM78Zr5jIXT6DUKX6UZaKxGF7LLstiaJhOR9aUZG9nuJyNvfVhdd/L1rV/uNcsLx9Y7TofWNw3fvq8qmR6sysawha9e21jjc8Kn2xdp6IJxyUTnSNQ16nkXzBOvUKde9dlXaZ0lNFi+qyfbndpfgDqYLIRBAJEJIqVx9RCTKlUe33iAStpwQiT5EIj21KT2tSZv+ZvuULQFamwlUqxWZ2HexPP1vmadVc+W5Czy9vSLX3jD3UmV9IE7WT6SrXXFp60E4+XzoytrsmQrp71314ZZI/P39FfnaN1qvGvRhP33uQrI9a/Jn+v3OvZlmTnnuY9vV5Pp5J1Jnd01qfjf1w3SbalWnHjXkf97f2RudenTOWZlT6nJwf+u7Ffn2dzsZn3xSXe69ryL6dmHGq1qtGyJLl4r8+bq6HH5Y9+lj44tqsmisKs/uVAPhA4HeBPbbZ5Hs3l2XXcnhJ72b8I1hEpif2aKmERywbFye/rep1tbZfEpL4HcnUn8Zl7aX5e0YIlEwm+tv2iBbn3xaPvz+s2Tp+GLZvaf3w1DBS/D1ggT0UXKsVpEX9US0IX7++WcN+cSNnfmnH6aPWF2RRx5t79dLD6nI5Re3Pxyfd3HnfH4dypWX1+RLd9VFr7VTZ9GlXgukqzbfPiR/lve2YeY8iOZv7fUkaP3fLgKQRjhbMm9htU6J0jMmZi6dfiOQPNznCY3+mUrUdf9357aw2fj+9p66fP2ezlwPfanIL37V/u2krxeeV5X/7fBuV261UcmpVCoyPeR7Zoi3J5dyJqD/jak3Gh2ntDtfhnKDEpj7X/lBq5raLapVZc90vfmfZj7lJbB4rNfeheXtexl6hkgUTEEXX1/7mdvlqsvOZrF1QXbz9fVRTW3S6UZ58/PT49Sdg3ZOVWTTo62/5SYmRN54bF2WT7T/1XLN9TV57rn2vwn1QV/XA2R/PvvmIXlynll/kIhBF4+YFY0us5pmXyw01Wime/o/iSg0t3zNnEM3W6vrRfN3beo19ShhqNuufuOeYv+R72f7XaY2zde/jQu3LlObFm628zUypjbNF1nfukxtsvFEJAryQyQKAhvC10clEjq07LkNyenP+tBd5GA6XXD837+UWjQ8s2A575CHtilHmalO2qemV2TeIKQPlks8IX0ORLc3D/rz5K2DtmuqTmpe1ewhdemfz2Q+e5J24kwz7cbGRM4+q3VidT+f7DoU3anp55ursm1bfut1p9bliDVzvylEJPohz3fSBBAJ7oeiBBCJosRG831EwsYdkejB75v3/i95xWEvm92xSac26eei9ac2/5ddm2w3oEfrUYqE9l/n6evpx/oZH2/I1FSl+b/dHpR1C1LdzenX2ypy8IqG6Pajumbgme0imzZV5X98qyq76yLVRBKS/509CW7mt/z6c52ik5jBzMN8si1rUw5SD/FpyWl2NrWTUvaE6LxcEkFJC4VOETryVXWZXCHy99+vyLMzb1VUok58S11u/cta8yC3pC+LF4m85z3TzXEX+ehCbOWqb3T0bc537qvKvfd1vqkYXyJy4QV7ep7XgUgUoc93lQAiwX1QlAAiUZTYaL6PSNi4IxI9+P1g4yZ59/uunv3W2044ZnZ9BCJhu/m8Wo9aJOYahz4A6y5E+vC7cqU0heOWL9SaD//Jo9TnUpMAAB2ZSURBVLSuF9BdiPQ76elSMzu5NmVguiKiKwoyv9xvLeJLLb6e7UvOVKPsd9veJoiIXi9v1YLKwgf+zz0yNSWiEqTTtFSUfu9QkT96Xftv/rOH7qlkNaVpa0V0F6pjjm4/adpyD+jboId+VJEdzcMAK7Lm9+t910ckLOTjbItIxJm7ZdSIhIXe8NoiEjbWiISNH28kjPw8mltEIvugn127YOlf9nA43Q5W1wY89HDrALXko8/8p6em41xx5cwUJ10UrW8cukhBc73CjFl0bPU6cxr17NkNul2sikJqWlLzDIgui6jT416yWOTyD7ZOl14oH0RioSQ5vHEgEsNjvVCuhEiEkSQiYcsJkbDxQySM/DyaDyoSbdNj0quKZ05MPvHNth25ZoUgNch99hF54YXOUZ9wXEOOfUNr56Y776o1D56r6/Qm3fE152E/vaZB22RFQn/WtqtTsnh6RiT2n2jIQQeJPPrPrR/su19D/nzddPNMhuzibj0U7g+PsbHwyNmzBiLhSTOOWohEHDl7jhKR8KQ5f7UQCRtbRMLGD5EowC85mVmb6G/nddGs5aPTbLZua23jedQrx2TZgcXOkUge9LPThZI+Hf3ahrztxL3bsurhZ5tnDo3TNxd6crV+dGeh5MA1feOgH53Pf+sXOicKdROJ1b/fkEMObtXTuvd9r9J8yH/+hcw2SRlgeQurk6+kd1Tq5+2DHvR20fnToidsP/VMSzBeubqx4CRCx4VIWP7Ni7MtIhFn7pZRIxIWesNri0jYWCMSNn6IRJ/8dArRjZ9N7UokIoetbMiZZ+Sfn5BXdvO/VmXZ77Tm2CdvExIV0WW3ybafKiy9piglaxGa6wTm2Lr0j/59XV7/7+uyeXNVbtvQvrhXRUjn/idyMdvnmXrJm4T0WoSDfrchT/4mZ8Pz1O5LtZrI9HRrKlJz69W86UeZk6Wb39EOzExXmj20rpsl5e/KKtkTt/uMN7ivIRLBRTbyDiMSI48guA4gEmFEhkjYckIkbPwQiT75ZdcLJM36eXD9+HU1ef751AnG+tCcTPmZKaTPy7UxkfrMVH594/GKV9TlF79oLcbV37af+KbG7LagH/8vtdZv+/Uz1xkIM/V1NyDdfajQJ2dr1j/5j3vkq3871lYruwg6LQ5tgpC6+Cte3pCfPVbgBKacvuSN+9JLeu94VIhBSb+MSJQ0mBJ3C5EocTgl7RoiUdJgMt1CJGw5IRI2fohEn/yyZwEkzc5813Rz69Nun/96W03+5V86H5jnXDcwIwdt6wZmfoN/6Msa8uKLFdn25N4rzm6Tmr1MSjBy3wp06fTsd3MEZeXKhpx+2rRs2lSRZ3ZUZNeuitz/QI/x1UUWjTfkoANFDj20IUcdWW9ODbvhU+1veLQ7OrVqclJExecnP622Tn+ekYhex7pNLGvIRRf0/4aoz+hL+TVEopSxlLpTiESp4yll5xCJUsbS0SlEwpYTImHjh0j0ya+fNxLZswK09Ec/Pja7/qDXpWYXIM98cfbxPPNAn/cCovkzbaA7JWn7ZEvVZJpS6hy2pB+LF4vs3p3fq24vOZYsEbn8A3t3QPrhP1bkrr/N23S1vW7eSdB6iN03vtlaHK3ToV72soa8JzVVLC1v6fUSy5Y15LDDRF6yb0N+9rOq7NgusmpVvXnidr+HxPXKoux/jkiUPaHy9Q+RKF8mZe8RIlH2hFr9QyRsOSESNn6IRJ/8dN3CrZ+vyvbmnv+tj64x0J2RdL3C7XfU5PGZhcz6Z3pI2/HH1uXKj43Jnn53Hk2/QWg/gLlju9W8SUEvWSoyXW+fwtT2dmFGMJL+659NTjZk27ZUtZnf/me+OjvmrEjogur/dnunSKTfgOjbhTPP6P8k6ORi3d4CXXlFv0D7DDfAryESAYY24i4jEiMOIMDLIxJhhIZI2HJCJGz8EIkC/FQYtm5tnQKtD+DJb79116Nv3NM58UbXT3zq/601H+7TD+/pw9y6HsaWepLPTkvKHsTWrN0QWbpPQw7YX5risvOFimx/dmYB88zFmwe2pbZRTfThLf+hLrWxhtx9T02mM8/o2W1ZX722Lu98x94Bbfrninzxtlr7hXS3pDUNOfJ/bzQPflNWemhd0U/e6c964vRZBRa4F71mKN9HJEJJqjz9RCTKk0UoPUEkwkgKkbDlhEjY+CESRn7a/It36GnJnSKh6ydu21CTnTv3XiT9YK7P9MmBbCoUi8ca8rKXivz2txV57vnuh7U1vaG5b+pMXd1hdebMhvRwXnF4o1lHd2ZKvpv3JkPfnujbles+MdY21Un7N7FMt4JtVdW1ILo+Iv3RLWX1pOtEZhL/0XMbrOdYaC2Vic2bW72emBA58c3TA0mJQ8ylKoFIlCqOIDqDSAQRU6k6iUiUKo6unUEkbDkhEjZ+iISRnzbvtn5CReJb3602d17qOME5Z93D6/Th+02tqVL3P7j3Afp3D2zIln+typO/aXte75julDzEJ0NSOVizujF7HkS3Bde67ezyCenYHlbrJFO0umHSKV83fKpzatPJ75iWo9Z2X4TugD3qEohE1PEPNHhEYiBsUTdCJMKIH5Gw5YRI2PghEj346aFxDzxYaa5/0HMjjjl67xasSVP9rXz28LYVK0Teu36P6ILi//6l1u5EbQ/yOauZe03bSRZz//33K/IvP8vZwyhTUw+GO+Wkafn0TWOybdvMLrGZ7+j6hXPXT8sjmyq507N6iYSOS6d23XtfdXZL2OS6xluT5nMQQCS4PYoSQCSKEuP7iEQY9wAiYcsJkbDxQyTm4JcnCPr1vLMj9LubHq00pxGtWtVoThVK1gXc/0BVNv5It2ytSL3HYdj9LCT+3OdrsiW1sDsZQvaNQ3LAnb7heGijTr+qyPLl0txF6oUXRA6ebImRHn6Xd+Ce1i3yZkGvM8haCOMtHGVzRCLK2E2DRiRM+KJsjEiEETsiYcsJkbDxQyTm4Je32Lfow3W6vC5M/m+31VrbtOa8kUjeYvSKdMOXavKTn3audhgbay201k/edqu96mYXjSe7UvVqx58PnwAiMXzmoV8RkQg9weH3H5EYPvNBrohIDEJtbxtEwsYPkRiiSCSLspOVA1kVSN4g9IpUf/N/9bVjexdqi8jiRSIXX7hHpqYqzTcMlo+ue7DWsFyftr0JIBK9GfGNdgKIBHdEUQKIRFFio/k+ImHjjkjY+CESc/ArMrWpnxg6zkWYObPhdcc05HWvHpNlB+7qp0zzOyoT93y7KtMvVmTpSxpy3Ov3TqXquwhfDJYAIhFsdCPrOCIxMvTBXhiRCCM6RMKWEyJh44dI9OCn05seeKC1kFgXJuv2o4PuRtRtm9iP/udpOXDZEtn2zMw+qwUy1bUNsZzmXADLgv8qIrHgI3YfICLhjnTBF0QkwogYkbDlhEjY+CESRn5Fmue94dB1CH98YqOwSGS3nGU9Q5Ekwv8uIhF+hsMeASIxbOLhXw+RCCNDRMKWEyJh44dIGPn101wF4qGHq7Jju8iKSZGX7NNonnZ9xOp6821CrVopJBIPbazIl7/SeXbDuefs4e1EP4EsgO8gEgsgxCEPAZEYMvAFcDlEIowQEQlbToiEjR8iYeTXq3neW4iJiYZcdP7eE6KLikS33aT6Xazdq8/8efkJIBLlz6hsPUQkypZI+fuDSJQ/I+0hImHLCZGw8UMkjPx6Ne/20K+nXh+2qrW7kpdIrDu1Lkes6XFQRa8O8+dBEEAkgoipVJ1EJEoVRxCdQSSCiAmRMMaESBgBPvHUTmOF0TfXHYz0ZOWtW1sbquqBcMekDoQbZQ/vvKsmGx/uPPPBIhK6PesNn2qf2qQLwS+8YA8Hwo0y7CFeG5EYIuwFcilEYoEEOcRhIBJDhG24FG8kDPBEBJGw8VsQbyTydkM67ti6HH/s6H87nz3kLYkrvZ6h6BsJraFTpu5/sNI8N2J8vCFvPLa13oJPHAQQiThy9hwlIuFJM45aiEQYOSMStpwQCRu/BSESV1w51kFhclLkvHNmjnk2MrI017clt91Rk81b9r6VyErOICJh6RNtwyeASISf4bBHgEgMm3j410MkwsgQkbDlhEjY+AUpEnp2gk5leuTRqqgwbN3aCWFiWUMuumDvgmYjJnNz7bO+PZicbHRMPxqmSDyyqSoPPFiRx7doX0Te+AbWVZjDHUEBRGIE0AO/JCIReIAj6D4iMQLoA1wSkRgAWqoJImHjF6RIfOzjY80D4mY/umY5swxhzeq6nH7a6Kc29RPPsEQib22F9o9tY/tJqVzfQSTKlUcIvUEkQkipXH1EJMqVR7feIBK2nBAJG7/gRCJvO1X1iCWLRHa/2IKxYoXI6adNy/KJ1q5IZf8MSyS6rdcoy3qSsudUpv4hEmVKI4y+IBJh5FSmXiISZUqje18QCVtOiISN34IQCUWgbyBOPqke5K5FiITxJo6wOSIRYejGISMSRoARNkckwggdkbDlhEjY+AUnErp4+YZPZqY2icir19ZlyRKR8XGRyRUS1HkKwxIJpjYZ/2UpUXNEokRhBNIVRCKQoErUTUSiRGHM0RVEwpYTImHjVxqR0Idc/fQzHUkXDN/9zYps31ERPT/hwAMb8stftS+SCOmU52GJhPJ9aGNFvntfdZadTmt63TFhrCUx3uoLqjkisaDiHMpgEImhYF5QF0EkwogTkbDlhEjY+I1cJHQ3o9s21GT7jEhMTDRk3anThc5EyNv+ddXKhpx1Rnl2bZorpmGKhPF2oXlJCCASJQkioG4gEgGFVZKuIhIlCaJHNxAJW06IhI3fyEUi7zA5lYmLzu8uAemTrJdNSO7J0fqm4rIPjP4ciX7iQST6ocR30gQQCe6HogQQiaLE+D4iEcY9gEjYckIkbPxGLhIdW7nOjOfKK7pLwKdvGpNt21IDz9n+lTcSxhuD5qUmgEiUOp5Sdg6RKGUspe4UIlHqeGY7h0jYckIkbPxGLhIdUtBDJHQq1I2fzZxk3RCp1USmZ6b669uIdadNy2Gr2P7VeHvQvKQEEImSBlPibiESJQ6npF1DJEoaTKZbiIQtJ0TCxm/kIvGd+6rNU6rTn7VHNuSUk/KnNuWdI6FtX/rShrzphJZJ5J0ebcQ0r82Z2jSveBdkcURiQcY6r4NCJOYV74IsjkiEESsiYcsJkbDxG7lIaPdVJjZvbu26tGpVQ/7w6O7nQej6iKuuybyREJGQdmnKRoZIGG/iCJsjEhGGbhwyImEEGGFzRCKM0BEJW06IhI1fKUSi6BB0C9Mvf6U220zXQ+hUpqXjRSuV4/uIRDlyCKkXiERIaZWjr4hEOXIIqReIRBhpIRK2nBAJG78gRUKHrG8mtm6tyMREf2dPGDHNa3NEYl7xLsjiiMSCjHVeB4VIzCveBVkckQgjVkTClhMiYeMXrEgYh12q5ohEqeIIojOIRBAxlaqTiESp4giiM4hEEDEJImHLCZGw8UMkjPw8miMSHhTjqoFIxJW3x2gRCQ+KcdVAJMLIG5Gw5YRI2PghEkZ+Hs0RCQ+KcdVAJOLK22O0iIQHxbhqIBJh5I1I2HJCJGz8EAkjP4/miIQHxbhqIBJx5e0xWkTCg2JcNRCJMPJGJGw5IRI2foiEkZ9Hc0TCg2JcNRCJuPL2GC0i4UExrhqIRBh5IxK2nBAJGz9EwsjPozki4UExrhqIRFx5e4wWkfCgGFcNRCKMvBEJW06IhI0fImHk59EckfCgGFcNRCKuvD1Gi0h4UIyrBiIRRt6IhC0nRMLGD5Ew8vNojkh4UIyrBiIRV94eo0UkPCjGVQORCCNvRMKWEyJh44dIGPl5NEckPCjGVQORiCtvj9EiEh4U46qBSISRNyJhywmRsPFDJIz8PJojEh4U46qBSMSVt8doEQkPinHVQCTCyBuRsOWESNj4IRJGfh7NEQkPinHVQCTiyttjtIiEB8W4aiASYeSNSNhyQiRs/BAJIz+P5oiEB8W4aiASceXtMVpEwoNiXDUQiTDyRiRsOSESNn6IhJGfR3NEwoNiXDUQibjy9hgtIuFBMa4aiEQYeSMStpwQCRs/WkMAAhCAAAQgAAEIQCBKAohElLEzaAhAAAIQgAAEIAABCNgIIBI2frSGAAQgAAEIQAACEIBAlAQQiShjZ9AQgAAEIAABCEAAAhCwEUAkbPxoPSQCd379e7L5F1vlovWntl3xBxs3ybvfd3XzZ6864nC58eoLZfmy/Wa/o+0+dM0tzX9+2wnHyIfff5YsHV88pF5zmWET2Dm1W/7i2lvka99+YPbSf/mJD8pr167p657Itv/IJWfJKW99w7CHwfWGSOCZHc/KuR+8QX78yM9z/zvS657Its/eb0McCpcaAYHk76B07r3uiV5/b41gGFwSAgMTQCQGRkfDYRBI/wf3Peve2iYSj215Qi6/6mb56KVny8tXHiIqDQ/88J9mZUHbXnfThlm5uP6mDc0uZ2VkGOPgGsMhoH+B33r73XLuGe9sCqPeA5dedbPcdM3FzXuk1z2RvkeSh4GL15/aJiLDGQlXGRYBvSd+8cSTs8KY/e/IXPdEIhnHvOaVzfbZ/yYNawxcZzQE0n8/JSLR657o9ffWaEbCVSEwOAFEYnB2tBwigbw3EtmfZf8DrQ8Aqw6dnH1AyD5EDrH7XGpEBLIyMNc9oV289GM3y/vP+9OmdOgH+RxRcCO8bPq/E73uCf1vzrWfuV2uuuzs5pvQ7EPkCIfBpeeZQJL9Je9dJ5dddbMkv3DodU/0+ntrnrtNeQi4E0Ak3JFScD4I5IlE9iEv/dD479Yc3pzikvymUPvEbwvnI5ly10xnfsiKA+e8J3Qk6Tdc+s/Z306Xe7T0zoOA/ndl65NPN99sPrHtt3PeEz/Z9PO2t57Ip0cC5a+R/u/K/hP7NafGJSKR9wur9N9Vc/29lZ6CWX4K9BACLQKIBHdCEAS6iUT6jUOeSPzJ24+bnZaCSAQRtVsns78dTv652z2hF07/dhmRcIsiiELJeqr0Wqvsb5ez94SKxF9/9d62tVe8xQoi7oE7qX/PpN9cZt96qkjMdU9k34oyhXLgKGhYEgKIREmCoBtzE+CNBHdIEQKJNEwetP/smpi8aSdpudT6vJEoQnlhfjf9G+Wntz/LG4mFGfPAo9L/Zqy/5Dr59banOmroOgn9pNfm6T/zRmJg3DQMgAAiEUBIdLE1xSS7a1OvuaaskYjzzsmTiIQEayTivCeKjDr9G2edtjLXuple8+GLXJfvhkkg+0ah1z3R6++tMCnQ65gJIBIxpx/Q2PNEotfuF7126Alo+HS1TwK9Frv2uifYtalP0Avoa/rflkMPOWh2CqT+84av3pu721v2obHXDj0LCBND6UKg6D3R6+8tQEMgNAKIRGiJRdbf9PZ6ydDT+3X32o+bcyTiumG6TTtIbx081z3R68yAuGjGMdrsPZM9j6bXPdHrzIA4KMY7yrw1Dr3uiV5/b8VLk5GHSACRCDE1+gwBCEAAAhCAAAQgAIERE0AkRhwAl4cABCAAAQhAAAIQgECIBBCJEFOjzxCAAAQgAAEIQAACEBgxAURixAFweQhAAAIQgAAEIAABCIRIAJEIMTX6DAEIQAACEIAABCAAgRETQCRGHACXhwAEIAABCEAAAhCAQIgEEIkQU6PPEIAABCAAAQhAAAIQGDEBRGLEAXB5CEAAAhCAAAQgAAEIhEgAkQgxNfoMAQhAAAIQgAAEIACBERNAJEYcAJeHAAQgAAEIQAACEIBAiAQQiRBTo88QgAAEIAABCEAAAhAYMQFEYsQBcHkIQAACEIAABCAAAQiESACRCDE1+gwBCEAAAhCAAAQgAIERE0AkRhwAl4cABCAAAQhAAAIQgECIBBCJEFOjzxCAAAQgAAEIQAACEBgxAURixAFweQhAAAIQgAAEIAABCIRIAJEIMTX6DAEIQAACEIAABCAAgRETQCRGHACXhwAEIDAqAnd+/XvywA//ST78/rNk6fjiUXWD60IAAhCAQKAEEIlAg6PbEIAABK6/aYN87ravt4F4z7q3ykXrT+0LjpdI/GDjJrn0qpvlpmsulpevPKSva/MlCEAAAhAInwAiEX6GjAACEIiMwDM7npVzP3iD/N4hB7W9Tdg5tVv+4tpb5E/efpy8du2anlS8RKLnhfgCBCAAAQgsSAKIxIKMlUFBAAILmYC+idj65NM9pyRl31i86ojD5carL5Tly/Zr4skTiXSbg1cc0PaWQd88XHfTBrl4/anNNxC/3vaUfOSSs+TQQw5q/jxd+7EtT8j6S65rfkc/2TclWuvd77t6NqZs3xZyfowNAhCAwEIhgEgslCQZBwQgEAWB5G3EqW8/Tk556xvmHPNn/+qrcsLrXzM73SgrIFmRyP55dspS8vD/thOOaZOYRDASkVCJuPyqm+Wjl57dvHbypmTyoP2b066yf55IjQpJP29SogiaQUIAAhAIgAAiEUBIdBECEIBAQiD5Tf9Vl55d+KFb2177mdvlqsvObr6VSIvE1K5dzelS+rYheZhPBOCY17yyKS1ZYUj6lP25CsmqQyfbRCf9nZ89/quONxgkDAEIQAAC4RFAJMLLjB5DAAIREygiEokIfO3bD8wSS09XSovEE9t+2yYZSQP9zuZfbG2+SehHJMaXLGmu00hfM6mVTF/Sf1Zp+fEjP2/+0V9+4oOFpSjiW4ChQwACECgNAUSiNFHQEQhAAAK9CfQ7tSkRjrcef/TsLk7ZKUXzKRLJW4y5RpSMBaHonTvfgAAEIFBGAohEGVOhTxCAAATmIDDXYmt9a5B8/vqr97atZZhLJLynNmkf+t2GNjuFivAhAAEIQCAMAohEGDnRSwhAAAKzBLpt/6pvGD50zS3NqUL6SZ/tkDys/+NP/mV2J6ZBFltnd2fS62SnPCWLsnVHp2RBuPb51tvvlnPPeKfc/Z3WVKv0n2XXZxA3BCAAAQiUnwAiUf6M6CEEIACBXALZ7V2z27UmYqGN9c/ef+5pzYf5ZDelQbd/TW/zmicS+rPs9q/6s0Qs5vozooYABCAAgXAIIBLhZEVPIQABCEAAAhCAAAQgUBoCiERpoqAjEIAABCAAAQhAAAIQCIcAIhFOVvQUAhCAAAQgAAEIQAACpSGASJQmCjoCAQhAAAIQgAAEIACBcAggEuFkRU8hAAEIQAACEIAABCBQGgKIRGmioCMQgAAEIAABCEAAAhAIhwAiEU5W9BQCEIAABCAAAQhAAAKlIYBIlCYKOgIBCEAAAhCAAAQgAIFwCCAS4WRFTyEAAQhAAAIQgAAEIFAaAohEaaKgIxCAAAQgAAEIQAACEAiHACIRTlb0FAIQgAAEIAABCEAAAqUhgEiUJgo6AgEIQAACEIAABCAAgXAIIBLhZEVPIQABCEAAAhCAAAQgUBoCiERpoqAjEIAABCAAAQhAAAIQCIcAIhFOVvQUAhCAAAQgAAEIQAACpSGASJQmCjoCAQhAAAIQgAAEIACBcAggEuFkRU8hAAEIQAACEIAABCBQGgKIRGmioCMQgAAEIAABCEAAAhAIhwAiEU5W9BQCEIAABCAAAQhAAAKlIYBIlCYKOgIBCEAAAhCAAAQgAIFwCCAS4WRFTyEAAQhAAAIQgAAEIFAaAohEaaKgIxCAAAQgAAEIQAACEAiHACIRTlb0FAIQgAAEIAABCEAAAqUhgEiUJgo6AgEIQAACEIAABCAAgXAIIBLhZEVPIQABCEAAAhCAAAQgUBoCiERpoqAjEIAABCAAAQhAAAIQCIcAIhFOVvQUAhCAAAQgAAEIQAACpSGASJQmCjoCAQhAAAIQgAAEIACBcAggEuFkRU8hAAEIQAACEIAABCBQGgKIRGmioCMQgAAEIAABCEAAAhAIhwAiEU5W9BQCEIAABCAAAQhAAAKlIYBIlCYKOgIBCEAAAhCAAAQgAIFwCCAS4WRFTyEAAQhAAAIQgAAEIFAaAohEaaKgIxCAAAQgAAEIQAACEAiHACIRTlb0FAIQgAAEIAABCEAAAqUhgEiUJgo6AgEIQAACEIAABCAAgXAIIBLhZEVPIQABCEAAAhCAAAQgUBoCiERpoqAjEIAABCAAAQhAAAIQCIcAIhFOVvQUAhCAAAQgAAEIQAACpSHw/wPGjughX1I4BgAAAABJRU5ErkJggg==", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Start with a simple plotly express plot\n", "fig = px.scatter(df, x=\"Calories\", y=\"ABV\", hover_data=['Brand'],\n", " width=400, height=400)\n", "fig.show()" ] }, { "cell_type": "code", "execution_count": 7, "id": "9ff45310-7ac0-4ab1-ac64-de832b2591d0", "metadata": {}, "outputs": [], "source": [ "# But the residual isn't really what's important. How about a ratio?\n", "df['apc'] = df['ABV']/df['Calories']\n", "df = df.sort_values(['apc'],ascending=False)" ] }, { "cell_type": "code", "execution_count": 8, "id": "5062912c-833e-452c-aa18-700f5a646452", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
BrandCaloriesABVapc
136Michelob Ultra Pure Gold854.30.050588
153Natural Ice1305.90.045385
149Molson Canadian 67673.00.044776
33Bud Ice1235.50.044715
193Rolling Rock Green Light833.70.044578
52Corona Premier904.00.044444
154Natural Light954.20.044211
133Michelob Ultra954.20.044211
37Bud Light Platinum1376.00.043796
142Miller Lite964.20.043750
\n", "
" ], "text/plain": [ " Brand Calories ABV apc\n", "136 Michelob Ultra Pure Gold 85 4.3 0.050588\n", "153 Natural Ice 130 5.9 0.045385\n", "149 Molson Canadian 67 67 3.0 0.044776\n", "33 Bud Ice 123 5.5 0.044715\n", "193 Rolling Rock Green Light 83 3.7 0.044578\n", "52 Corona Premier 90 4.0 0.044444\n", "154 Natural Light 95 4.2 0.044211\n", "133 Michelob Ultra 95 4.2 0.044211\n", "37 Bud Light Platinum 137 6.0 0.043796\n", "142 Miller Lite 96 4.2 0.043750" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# So which beers give you the most alcohol per calorie?\n", "df.head(10)" ] }, { "cell_type": "markdown", "id": "0d9cb724-cb5e-4cb6-8b77-96e4dfd710f9", "metadata": {}, "source": [ "So it's mostly \"light\" and \"ice\" beers winning the \"bang for the buck\" test but the highest ABV beer is also in the top 30 (truncated for ease of display). Way to go Dogfish Head." ] }, { "cell_type": "markdown", "id": "580e546c-1f99-429a-bbb5-487724a2dba6", "metadata": {}, "source": [ "Maybe try something a little fancier...\n", "\n", "I like quintiles for graphics because the middle value contains the median and then you get high, low, and extremes.. Quartiles are for boxplots." ] }, { "cell_type": "code", "execution_count": 10, "id": "a026fc99-7a8a-47b4-8643-334d805b6a88", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
BrandCaloriesABVapcQuintile
136Michelob Ultra Pure Gold854.30.0505885
153Natural Ice1305.90.0453855
149Molson Canadian 67673.00.0447765
33Bud Ice1235.50.0447155
193Rolling Rock Green Light833.70.0445785
52Corona Premier904.00.0444445
154Natural Light954.20.0442115
133Michelob Ultra954.20.0442115
37Bud Light Platinum1376.00.0437965
142Miller Lite964.20.0437505
\n", "
" ], "text/plain": [ " Brand Calories ABV apc Quintile\n", "136 Michelob Ultra Pure Gold 85 4.3 0.050588 5\n", "153 Natural Ice 130 5.9 0.045385 5\n", "149 Molson Canadian 67 67 3.0 0.044776 5\n", "33 Bud Ice 123 5.5 0.044715 5\n", "193 Rolling Rock Green Light 83 3.7 0.044578 5\n", "52 Corona Premier 90 4.0 0.044444 5\n", "154 Natural Light 95 4.2 0.044211 5\n", "133 Michelob Ultra 95 4.2 0.044211 5\n", "37 Bud Light Platinum 137 6.0 0.043796 5\n", "142 Miller Lite 96 4.2 0.043750 5" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "pd.qcut(df[\"apc\"], q=5, labels=False)\n", "df['Quintile'] = pd.qcut(df[\"apc\"], q=5, labels=False)\n", "df['Quintile'] = df['Quintile'] + 1 # add one because zero index not helpful here\n", "df.head(10)" ] }, { "cell_type": "markdown", "id": "169ab5a6-02ee-4a70-9505-357851c017ca", "metadata": {}, "source": [ "Plotly's default color ramp from blue to yellow not the best because the largest quintile gets assigned yellow which is difficult to see. Try discrete color rainbow after taking making quintiles categorical." ] }, { "cell_type": "code", "execution_count": 11, "id": "a342258b-9a0a-4de3-b1e7-1ac1169d5c12", "metadata": {}, "outputs": [ { "data": { "application/vnd.plotly.v1+json": { "config": { "plotlyServerURL": "https://plot.ly" }, "data": [ { "customdata": [ [ "Rock Bottom Illuminator Doppelback" ], [ "Grolsch Blonde Lager" ], [ "Sam Adams Black Lager" ], [ "Sierra Nevada Stout" ], [ "Sam Adams Cream Stout" ], [ "Anchor Porter" ], [ "Budweiser Chelada" ], [ "Sam Adams Scotch Ale" ], [ "Deschutes Black Butte Porter" ], [ "New Belgium 1554" ], [ "Bud Light Chelada Clamato" ], [ "Lagunitas Hop Stoopid" ], [ "Michelob Honey Lager" ], [ "Pilsner Urquell" ], [ "Sam Adams Honey Porter" ], [ "Deschutes Fresh Squeezed IPA" ], [ "Sam Adams Boston Lager" ], [ "Dogfish Head 60 Minute IPA" ], [ "Sam Adams Boston Ale" ], [ "Sierra Nevada Wheat Beer" ], [ "Sierra Nevada Porter" ], [ "Lagunitas Brown Shugga'" ], [ "Sam Adams Winter Lager" ], [ "Leinenkugel Creamy Dark" ], [ "Irish Red Ale" ], [ "Sierra Nevada Bigfoot" ], [ "Sam Adams Imperial Stout" ], [ "Bud American Ale" ], [ "Dogfish Head Midas Touch" ], [ "Yuengling Porter" ], [ "Yuengling Porter" ], [ "Deschutes Mirror Pond Ale" ], [ "Efes Pils" ], [ "Brooklyn Brown Ale" ], [ "Sam Adams Hefeweizen" ], [ "Sam Adams Imperial Double Bock" ], [ "Leinenkugel Sunset Wheat" ], [ "Brooklyn Winter Ale" ], [ "Leinenkugel Red" ], [ "Dogfish Head Shelter Pale Ale" ], [ "Deschutes Inversion IPA" ], [ "Sierra Nevada India Pale Ale" ], [ "Victoria" ], [ "Abita Restoration" ], [ "Michelob Pale Ale" ], [ "Red Bridge" ], [ "Smithwick's" ], [ "Stone Pale Ale" ], [ "Strauss Endless Summer Light" ], [ "Sam Adams Cherry Wheat" ], [ "Sam Adams Octoberfest" ], [ "Firestone DBA" ], [ "Blue Point Toasted Lager" ], [ "Redd's Apple Ale" ] ], "hovertemplate": "Quintile=1
Calories=%{x}
ABV=%{y}
Brand=%{customdata[0]}", "legendgroup": "1", "marker": { "color": "blue", "symbol": "circle" }, "mode": "markers", "name": "1", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 288, 120, 191, 225, 190, 209, 186, 200, 192, 205, 151, 285, 174, 156, 192, 225, 175, 209, 188, 153, 194, 335, 200, 170, 196, 330, 316, 182, 307, 160, 160, 170, 170, 190, 182, 320, 165, 205, 166, 168, 228, 231, 135, 167, 187, 160, 150, 188, 110, 180, 180, 166, 175, 165 ], "xaxis": "x", "y": [ 6.67, 2.8, 4.9, 5.8, 4.9, 5.6, 5, 5.4, 5.2, 5.6, 4.2, 8, 4.9, 4.4, 5.45, 6.4, 5, 6, 5.4, 4.4, 5.6, 9.7, 5.8, 4.94, 5.7, 9.6, 9.2, 5.3, 9, 4.7, 4.7, 5, 5, 5.6, 5.4, 9.5, 4.9, 6.1, 4.94, 5, 6.8, 6.9, 4.04, 5, 5.6, 4.8, 4.5, 5.64, 3.3, 5.4, 5.4, 5, 5.3, 5 ], "yaxis": "y" }, { "customdata": [ [ "Leinenkugel Northwoods Lager" ], [ "Modelo Especial" ], [ "Pacifico" ], [ "Genesee Beer" ], [ "Pete's Wicked Ale" ], [ "Michelob Beer" ], [ "Sam Adams Irish Red" ], [ "Tsingtao" ], [ "Brooklyn Lager" ], [ "Dogfish Head 90 Minute IPA" ], [ "Blue Moon Full Moon Winter Ale" ], [ "Sculpin IPA" ], [ "Leinenkugel Original" ], [ "Widmer Hefeweizen" ], [ "Sam Adams White Ale" ], [ "Corona Extra" ], [ "Stroh's Beer" ], [ "Michelob Golden Draft" ], [ "Shock Top" ], [ "New Belgium Mothership Wit" ], [ "Sierra Nevada Anniversary Ale" ], [ "Sierra Nevada Early Spring Beer" ], [ "Weinhard's Amber Light" ], [ "Carling Black Label" ], [ "Sierra Nevada Harvest Ale" ], [ "Corona Familiar" ], [ "Redhook Slim Chance" ], [ "Sam Adams Blackberry Witbier" ], [ "Lowenbrau Dark" ], [ "Brooklyn Black Chocolate Stout" ], [ "Brooklyn Pennant Pale Ale" ], [ "Tuborg Deluxe Dark Export" ], [ "Weinhard's Pale Ale" ], [ "Newcastle Brown Ale" ], [ "Signature Stroh Beer" ], [ "Blatz Beer" ], [ "Sam Adams Imperial White" ], [ "Rogue Dead Guy Ale" ], [ "Genesee Cream Ale" ], [ "Michelob Porter" ], [ "Sierra Nevada Summerfest" ], [ "Weinhard's Blonde Lager" ], [ "Old Milwaukee Beer" ], [ "Sam Adams Coastal Wheat" ], [ "Boddington's Ale" ], [ "Negra Modelo" ], [ "Sierra Nevada Celebration Ale" ], [ "Sierra Nevada Draft Ale" ], [ "Augustiner Amber Lager" ], [ "Michael Shea's" ], [ "Yuengling Premium Beer" ], [ "Harbin" ], [ "Lagunitas IPA" ], [ "Weinhard's Private Reserve" ], [ "Blue Moon Harvest Moon Pumpkin Ale" ], [ "Sierra Nevada Pale Ale" ], [ "St. Pauli Girl Special Dark" ] ], "hovertemplate": "Quintile=2
Calories=%{x}
ABV=%{y}
Brand=%{customdata[0]}", "legendgroup": "2", "marker": { "color": "green", "symbol": "circle" }, "mode": "markers", "name": "2", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 163, 145, 145, 148, 174, 164, 180, 157, 170, 294, 180, 228, 152, 159, 175, 149, 149, 152, 168, 155, 190, 190, 135, 138, 215, 154, 125, 176, 160, 320, 160, 163, 147, 150, 153, 153, 328, 216, 162, 187, 158, 161, 145, 167, 148, 170, 214, 157, 135, 145, 141, 144, 194, 150, 180, 175, 150 ], "xaxis": "x", "y": [ 4.94, 4.4, 4.4, 4.5, 5.3, 5, 5.5, 4.8, 5.2, 9, 5.52, 7, 4.67, 4.9, 5.4, 4.6, 4.6, 4.7, 5.2, 4.8, 5.9, 5.9, 4.2, 4.3, 6.7, 4.8, 3.9, 5.5, 5, 10, 5, 5.1, 4.6, 4.7, 4.8, 4.8, 10.3, 6.8, 5.1, 5.9, 5, 5.1, 4.6, 5.3, 4.7, 5.4, 6.8, 5, 4.3, 4.62, 4.5, 4.6, 6.2, 4.8, 5.76, 5.6, 4.8 ], "yaxis": "y" }, { "customdata": [ [ "Red Stripe" ], [ "Anchor Steam" ], [ "Hoegaarden Belgian White" ], [ "Bass Ale" ], [ "Tuborg Export Quality" ], [ "Sierra Nevada Pale Bock" ], [ "Yuengling Lager" ], [ "Iron City" ], [ "George Killian's Irish Red" ], [ "Yuengling Oktoberfest" ], [ "Schlitz Beer" ], [ "Olympia Premium Lager" ], [ "Redhook ESB" ], [ "Dogfish Head Red & White" ], [ "Schaefer Beer" ], [ "Rolling Rock Extra Pale" ], [ "Weinhard's Hefeweizen" ], [ "Flying Dog Horn Dog" ], [ "Lowenbrau Special Beer" ], [ "New Belgium Fat Tire" ], [ "Lagunitas Little Sumpin' Sumpin' Ale" ], [ "Blue Moon Honey Moon Summer Ale" ], [ "Miller High Life" ], [ "Guinness Extra Stout" ], [ "Blue Moon Belgian White" ], [ "Coors Extra Gold" ], [ "Sol Cerveza" ], [ "Abita Purple Haze" ], [ "Omission Lager" ], [ "Miller Genuine Draft (MGD)" ], [ "Brooklyn Pilsner" ], [ "Pabst Blue Ribbon" ], [ "Michelob Dunkelweisse" ], [ "New Belgium 2 Below" ], [ "Leinenkugel Honey Weiss" ], [ "Hamm's Beer" ], [ "New Belgium Sunshine Wheat" ], [ "Genesee Red" ], [ "St. Pauli Girl" ], [ "Brooklyn Monster" ], [ "Sam Adams Summer Ale" ], [ "Beach Bum Blonde Ale" ], [ "Omission Pale Ale" ], [ "Wyder's Apple Cider" ], [ "Magic Hat #9" ], [ "Heineken" ], [ "Abita Turbodog" ], [ "Brooklyn Summer Ale" ], [ "Puppers Premium Lager" ], [ "Ommegang Three Philosophers" ], [ "Blue Moon Rising Moon Spring Ale" ] ], "hovertemplate": "Quintile=3
Calories=%{x}
ABV=%{y}
Brand=%{customdata[0]}", "legendgroup": "3", "marker": { "color": "yellow", "symbol": "circle" }, "mode": "markers", "name": "3", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 153, 153, 153, 156, 156, 218, 140, 140, 168, 168, 146, 146, 179, 310, 142, 142, 151, 314, 160, 160, 230, 157, 141, 153, 164, 152, 128, 128, 140, 140, 155, 144, 167, 200, 149, 142, 145, 148, 148, 305, 160, 163, 175, 150, 153, 150, 168, 150, 120, 290, 161 ], "xaxis": "x", "y": [ 4.9, 4.9, 4.9, 5, 5, 7, 4.5, 4.5, 5.4, 5.4, 4.7, 4.7, 5.77, 10, 4.6, 4.6, 4.9, 10.2, 5.2, 5.2, 7.5, 5.12, 4.6, 5, 5.36, 4.97, 4.2, 4.2, 4.6, 4.6, 5.1, 4.74, 5.5, 6.6, 4.92, 4.7, 4.8, 4.9, 4.9, 10.1, 5.3, 5.4, 5.8, 5, 5.1, 5, 5.6, 5, 4, 9.7, 5.4 ], "yaxis": "y" }, { "customdata": [ [ "Michelob AmberBock" ], [ "Harp Lager" ], [ "Abita Golden" ], [ "Sam Adams Brown Ale" ], [ "Kirin Light" ], [ "Grolsch Amber Ale" ], [ "Sam Adams Pale Ale" ], [ "Stella Artois" ], [ "Milwaukee's Best (Premium)" ], [ "Sam Adams IPA" ], [ "Russian River Pliny the Elder" ], [ "Abita Light" ], [ "Flying Dog Gonzo" ], [ "Coors Banquet" ], [ "Kirin" ], [ "Red Dog" ], [ "Presidente" ], [ "Cusquena" ], [ "Flying Dog In Heat Wheat" ], [ "Rolling Rock Premium Beer" ], [ "Milwaukee's Best Ice (Beast Ice)" ], [ "Guinness Draught" ], [ "Foster's Premium Ale" ], [ "Yuengling Lord Chesterfield Ale" ], [ "Abita Jockamo IPA" ], [ "Peroni Nastro Azzurro" ], [ "Foster's" ], [ "Lech" ], [ "New Belgium Blue Paddle" ], [ "Omission IPA" ], [ "Budweiser" ], [ "Smuttynose Fineskind IPA" ], [ "Brooklyn East India Pale Ale" ], [ "Molson Canadian Light" ], [ "Hamm's Special Light" ], [ "Redhook IPA" ], [ "Old Milwaukee Light" ], [ "Cristal (Peru)" ], [ "Michelob Light" ], [ "Beck's" ], [ "Molson Ice" ], [ "New Belgium Abbey" ], [ "Abita Amber" ], [ "Grolsch Premium Lager" ], [ "Tyskie" ], [ "Flying Dog Kerberos Tripel" ], [ "Flying Dog Old Scratch Amber Lager" ], [ "Beck's Light" ], [ "Sam Adams Light" ], [ "Bud Light Lime" ], [ "New Belgium Trippel" ], [ "Winter's Bourbon Cask Ale" ], [ "Flying Dog Doggie Style Pale Ale" ], [ "Flying Dog Double Dog" ] ], "hovertemplate": "Quintile=4
Calories=%{x}
ABV=%{y}
Brand=%{customdata[0]}", "legendgroup": "4", "marker": { "color": "orange", "symbol": "circle" }, "mode": "markers", "name": "4", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 155, 155, 125, 159, 95, 160, 160, 154, 142, 175, 236, 118, 271, 147, 147, 147, 147, 141, 138, 132, 173, 125, 161, 158, 190, 149, 146, 143, 140, 195, 145, 200, 200, 113, 110, 188, 110, 132, 123, 143, 160, 200, 128, 142, 149, 238, 154, 64, 119, 116, 215, 165, 150, 313 ], "xaxis": "x", "y": [ 5.2, 5.2, 4.2, 5.35, 3.2, 5.4, 5.4, 5.2, 4.8, 5.93, 8, 4, 9.2, 5, 5, 5, 5, 4.8, 4.7, 4.5, 5.9, 4.27, 5.5, 5.4, 6.5, 5.1, 5, 4.9, 4.8, 6.7, 5, 6.9, 6.9, 3.9, 3.8, 6.5, 3.82, 4.6, 4.3, 5, 5.6, 7, 4.5, 5, 5.3, 8.5, 5.5, 2.3, 4.3, 4.2, 7.8, 6, 5.5, 11.5 ], "yaxis": "y" }, { "customdata": [ [ "Molson Canadian" ], [ "Wyder's Pear Cider" ], [ "Flying Dog Road Dog" ], [ "Mickey's Ice" ], [ "Miller Fortune" ], [ "Grolsch Light Lager" ], [ "Michelob Golden Draft Light" ], [ "Pabst Extra Light Low Alcohol" ], [ "Flying Dog Raging Bitch" ], [ "Leinenkugel Amber Light" ], [ "Busch" ], [ "Flying Dog Snake Dog IPA" ], [ "Genesee Ice" ], [ "Schlitz Light" ], [ "Bud Light" ], [ "New Belgium Skinny Dip" ], [ "Miller High Life Light" ], [ "Yuengling Light Lager" ], [ "Stroh's Light" ], [ "Flying Dog Tire Bite Golden Ale" ], [ "Keystone Light" ], [ "Leinenkugel Light" ], [ "Keystone Premium" ], [ "New Planet Tread Lightly Ale" ], [ "Dogfish Head 120 Minute IPA" ], [ "Shipyard Light" ], [ "Southpaw Light" ], [ "Coors Light" ], [ "Hiland Light" ], [ "Amstel Light" ], [ "Corona Light" ], [ "Keystone Ice" ], [ "Michelob Ultra Lime Cactus" ], [ "Michelob Ultra Amber" ], [ "Heineken Light" ], [ "Omission Ultimate Light" ], [ "Milwaukee's Best Light" ], [ "Busch Light" ], [ "Busch Ice" ], [ "Budweiser Select" ], [ "Budweiser Select 55" ], [ "Iron City Light" ], [ "Natty Daddy" ], [ "Miller64" ], [ "Miller Lite" ], [ "Bud Light Platinum" ], [ "Michelob Ultra" ], [ "Natural Light" ], [ "Corona Premier" ], [ "Rolling Rock Green Light" ], [ "Bud Ice" ], [ "Molson Canadian 67" ], [ "Natural Ice" ], [ "Michelob Ultra Pure Gold" ] ], "hovertemplate": "Quintile=5
Calories=%{x}
ABV=%{y}
Brand=%{customdata[0]}", "legendgroup": "5", "marker": { "color": "red", "symbol": "circle" }, "mode": "markers", "name": "5", "orientation": "v", "showlegend": true, "type": "scatter", "x": [ 136, 136, 163, 157, 186, 97, 110, 67, 221, 110, 114, 188, 156, 110, 110, 110, 107, 99, 113, 129, 104, 105, 111, 125, 450, 97, 123, 102, 97, 99, 99, 142, 95, 95, 99, 99, 96, 95, 136, 99, 55, 95, 183, 64, 96, 137, 95, 95, 90, 83, 123, 67, 130, 85 ], "xaxis": "x", "y": [ 5, 5, 6, 5.8, 6.9, 3.6, 4.1, 2.5, 8.3, 4.14, 4.3, 7.1, 5.9, 4.2, 4.2, 4.2, 4.1, 3.8, 4.4, 5.1, 4.13, 4.19, 4.43, 5, 18, 3.9, 5, 4.2, 4, 4.1, 4.1, 5.9, 4, 4, 4.2, 4.2, 4.1, 4.1, 5.9, 4.3, 2.4, 4.15, 8, 2.8, 4.2, 6, 4.2, 4.2, 4, 3.7, 5.5, 3, 5.9, 4.3 ], "yaxis": "y" } ], "layout": { "height": 700, "legend": { "title": { "text": "Quintile" }, "tracegroupgap": 0 }, "margin": { "t": 60 }, "template": { "data": { "bar": [ { "error_x": { "color": "#2a3f5f" }, "error_y": { "color": "#2a3f5f" }, "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "bar" } ], "barpolar": [ { "marker": { "line": { "color": "#E5ECF6", "width": 0.5 }, "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "barpolar" } ], "carpet": [ { "aaxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "baxis": { "endlinecolor": "#2a3f5f", "gridcolor": "white", "linecolor": "white", "minorgridcolor": "white", "startlinecolor": "#2a3f5f" }, "type": "carpet" } ], "choropleth": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "choropleth" } ], "contour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "contour" } ], "contourcarpet": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "contourcarpet" } ], "heatmap": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmap" } ], "heatmapgl": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "heatmapgl" } ], "histogram": [ { "marker": { "pattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 } }, "type": "histogram" } ], "histogram2d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2d" } ], "histogram2dcontour": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "histogram2dcontour" } ], "mesh3d": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "type": "mesh3d" } ], "parcoords": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "parcoords" } ], "pie": [ { "automargin": true, "type": "pie" } ], "scatter": [ { "fillpattern": { "fillmode": "overlay", "size": 10, "solidity": 0.2 }, "type": "scatter" } ], "scatter3d": [ { "line": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatter3d" } ], "scattercarpet": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattercarpet" } ], "scattergeo": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergeo" } ], "scattergl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattergl" } ], "scattermapbox": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scattermapbox" } ], "scatterpolar": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolar" } ], "scatterpolargl": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterpolargl" } ], "scatterternary": [ { "marker": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "type": "scatterternary" } ], "surface": [ { "colorbar": { "outlinewidth": 0, "ticks": "" }, "colorscale": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "type": "surface" } ], "table": [ { "cells": { "fill": { "color": "#EBF0F8" }, "line": { "color": "white" } }, "header": { "fill": { "color": "#C8D4E3" }, "line": { "color": "white" } }, "type": "table" } ] }, "layout": { "annotationdefaults": { "arrowcolor": "#2a3f5f", "arrowhead": 0, "arrowwidth": 1 }, "autotypenumbers": "strict", "coloraxis": { "colorbar": { "outlinewidth": 0, "ticks": "" } }, "colorscale": { "diverging": [ [ 0, "#8e0152" ], [ 0.1, "#c51b7d" ], [ 0.2, "#de77ae" ], [ 0.3, "#f1b6da" ], [ 0.4, "#fde0ef" ], [ 0.5, "#f7f7f7" ], [ 0.6, "#e6f5d0" ], [ 0.7, "#b8e186" ], [ 0.8, "#7fbc41" ], [ 0.9, "#4d9221" ], [ 1, "#276419" ] ], "sequential": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ], "sequentialminus": [ [ 0, "#0d0887" ], [ 0.1111111111111111, "#46039f" ], [ 0.2222222222222222, "#7201a8" ], [ 0.3333333333333333, "#9c179e" ], [ 0.4444444444444444, "#bd3786" ], [ 0.5555555555555556, "#d8576b" ], [ 0.6666666666666666, "#ed7953" ], [ 0.7777777777777778, "#fb9f3a" ], [ 0.8888888888888888, "#fdca26" ], [ 1, "#f0f921" ] ] }, "colorway": [ "#636efa", "#EF553B", "#00cc96", "#ab63fa", "#FFA15A", "#19d3f3", "#FF6692", "#B6E880", "#FF97FF", "#FECB52" ], "font": { "color": "#2a3f5f" }, "geo": { "bgcolor": "white", "lakecolor": "white", "landcolor": "#E5ECF6", "showlakes": true, "showland": true, "subunitcolor": "white" }, "hoverlabel": { "align": "left" }, "hovermode": "closest", "mapbox": { "style": "light" }, "paper_bgcolor": "white", "plot_bgcolor": "#E5ECF6", "polar": { "angularaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "radialaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "scene": { "xaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "yaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" }, "zaxis": { "backgroundcolor": "#E5ECF6", "gridcolor": "white", "gridwidth": 2, "linecolor": "white", "showbackground": true, "ticks": "", "zerolinecolor": "white" } }, "shapedefaults": { "line": { "color": "#2a3f5f" } }, "ternary": { "aaxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "baxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" }, "bgcolor": "#E5ECF6", "caxis": { "gridcolor": "white", "linecolor": "white", "ticks": "" } }, "title": { "x": 0.05 }, "xaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 }, "yaxis": { "automargin": true, "gridcolor": "white", "linecolor": "white", "ticks": "", "title": { "standoff": 15 }, "zerolinecolor": "white", "zerolinewidth": 2 } } }, "title": { "text": "Alcohol per calorie by ABV and Calorie", "x": 0.5 }, "width": 700, "xaxis": { "anchor": "y", "autorange": true, "domain": [ 0, 1 ], "range": [ 29.60299979022446, 475.39700020977557 ], "title": { "text": "Calories" }, "type": "linear" }, "yaxis": { "anchor": "x", "autorange": true, "domain": [ 0, 1 ], "range": [ 1.296022155085599, 19.003977844914402 ], "title": { "text": "ABV" }, "type": "linear" } } }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxIAAAK8CAYAAAB7pYnhAAAAAXNSR0IArs4c6QAAIABJREFUeF7svQuUnGWZ7/t0d7rTCSYdQrgFkzAwcwYQJIwb5SIRZcZglI3jkYBnvCAMxgt7Hy6bDBg8wDgIJyzAc9TBmAEZ0QUEt2wPGkCH2TGIRDnKTQhz9oYhIEFiCOlEculOd531VlNNVXV1d1W9/+r63np+tRZLSb7n+d7n9/8S6tffrS2Xy+WMDwQgAAEIQAACEIAABCAAgRoItCESNdBiUwhAAAIQgAAEIAABCEAgTwCR4ECAAAQgAAEIQAACEIAABGomgEjUjIwCCEAAAhCAAAQgAAEIQACR4BiAAAQgAAEIQAACEIAABGomgEjUjIwCCEAAAhCAAAQgAAEIQACR4BiAAAQgAAEIQAACEIAABGomgEjUjIwCCEAAAhCAAAQgAAEIQACR4BiAAAQgAAEIQAACEIAABGomgEjUjIwCCEAAAhCAAAQgAAEIQACR4BiAAAQgAAEIQAACEIAABGomgEjUjIwCCEAAAhCAAAQgAAEIQACR4BiAAAQgAAEIQAACEIAABGomgEjUjIwCCEAAAhCAAAQgAAEIQACR4BiAAAQgAAEIQAACEIAABGomgEjUjIwCCEAAAhCAAAQgAAEIQACR4BiAAAQgAAEIQAACEIAABGomgEjUjIwCCGSPwA9Wr7V//Ocf2orlF9uh82bLF3jDilX2q8eesZuuvdD27pkm6d/oNUsW2aAmr/Vut89deqO9c/5hdtGSxQ3ai6ZtSmvVTJydLuHPyKp71kj/3NUyHdnXQottIeCTACLhM3emTojAsxs22pKl19vLr7xqX156jn1k0YIRq2/0l3JEQnvANPILWshq9b/+UiaVjVzrWFSrPe6/tPyWim2K/6wUei1637tGFbdmzTkWg3pE4pHHnrGzL7h2RNtbv3qpHTv/sJoO5EYyUR+nNQ3GxhCAgIwAIiFDSSMINIZAQRJm7T3d5h60v111yTk2pburZGeIRGPYN6prSl/QGrnW8b5Eh7Ns9Rz3hS/TxTIxngwXaur5wt2o46QWkdi5q8+uuO4W+/ED66x8hsJs535sUU1nwBqZPSLRqKOGvhCYWAKIxMTyZm8QqIlA4cvBAfvNtIPnHDDq5UuIRE1Ym75xI7+gqYdrxlpjj/vCmufO3m9YvMcThfFEQ821mn61iMR4X8wDk9UPrLO/+chfVbPr/DbNyL7qxbEhBCCQCQKIRCZiYBEQqEyg+MvPzL2n5y9x+vynTh9xedNoIlH4IvDk+ueGd/DBU44rOasRaosvDyn//VBY+JL1lcvOsy9es9IK/SptG7avpme18lP8Zeakd7295LKNSpd6Ff9ktjB0+XaFS10Cyzmz9xvuWc1PbCtdOlLoX4l3WEN537G+oAXWN9++ejivsWpPP/Xdw5e9FbK46Z//W8X7WcrXfdThh1R17X21/Mf6oj7el/jyo1913Bffg1JJLgr7Lfze4tNOrnjpYPH6qr10qPgYC/XFf8YqnfWodOy8+51HWe/218fNqZpLt4pnqPRnJPx++Z/nlI5T/hsCAQg0hwAi0Rzu7BUCVREo/ilp9+TJ+UsXwqf88qZKX8orXd4Rar/13XvslJPekb8pu/ynsIUvGC9s3FTy5aXw5bb4y+doXzKq7VmrSAR5Kf5SXfxFrXDfSKUvVJXWWXz9fTXyUAir0k99Q/9v33Gvfe5TH7Zdu3fbNf/39+yy//w3wzelV9p/pV8rsC/Ot9KX3+IvnGNJX/GN8ZXWreZfaf3F3H6/aUvFy/Iq/UGIOe4LIlvp4QOjzVwti9A7/Ll68JdPlFwiVEmURrvHo9K+RhOBas+SFMS92suyQlbX3XSH/c1H/nL44QxjHX/FQpbV47Sqv1DZCAIQkBNAJORIaQgBDYFKXzZH+8lu+ZeTai5JGK1XpdrRvtCUX3pRS89qv7yN91PR4qdJhXVW+sJavq9KEjJearX+VL24XzmnSjONxqN8reNlW55Vof6ay84rudl2vD6F9dfCPzC67JqVJTd618q61uN+tJutK51xqbSWsQRovGOi8PvFl2IVnsI12tyVzn6MddxW89Smav8sjTdPeX4pHafjzcbvQwACjSGASDSGK10hEE2g0hfX0b7UjfZFufzL41hfbsu/FBX/ZHwskSj+ye9o13RX+rJW7Zefsb7IFveYOWNa/pGqlS5PKf8yXeuX28JPuav5Uhe2Lb88KfzaeGdzRvsyWT7/eAJQntVY19mPts/i46Ra/uEM12hfPKvlVviJf3jqUPFP16s97ovXXciguE+l47CeY6GaS9jGE4nCT/nH41sNu2r/LJX/pVR+CWL4/QP332dYBEf7oUIlWW/2cRr9Fy4NIACBugggEnVhowgCjSdQ6ctoYa/lP20t/yJRzU/Px7psovz3qhWJWnpW++VnrC9axT9BDWwKj8kdLZ3Cl8p6vjxWc5lJoe+smT0ll4aNd0ZirJ+Kl/9euHxqrHdQVMqu+J6Lcjaj3edS2K5a/oX3lxTPGnqMJnejZRRz3FcjQOXHXS03NBeEMpwFKb4krp4zEgWRGOtYrHZttV7aVMh085bekrNH452RyPJx2vi/kdkDBCBQiQAiwXEBgQwSGOvLRSVJ4IzExTbWGYnyiOsRiWq+1FV7CVhWftJbzaE/3k/My+9FKL50J9zIfv2KVePeLFxYR+xxX0kkip/cFH6/+H6EcF9LuO8oPBWtmhcDjsYiRiQqXepUmKOaY658pmrmGE3ixxOJsK9mnDmr5jhlGwhAoDkEEInmcGevEBiTwFg/ra90A24t90j89t/+3aZ0T7Ytr23LP62o/AbNWu+RKP4i2Yx7JAqXWQSgo92MrhCJsc7y3L/mV3bs/CPs2q99N7+rSjfDF1+iMpHXnldzdmqsg3G8eyQqXeYSvmz+f8/9Lt/2fznkrVV9SQ/bxh73lUSi0tvDC8L36TNPtYuu/McRfwZG4zGa6MSIxFg/5a9WJApf8Md6EWHYz9p1j9nCk9854iELhXmrEYlG3csTe5zynxQIQKA5BBCJ5nBnrxAYlUA1N39Wujyj/CfDlZ7aVP5FofxpPmM9tan4pubin5iW77fanrGXNlW6nKPwRe8vjvyzki/z5U+pqeeMxGhf1op/Qnvvv64b8a6PwjrHu0eiEvtK0ljrPRKFdYfLmyq9qKz8CUTlB2alNRS+9IdLfCo9KajAN2y3YvnFw08GGuuPveq4D/so9PrNb/9Hxf0XP8K12sfgFvctlsXiR6mO91SxUFftzeSFNVa7vlpeSFfpS3vh18a7RyKrxyn/SYEABJpDAJFoDnf2CoFRCYz22NbigvIvwuP9lPDlV14dLi//4ld+w2W1jxQtfJkc7TGb472bolaRKH4XRth38ReeYjajPSO/mi951RyW5bwq3a9SPHt4x0T4jHdGorDv8nsEankHRUEaKklfpfcfjMawmEPhi6/lcrb5tW1WOJbGqq30E/rx2NZ73I/21Kax7v0ovlm6lsf/FstEeIN04Tj86t+fb99ZdX/JJVLV3mxd4FKeT1hXeAllNTdbF7Ot9j0XlfYX3tNS/NSt8c5GVfu+k0qXW412GWC9x+l4xxe/DwEINIYAItEYrnSFAAREBMb7CbxoN7QREuAyFSFMWkEAAhDIMAFEIsPhsDQIQKDypSBwyS6Bai5Ryu7qWRkEIAABCNRCAJGohRbbQgACE06AMxITjjxqh5yNiMJHMQQgAIGkCCASScXFYiEAAQhAAAIQgAAEIJANAohENnJgFRCAAAQgAAEIQAACEEiKACKRVFwsFgIQgAAEIAABCEAAAtkggEhkIwdWAQEIQAACEIAABCAAgaQIIBJJxcViIQABCEAAAhCAAAQgkA0CiEQ2cmAVEIAABCAAAQhAAAIQSIoAIpFUXCwWAhCAAAQgAAEIQAAC2SCASGQjB1YBAQhAAAIQgAAEIACBpAggEknFxWIhAAEIQAACEIAABCCQDQKIRDZyYBUQgAAEIAABCEAAAhBIigAikVRcLBYCEIAABCAAAQhAAALZIIBIZCMHVgEBCEAAAhCAAAQgAIGkCCASScXFYiEAAQhAAAIQgAAEIJANAohENnJgFRCAAAQgAAEIQAACEEiKACKRVFwsFgIQgAAEIAABCEAAAtkggEhkIwdWAQEIQAACEIAABCAAgaQIIBJJxcViIQABCEAAAhCAAAQgkA0CiEQ2cmAVEIAABCAAAQhAAAIQSIoAIpFUXCwWAhCAAAQgAAEIQAAC2SCASGQjB1YBAQhAAAIQgAAEIACBpAggEknFxWIhAAEIQAACEIAABCCQDQKIRDZyYBUQgAAEIAABCEAAAhBIigAikVRcLBYCEIAABCAAAQhAAALZIIBIZCMHVgEBCEAAAhCAAAQgAIGkCCASScXFYiEAAQhAAAIQgAAEIJANAohENnJgFRCAAAQgAAEIQAACEEiKACKRVFwsFgIQgAAEIAABCEAAAtkggEhE5rDx1Z2RHSiPJdCzV6f1D+Rsx649sa2od0Bg+tROG8zl7I87OV4cxB094lumTLI2M9vO8RLN0kODvbon2aSONut9vd/DuMnOOHufKcmuPWsLRyQiE0EkIgEKyhEJAURHLRAJR2ELRkUkBBAdtUAk0ggbkdDlhEhEskQkIgEKyhEJAURHLRAJR2ELRkUkBBAdtUAk0ggbkdDlhEhEskQkIgEKyhEJAURHLRAJR2ELRkUkBBAdtUAk0ggbkdDlhEhEskQkIgEKyhEJAURHLRAJR2ELRkUkBBAdtUAk0ggbkdDlhEhEskQkIgEKyhEJAURHLRAJR2ELRkUkBBAdtUAk0ggbkdDlhEhEskQkIgEKyhEJAURHLRAJR2ELRkUkBBAdtUAk0ggbkdDlhEhEskQkIgEKyhEJAURHLRAJR2ELRkUkBBAdtUAk0gjbg0g88tgzdv2KVXbTtRfa3j3TGhYMIhGJFpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2yFSIQv6mdfcG3JwLd+9VI7dv5hNUH4weq1tuqeNVV/4d+5q8+uuO4WO+4dR9hHFi0Y3ldYz2XXrLQVyy+2Q+fNNkSiphiatzEi0Tz2hT0jEs3PIKUVIBIppdX8tSISzc8gpRUgEmmkFSsSN6xYZav/9ZfDX9rD1M9u2GhLll5vi973LrtoyeKGgRhNJMp3iEg0LAJtY0RCy7OebohEPdT81iASfrOvZ3JEoh5qfmsQiTSyjxGJgjBcc9l5I84+VHNWINQvu2alXX3ZefkzB+GMxLpfP21XXXKOTenuGv73D/3V8fa5S2/MAz1w/32GpSVIzM23rx4GXfi9La9tK7mUqZJIFNb+8iuv5uvP/diiaOnh0qbIYx6RiAQoKEckBBAdtUAkHIUtGBWREEB01AKRSCPsGJEo/+JfPHH52YLRvsyPJxJfWn5LyZf8IA+/37QlLxvhM9qlTcX3RJTvu1xgCms9YL+ZUTKBSEQe84hEJEBBOSIhgOioBSLhKGzBqIiEAKKjFohEGmHHiETxl/pwBqGSSBS+nNcrEsVnKEL/4j7dkyfXJRJh3QfPOWDEfRWxN2QjEpHHPCIRCVBQjkgIIDpqgUg4ClswKiIhgOioBSKRRtjeRKIgHz9+YN2IgI46/JCqb/SulC4iEXnMIxKRAAXliIQAoqMWiISjsAWjIhICiI5aIBJphB0jEhNxaZP6jMRoZzEUaSESkRQRiUiAgnJEQgDRUQtEwlHYglERCQFERy0QiTTCjhGJibrZunDzdSBafolUNZcpVaoJvdRPlEIkIo95RCISoKAckRBAdNQCkXAUtmBUREIA0VELRCKNsGNEIkw41uNfP/+p04fvQyiXjsINzr/57f8YfgrTaE9tGk8kCjdfF+7TKBeHSv8e3nvx5aXnDK/vtd7t9u077rXPferD+SdG1fNBJOqhVlSDSEQCFJQjEgKIjlogEo7CFoyKSAggOmqBSKQRdqxIFM4SVPNCuuIX14VHtV7yuTPzX97He/zrWCIRBCA8GvbJ9c8NPxq2nse/hjmKxaKe9BCJeqghEpHUtOWIhJZnq3dDJFo9Ye18iISWZ6t3QyTSSFghEsWTTtTL37JIF5GITIUzEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmErRaJwhmCi5csHvGSujSI1L9KRKJ+dvlKRCISoKAckRBAdNQCkXAUtmBUREIA0VELRCKNsNUiEaYuvoQp9pGqaVAcWiUiEZkWIhEJUFCOSAggOmqBSDgKWzAqIiGA6KgFIpFG2I0QiTQm168SkYhkikhEAhSUIxICiI5aIBKOwhaMikgIIDpqgUikETYiocsJkYhkiUhEAhSUIxICiI5aIBKOwhaMikgIIDpqgUikETYiocsJkYhkiUhEAhSUIxICiI5aIBKOwhaMikgIIDpqgUikETYiocsJkYhkiUhEAhSUIxICiI5aIBKOwhaMikgIIDpqgUikETYiocsJkYhkiUhEAhSUIxICiI5aIBKOwhaMikgIIDpqgUikETYiocsJkShiGV55fvCcA4ZfHV74rfDrN9++Ov+v5Y/0QiR0B2O9nRCJesn5rEMkfOZe79SIRL3kfNYhEmnkjkjockIkzOwHq9fal5bfkqda/qrw8Hvrfv20FV5VXv7viITuYKy3EyJRLzmfdYiEz9zrnRqRqJeczzpEonLunU8+bm3btlnfiSdl4sBoZZEIL8e77Csr7ZLPn2WHzpvdcN6IxDhnJMLZiPC5aMni/P+WvwYdkWj4MTruDhCJcRGxQREBRILDoRYCiEQttNgWkSg9BoJAzPzUWdbxwob8b+R6ZthrX1thuxad1tSDpZki8dhjZr29Zj09ZvPn6zDs3NVnV1x3i/34gXV24P772IrlFyMSOrzVdap0adOzGzbakqXX26L3vSsvE+XbIBLVsW3kVohEI+m2Xm9EovUybeREiEQj6bZeb0SiNNOZn1hs3ff+qOQXB+bOs1d+s76p4TdLJN77XrM1a94c/eyzzb79bS0KzkhoedbUrZJIFAyvd/vr9vNfPTniHond/YM17YON9QQmdbRZLmc2MJjTN6djyxHgeKku0vDnqaO9rbqNW3irwCBQ2MPfLy2csm60/PHSZrZngP8eBaqT/+wQsw1DZyOKP7v7BnTQ6+g0ubO9jqq4kltvNfv0p0f2ePRR7ZkJRCIup6jqSiJR/mvhHolV96yxm6690PbumWavbuuL2ifF8QT26u6wPYNmzf6LKX4SOkwEgandHXnx3Lm7uf8hm4hZY/aRs5wNfYX2/ZkyuSNPYQfHi+8Docrpu7s6rKPd7PVd/P0SkPV88K9s0s/XjqD3au/uKok2ZrN9pnc1pvEYXa+80uyqq0ZucOONZhdcoFsOIqFjWXOncmkonI0447ST7dj5h+X7hUudll2z0q6+7Lz8tWdc2lQzZnkBlzbJkbZ0Qy5taul45cNxaZMcaUs35NKm0ninLb/awj/Fnx1nfdy2fv1bTT0OmnFp02gicffdZh/+sA4HIqFjWXOn0c5I/H7TlpKnNhWfkUAkasYsL0Ak5EhbuiEi0dLxyodDJORIW7ohIjEy3qm332bdq++x9m29tvMDp9mOj308f9N1Mz/NEInnnx+6hCncaF34hBuuw6/PEOJAJJpwZBU//jXsvvhu9+K74MPv8R6JJgQ0zi4RiexlkuUVIRJZTid7a0MkspdJlleESGQ5nTfX1gyRCHsP0hDulQg3XJ98slm42frgg7XMEAktz4Z344xEwxGPuwNEYlxEbFBEAJHgcKiFACJRCy22RSTSOAaaJRKNpFP+g++wrw+ectzwFTWN2jfvkYgki0hEAhSUIxICiI5aIBKOwhaMikgIIDpqgUikEXYrikSzyCMSkeQRiUiAgnJEQgDRUQtEwlHYglERCQFERy0QiTTCRiR0OSESkSwRiUiAgnJEQgDRUQtEwlHYglERCQFERy0QiTTCRiR0OSESkSwRiUiAgnJEQgDRUQtEwlHYglERCQFERy0QiTTCRiR0OSESkSwRiUiAgnJEQgDRUQtEwlHYglERCQFERy0QiTTCRiR0OSESkSwRiUiAgnJEQgDRUQtEwlHYglERCQFERy0QiTTCRiR0OSESkSwRiUiAgnJEQgDRUQtEwlHYglERCQFERy0QiTTCRiR0OSESkSwRiUiAgnJEQgDRUQtEwlHYglERCQFERy0QiTTCRiR0OSESkSwRiUiAgnJEQgDRUQtEwlHYglERCQFERy0QiTTCRiR0OSESkSwRiUiAgnJEQgDRUQtEwlHYglERCQFERy0QiTTCRiR0OSESkSwRiUiAgnJEQgDRUQtEwlHYglERCQFERy0QiTTCbkWReHbDRluy9Hp7+ZVX8yEcdfghdtO1F9rePdMaGgoiEYkXkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgj7GaKxGO/f8x6d/daz+Qem3/AfBmwRx57xl7cuMk+smhBvucNK1bZ7zdtsasuOcemdHfJ9lPeCJGIRItIRAIUlCMSAoiOWiASjsIWjIpICCA6aoFIpBF2s0Tivf/8Xlvz/JphSGfPP9u+ffq3GwItiMX1K1Y1/KwEIhEZHyIRCVBQjkgIIDpqgUg4ClswKiIhgOioBSKRRtjNEIlbH7vVPv3DT48A9OiSR6VnJgo7+MHqtbbu109zRiLrhyQi0fyEEInmZ5DSChCJlNJq/loRieZnkNIKEIk00mqGSFy55kq76mdXjQB048Ib7YLjLpCCC/dLLLtmpV192Xl26LzZ0t7lzTgjEYkXkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgj7CyJxN1n3m0fPuzDMnCFm66vuew8O3b+YbK+ozVCJCIRIxKRAAXliIQAoqMWiISjsAWjIhICiI5aIBJphN0MkXh+6/M2/5vz8zdaFz7hhuvnL3jeZnTPkICbaIkIi0YkIqNDJCIBCsoRCQFERy0QCUdhC0ZFJAQQHbVAJNIIuxkiEcgEmQj3SoQbrk8++GQLN1sfPONgCbSJvJypeMGIRGR8iEQkQEE5IiGA6KgFIuEobMGoiIQAoqMWiEQaYTdLJBpJJ9xc/aXlt4zYxa1fvbShlzghEpGpIhKRAAXliIQAoqMWiISjsAWjIhICiI5aIBJphN2KItEs8ohEJHlEIhKgoByREEB01AKRcBS2YFREQgDRUQtEIo2wEQldTohEJEtEIhKgoByREEB01AKRcBS2YFREQgDRUQtEIo2wEQldTohEJEtEIhKgoByREEB01AKRcBS2YFREQgDRUQtEIo2wEQldTohEJEtEIhKgoByREEB01AKRcBS2YFREQgDRUQtEIo2wEQldTohEJEtEIhKgoByREEB01AKRcBS2YFREQgDRUQtEIo2wEQldTohEJEtEIhKgoByREEB01AKRcBS2YFREQgDRUQtEIo2wEQldTohEJEtEIhKgoByREEB01AKRcBS2YFREQgDRUQtEIo2wEQldTohEJEtEIhKgoByREEB01AKRcBS2YFREQgDRUQtEIo2wEQldTohEJEtEIhKgoByREEB01AKRcBS2YFREQgDRUQtEIo2wEQldTohEJEtEIhKgoByREEB01AKRcBS2YFREQgDRUQtEIo2wW1EkXuvdbp+79EZ7cv1z+RCOOvwQu+naC23vnmkNDQWRiMSLSEQCFJQjEgKIjlogEo7CFoyKSAggOmqBSKQRdnNF4jEz6zWzHjObLwP2yGPP2IsbN9lHFi3I9/zB6rW27tdP21WXnGNTurtk+ylvhEhEokUkIgEKyhEJAURHLRAJR2ELRkUkBBAdtUAk0gi7eSLxXjNbUwTpbDP7dkOgBbG4fsWqhp+VQCQi40MkIgEKyhEJAURHLRAJR2ELRkUkBBAdtUAk0gi7OSJxq5l9ugKgR6VnJgo7uGHFKvv9pi2ckcj6IYlIND8hRKL5GaS0AkQipbSav1ZEovkZpLQCRCKNtJojElea2VUVAN1oZhfIwIVLmr60/BbukZARbXAjRKLBgKtoj0hUAYlNhgkgEhwMtRBAJGqhxbaIRBrHQLZE4m4z+7AcHJc2yZE2piEi0RiutXRFJGqhxbaIBMdALQQQiVposS0ikcYx0ByReP6NS5jCjdaFT7jhOvz6DDm48BSny76y0i75/Fl26LzZ8v6FhtwjEYkWkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgj7OaIRGATpCHcKxFuuD7ZzMLN1gdLoIVLmubM3s+OnX9Yvl/491X3rOFmawndBjZBJBoIt8rWiESVoNgsTwCR4ECohQAiUQsttkUk0jgGmicSjePz7IaNtmTp9fbyK6/md8J7JBrHWtoZkZDirKsZIlEXNrdFiITb6OsaHJGoC5vbIkQijehbUSSaRZ5LmyLJIxKRAAXliIQAoqMWiISjsAWjIhICiI5aIBJphI1I6HJCJCJZIhKRAAXliIQAoqMWiISjsAWjIhICiI5aIBJphI1I6HJCJCJZIhKRAAXliIQAoqMWiISjsAWjIhICiI5aIBJphI1I6HJCJCJZIhKRAAXliIQAoqMWiISjsAWjIhICiI5aIBJphI1I6HJCJCJZIhKRAAXliIQAoqMWiISjsAWjIhICiI5aIBJphI1I6HJCJCJZIhKRAAXliIQAoqMWiISjsAWjIhICiI5aIBJphI1I6HJCJCJZIhKRAAXliIQAoqMWiISjsAWjIhICiI5aIBJphI1I6HJCJCJZIhKRAAXliIQAoqMWiISjsAWjIhICiI5aIBJphI1I6HJCJCJZIhKRAAXliIQAoqMWiISjsAWjIhICiI5aIBJphI1I6HJCJCJZIhKRAAXliIQAoqMWiISjsAWjIhICiI5aIBJphN3qIvHsho22ZOn19vlPnW4fWbSgoaEgEpF4EYlIgIJyREIA0VELRMJR2IJREQkBREctEIk0wm6qSLz2mFl/r1lnj9mVru9pAAAgAElEQVTe8+XAChLx8iuv2peXnoNIyAmLGyISYqB1tEMk6oDmuASRcBx+HaMjEnVAc1yCSKQRftNE4l/ea7ZpzZuQDjnb7Lhvy6C91rvdLvvKSjv/nL+276y63457xxGIhIxugxohEg0CW0NbRKIGWGxqiAQHQS0EEIlaaLEtIpHGMdAUkXjuVrN1nx4J6AOPSs5MBIn43KU32sVLFtuRhx1iV1x3CyKRwuGISDQ/JUSi+RmktAJEIqW0mr9WRKL5GaS0AkQijbSaIhJPXmn25FUjAf3FjWaHXRAFbueuvrw4nHHayXbs/MOs8O+ckYjCWnvxDStW2cFzDhhxGqgQyI8fWJdvWnzNGSJRO2d1BSKhJtra/RCJ1s5XPR0ioSba2v0QiTTyzZRILLjb7K0fjgJXOBvx5PrnRvRp9H0S3GxtZj9Yvda+tPyWEZIQfmE8q0Mkoo59STEiIcHopgki4SZqyaCIhASjmyaIRBpRN0UkXn/ebPX8oRutC59ww/Xpz5t1zZCCG++7q3JniEQRzUpnJIJkPP/i7+2iJYsrckcklIdjfb0Qifq4ea1CJLwmX9/ciER93LxWIRJpJN8UkQhogkyEeyVeWWO2/8lm4WbrvQ6WQ0Mk5Eira1hJJMKv3Xz76uEGB+6/j61YfrEdOm92/tcQierYNnIrRKKRdFuvNyLRepk2ciJEopF0W683IpFGpk0TiQnCg0hMEOjy3ZSLRPnNK2H7cIZi1T1r7KZrL7S9e6bZ9p17mrRadlsg0N3ZbgM5s/49g0CBwLgEJne2Wy5n1sfxMiarXC5nbW1t4/Js9Q26JrVboLCb46XVo5bMF46X9jazXf3890gCtEFNpk2Z1KDO/tpyaVNR5tWIRPHjtcKd8dt39Ps7ajI28eSuDhsczCESGcslq8uZ3NlhOctZH/+hH1skrM3aLJfVGCdsXV2d7fl9cbxMGPKkd9QZRKK9zXb3DSQ9R6svftrUzlYfccLmQyTGEInwW+VyUXjZxyWfPyt/eROXNk3YsTrqjri0qfkZpLQCLm1KKa3mr5VLm5qfQUor4NKmNNJq9UubJjIFRGIckXjksWfssmtWDt8XES5tWvfrp+2qS86xKd1diMREHq2j7AuRyEAICS0BkUgorAwsFZHIQAgJLQGRSCMsREKXEyJR9vjXgLb8hurix8Medfghw/dHhG05I6E7GOvthEjUS85nHSLhM/d6p0Yk6iXnsw6RSCN3REKXEyIRyRKRiAQoKEckBBAdtUAkHIUtGBWREEB01AKRSCNsREKXEyIRyRKRiAQoKEckBBAdtUAkHIUtGBWREEB01AKRSCNsREKXEyIRyRKRiAQoKEckBBAdtUAkHIUtGBWREEB01AKRSCNsREKXEyIRyRKRiAQoKEckBBAdtUAkHIUtGBWREEB01AKRSCNsREKXEyIRyRKRiAQoKEckBBAdtUAkHIUtGBWREEB01AKRSCNsREKXEyIRyRKRiAQoKEckBBAdtUAkHIUtGBWREEB01AKRSCPsVhSJwguTn1z/3HAI5U8hbUQ6iEQkVUQiEqCgHJEQQHTUApFwFLZgVERCANFRC0QijbCbKhKPPWbW22vW02M2f74MWEEkLl6y2I6df5is73iNEInxCI3z+4hEJEBBOSIhgOioBSLhKGzBqIiEAKKjFohEGmE3TSTe+16zNWvehHT22Wbf/rYEGiIhwTjxTRCJiWdevkdEovkZpLQCRCKltJq/VkSi+RmktAJEIo20miISt95q9ulPjwT06KOSMxPllzZNxGVNYRjOSEQe84hEJEBBOSIhgOioBSLhKGzBqIiEAKKjFohEGmE3RSSuvNLsqqtGArrxRrMLLpCD+8HqtbbqnjV207UX2t490+T9Cw0RiUi0iEQkQEE5IiGA6KgFIuEobMGoiIQAoqMWiEQaYWdKJO6+2+zDH5aDC2coLvvKSrvk82fZofNmy/sjEiKkiIQIZEQbRCICnsNSRMJh6BEjIxIR8ByWIhJphN4UkXj++aFLmMKN1oVPuOE6/PqMGXJwiIQcaWMaIhKN4VpLV0SiFlpsi0hwDNRCAJGohRbbIhJpHANNEYmAJkhDuFci3HB98slm4Wbrgw+WQHvksWfyfQpPbAqXNq379dN21SXn2JTuLsk+KjXh0qZItIhEJEBBOSIhgOioBSLhKGzBqIiEAKKjFohEGmE3TSQaiOfZDRttydLr7eVXXs3v5ajDD2n4/RFhP4hEZKiIRCRAQTkiIYDoqAUi4ShswaiIhACioxaIRBpht6JINIs8IhFJHpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIhHJEpGIBCgoRyQEEB21QCQchS0YFZEQQHTUApFII2xEQpcTIlHE8oYVq+zgOQfYRxYtqEj4kceesbMvuNZu/eqlduz8w/LbIBK6g7HeTohEveR81iESPnOvd2pEol5yPusQiTRyRyR0OSESZvaD1WvtS8tvyVP98tJzKopEQSLCNoiE7gBUdEIkFBT99EAk/GStmBSRUFD00wORSCNrREKXEyJRxRmJZzdstOv+8Q5b+oWP2RevWWkXL1nMGQndMRjdCZGIRuiqASLhKu7oYRGJaISuGiASacSNSOhyQiTGEYkgEcuuWWlXX3aezZwxzT536Y2IhO74k3RCJCQY3TRBJNxELRkUkZBgdNMEkUgjakRClxMiMYZIvNa73S77ykq75PNn2aHzZlv493KReHXbbl0adKqLQPiLe89gznb3DdRVT5EvAlMnT7Kc5Wznbo6XsZLP5cza2nwdG5WmnTK5I//LHC8cC9UQ6O7qsI72Nnt9155qNmebJhHYZ/rkJu259XaLSIwhEuFsxJKl19vLr7w6IvnCfRK7+wdb76hIbKJJHW0WvvQMDOYSWznLbQYBjpfqqA/kctaBSeS/FAafCj+s4AOB8Qjkj5c2sz0DHC/jsWrm70/ubG/m7ltq34jEGCJRnnSlMxI8tan5fx64tKn5GaS0Ai5tSimt5q+VS5uan0FKK+DSpjTS4tImXU6IBCKhO5qa1AmRaBL4RHeLSCQaXJOWjUg0CXyiu0Uk0ggOkdDlhEiUPf41oD1w/31sxfKL8/dFFH84I6E78JSdEAklzdbvhUi0fsbKCREJJc3W74VIpJExIqHLCZGIZMmlTZEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkIlkiEpEABeWIhACioxaIhKOwBaMiEgKIjlogEmmEjUjockIkiljesGKVHTznAPvIogXDv/rIY8/Y2RdcO/zvHzzlOLvqknNsSndX/tcQCd3BWG8nRKJecj7rEAmfudc7NSJRLzmfdYhEGrkjErqcEAkz+8Hqtfal5bfkqX556TklIhF+b87s/ezY+YfZzl19dsV1t9gB+820i5YsRiR0x2FUJ0QiCp+7YkTCXeRRAyMSUfjcFSMSaUSOSOhyQiTGOSNRjjqIxbpfPz18VoIzErqDsd5OiES95HzWIRI+c693akSiXnI+6xCJNHJHJHQ5IRI1ikS4/Cl8OCOhOwhjOyESsQR91SMSvvKOnRaRiCXoqx6RSCNvREKXEyJRg0iE+yWuX7HKbrr2Qtu7Z5ouBTpBAAIQyBiBvj2D1jWpPWOrYjkQgAAEIJAlAohElSIRJOKya1baiuUX26HzZg9XcWlT8w9nzkg0P4OUVsAZiZTSav5aOSPR/AxSWgFnJNJIizMSupwQiSpEYjSJCKWIhO5grLcTIlEvOZ91iITP3OudGpGol5zPOkQijdwRCV1OiMQ4IjHe5UyIhO5grLcTIlEvOZ91iITP3OudGpGol5zPOkQijdwRCV1OiETZ418D2gP332f4EqZwc/XNt68uIV78+4iE7mCstxMiUS85n3WIhM/c650akaiXnM86RCKN3BEJXU6IRCRLRCISoKAckRBAdNQCkXAUtmBUREIA0VELRCKNsBEJXU6IRCRLRCISoKAckRBAdNQCkXAUtmBUREIA0VELRCKNsBEJXU6IRCRLRCISoKAckRBAdNQCkXAUtmBUREIA0VELRCKNsBEJXU6IRCRLRCISoKAckRBAdNQCkXAUtmBUREIA0VELRCKNsBEJXU6IRCRLRCISoKAckRBAdNQCkXAUtmBUREIA0VELRCKNsBEJXU6IRCRLRCISoKAckRBAdNQCkXAUtmBUREIA0VELRCKNsBEJXU6IRCRLRCISoKAckRBAdNQCkXAUtmBUREIA0VELRCKNsBEJXU6IRCRLRCISoKAckRBAdNQCkXAUtmBUREIA0VELRCKNsBEJXU6IRCRLRCISoKAckRBAdNQCkXAUtmBUhUh0bVlrUzb9yDp2brDdMxfYjtl/Y7nOGYLV0SJrBBCJrCVSeT2IhC4nRCKSJSIRCVBQjkgIIDpqgUg4ClswaqxIBImY9cipJSvp23uBbX7nfYLV0SJrBBCJrCWCSDQ6EUQikjAiEQlQUI5ICCA6aoFIOApbMGqsSMx8dLF1b/rRiJW8smC9DUyZJ1ghLbJEAJHIUhqjr4UzErqcEIlIlohEJEBBOSIhgOioBSLhKGzBqLEiMeuRhda15cERK9l87H3WN3OBYIW0yBIBRCJLaSASE5EGIhFJGZGIBCgoRyQEEB21QCQchS0YNVYkep65xPba8I0RK9m4cIdgdbTIGgFEImuJVF4PZyR0OSESkSwRiUiAgnJEQgDRUQtEwlHYglFjRSLcYB3OSnTsfGF4NVuPXGE7DvqEYHW0yBoBRCJriSASjU4EkYgkjEhEAhSUIxICiI5aIBKOwhaMGisShSWEm67DJ9wXwb0RgmAy2gKRyGgwZcvijIQuJ0QikiUiEQlQUI5ICCA6aoFIOApbMKpKJARLoUUCBBCJBEIyM0RClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERClxMiEckSkYgEKChHJAQQHbVAJByFLRgVkRBAdNQCkUgjbERCl9OEi8Rrvdvtc5femJ/gpmsvtL17pummaUInRKIJ0Mt2iUg0P4OUVoBIpJRW89eKSDQ/g5RWgEikkRYioctpwkUiLL0gE0+ufy4/ya1fvdSOnX+YbqoJ7IRITCDsUXaFSDQ/g5RWgEiklFbz14pIND+DlFaASKSRFiKhy6kpIlG8/BtWrLKbb1+d/6VzP7bILlqyWDfdBHRCJCYA8ji7QCSan0FKK0AkUkqr+WtFJJqfQUorQCTSSAuR0OXUdJEojPLIY8/Y2Rdcm//Xow4/JJnLnhAJ3cFYbydEol5yPusQCZ+51zs1IlEvOZ91iEQauSMSupwyIxKFkXbu6rMrrrvFXti4KQmZQCR0B2O9nRCJesn5rEMkfOZe79SIRL3kfNYhEmnkjkjocsqcSKR2MzYioTsY6+2ESNRLzmcdIuEz93qnRiTqJeezDpFII3dEQpdTZkSCS5t0oXrrhEh4SzxuXkQijp+3akTCW+Jx8yIScfwmqhqR0JFuqkgULmP68QPr8hNxs7UuWE+dEAlPacfPikjEM/TUIasi8YuX1tpdz3zPfrdtgy085DQ747C/sZ7JMzxFk8lZEYlMxjJiUYiELqemiMSzG9cEwbkAACAASURBVDbakqXX28uvvJqfhMe/6gL12AmR8Jh6/TMjEvWz81iZRZG477l77NzVZ5bEccJBC+yuv77PY0SZmhmRyFQcoy4GkdDlNOEikdo9EOOh5h6J8Qg1/vcRicYzbqU9IBKtlGbjZ8miSJzz48V2/7//aMTw6z653uZMn9d4KOxhVAKIRBoHByKhy2nCRUK39Gx0QiSanwMi0fwMUloBIpFSWs1fq0ok2tq22tTJ37P2tq35oXbs/rgNDNb3pf+jdy+0h196cASccEYinJng0zwCiETz2NeyZ0SiFlpjb5sZkSh+Md2Xl55jH1mUxl+GiITuYKy3EyJRLzmfdYiEz9zrnVolEvvOOM46O54YXkYuN8M2bX24Lpm44sFL7J8e/0bJSNO7emz9Z16ud0zqRAQQCRHIBrdBJHSAmyISxfdIBGmYM3s/e/CXT+Tfal24Afu4dxyRhEwgErqDsd5OiES95HzWIRI+c693aoVIdHWutVnTTx2xhO07l9n2HctqXlrv7q320btPtac3vykmN56ywhYf/omae1GgJYBIaHk2qhsioSM74SJRLgo/WL3WvrT8lpIbrsOjYO+6Z41ddck5NqW7SzdtAzohEg2AWmNLRKJGYM43RyScHwA1jj+aSHS0b7DOSU/mu/XvOWrMMwtqkSiM8NQfHrfevl5726y388SmGnNt1OaIRKPIavsiEjqeEy4S4Wbry76y0i75/Fl26LzZVv7vYbRwxuK6f7zDrvniebZ3zzTdtA3ohEg0AGqNLRGJGoE53xyRcH4A1Dh+JZHo7rrHZk4rfWrSlu132q6+0yp27+x43PadcfyI3+t9fbm9vuv8GlfE5lkmgEhkOZ0314ZI6HJCJIpYhvs0Dp5zwIhLqgpnTcKmHzzluJIzJYiE7mCstxMiUS85n3WIhM/c6526kkjM6lloXZNKb3YON06/8tr6UXczc9pi6+5680lLA4NzbdPWdRbuleDTOgQQiTSyRCR0OSESZlYsCuU3eofLrK5fscpuuvbC/NmRIBvhE+7nCB9EQncw1tsJkaiXnM86RMJn7vVOXUkkZu8ztWK7ja/uGP71cDmT5dqsb89Jw78Wzkx0dT5o/QNvt77+yg8UCS+aa7M2O/6gN+vqXTt1E08AkZh45vXsEZGoh1rlGkSiiEulMxLlv1YuFoiE7mCstxMiUS85n3WIhM/c6526kkiUP4Ep9M7leuzlLS9bkIWZ08+ycA/F0K/PsM2991r/wNFjLiHc73DuvWfZi9uG6sJbqu/68L32tn3Hrqt3LuoaQwCRaAxXdVdEQke0KSLxuUtvtCfXPzfmFEcdfsjwWQDduGN3KpeGSk+QCvdvLLtmpV192Xn5ezwQiYlKZ/T9IBLNzyClFSASKaXV/LVWEom9ur9uPXstLVlc4QlM5ZcwhY2CRPxh68NjDlPpJXNBIn5y5th1zSfECooJIBJpHA+IhC6nCRcJ3dL1nUYTiTNOO9mOnX9YfoflItHXP6BfCB1rItDR0W65XM4GB3M11bGxTwId7e2WM9Xx0tayEPcMDNqkjvaWna/awdrbzULKA4OlFW1ta6y9/Wf5XxwcfI/lcifn/39XZ0fF1m/+t6Ly31OTvzKpYt3uL+6pdqlslwEC7e1t1tbWZgPlB0wG1sYS3iQw2p9TGNVOIHMiEZ7iFM5YhE/hvoTax6qvop4zEn/o3V3fzqiSEXhLd4ftGTTb1YfUyaC2cKO9ujsslwtvFlYcL60rr0HOwxci75+pk4e+4O/YXd0X+n2m/7m1t71Qgi1nPba59/dv/Fplpu+45c+HL2sqFE+f3GP/83OveI8gqfmndHVY8O8/7lL8/ZLU6Ektdt+eyUmtN8uLzYxIhHsPzr7g2jyrA/ffx1Ysvzh/6dBEfrhHYiJp6/bFpU06lh46cWmTh5R1M9b6QrppU6+2aVOuLlnA67u+YL2vXzfmoq7/1dV2w69K6/726C/YVSeNXaeblE4KAlzapKDY+B5c2qRj3HSRCF/eb7599fBEt3710uHLiHRjVtepkkjw1Kbq2DVzK0SimfTT2zcikV5mzVxxrSIR1jp18m0W3jURPrv7F1T9rohV62+z+54bqjv+oAV23nzeMdHM7OvZNyJRD7WJr0EkdMybIhKFy5cKN1wHefjTPzkof0nTxUsWT7hIFD/+NaAtPyPCeyR0B1wjOiESjaDauj0RidbNthGT1SMSjVgHPdMggEikkRMioctpwkVitHsgCr/eDJGIwclTm2LoaWoRCQ1HL10QCS9Ja+ZEJDQcvXRBJNJIGpHQ5dQ0kZg7e7+SN0QjErpQvXVCJLwlHjcvIhHHz1s1IuEt8bh5EYk4fhNVjUjoSE+4SISlF1/aVLiMaOaMaU27tCkGJ2ckYuhpahEJDUcvXRAJL0m/OWd478OUrh/lf2Fn32kWbn6u9pO6SKy6vcPuumPoyVMLFw3Y3y6p7ulT1fJhu1ICiEQaRwQiocupKSJRvPws3WxdD1ZEoh5q2hpEQsuz1bshEq2ecOl89T5FqdAlZZG4fnmn3bC89P0UZ5w1YF/9ep+vg2ACp0UkJhB2xK4QiQh4ZaVNF4nCeoof//rBU44ruexJN66+EyKhZ1prR0SiVmK+t0ckfOW//96HWUd72XsdcjPs5S0bqwKRski865hu+92LI99b8dLmnVXNzka1E0AkamfWjApEQkc9MyJRGKmZL6SrBysiUQ81bQ0ioeXZ6t0QiVZPuHS+2ftMrTjwxld3VAUiBZH4xUPttu6hobeQH3Fkzk5dNPQytMMPmWLbto0cE5GoKvq6NkIk6sI24UWIhA555kRCN9rEdEIkJobzWHtBJJqfQUorQCRSSit+rTOnLbbuN+6PKHTrH3i7/WHruqqaZ10kVn5zkl15eWfJLBct3WMXL+23cz7RZfff21Hye0E0frpmV1Wzs1HtBBCJ2pk1owKR0FFHJCJZIhKRAAXliIQAoqMWiISjsM2ss+Nxmzn9zOHLmwYG59qWbXda/8DRVYHIukj81cnd9vRvSy9f6ukxe/rZnfbUk212zicnD1/e9NY5ObvlO7vtbUflqpqdjWongEjUzqwZFYiEjjoiEckSkYgEKChHJAQQHbVAJByFXTRqEIrwqVYgCqUTKRIvvtBm634xdInScScM2py543/hP2jWlIqBFl++FIQifBCIxh/7iETjGSv2gEgoKA71QCQiWSISkQAF5YiEAKKjFoiEo7AFo06USNy3usPO/WRXyYpv/k7f8P0Oo43y0dMn28Nv3B9R2Cacefjlo1y+JIi/5haIRM3ImlKASOiwIxKRLBGJSICCckRCANFRC0TCUdiCUSdKJCpdohTOSKz7zdhCEG60PvcTk0tuqq5GQARoaFGBACKRxmGBSOhyQiQiWSISkQAF5YiEAKKjFoiEo7AFo06USFRzidJo44RLol584zGvc+bkqrokSoCGFohEsscAIqGLDpGIZIlIRAIUlCMSAoiOWiASjsIWjDpRIlHpjASXKAkCnOAWnJGYYOB17g6RqBNchTJEIpIlIhEJUFCOSAggOmqBSDgKWzDqRInEqts77ML/VHqPROExroIxaDFBBBCJCQIduRtEIhJgUTkiEckSkYgEKChHJAQQHbVAJByFLRh1okQiLDXc7/DwQ0PvfTj+xAE74cRBwQS0mEgCiMRE0q5/X4hE/ezKKxGJSJaIRCRAQTkiIYDoqAUi4ShswagTKRKC5dKiyQQQiSYHUOXuEYkqQVWxGSJRBaSxNkEkIgEKyhEJAURHLRAJR2ELRkUkBBAdtUAk0ggbkdDlhEhEskQkIgEKyhEJAURHLRAJR2ELRkUkBBAdtUAk0ggbkdDlhEhEskQkIgEKyhEJAURHLRCJbIS91/Nft6kvf886tz1ufXsvsD8e/AXbtd9p2Vhc0SoaIRLhxup/+lanhTdOh/sgzl2yZ9wXz2UODAuqSACRSOPAQCR0OSESkSwRiUiAgnJEQgDRUQtEovlhd21Za7MeObVkIblJM2zTCQ/bwJR5zV9gA0Ui3FB9xumTR8wYXjwXXkDHJ20CiEQa+SESupwQiUiWiEQkQEE5IiGA6KgFItH8sKc9e7VN+59Xj1jIlmPuzNxZCfUZieuXd9oNyyeNmJ23UTf/uFSsAJFQUGx8D0RCxxiRiGSJSEQCFJQjEgKIjlogEs0PG5EYKRI3fq3PFn9soPnhsIIoAohEFL4JK0YkdKgRiUiWiEQkQEE5IiGA6KgFItH8sLs33WMzHz1zxEJeWbCeS5uaHw8riCCASETAm8BSREIHG5GIZIlIRAIUlCMSAoiOWiAS2Qg7nJV4y/Nft7Y9vTYwZa71HnZd5i5rCqTUlzaFnuHypn/65iTbts3srXNydtXV/dxsnY3DMnoViEQ0wglpgEjoMCMSkSwRiUiAgnJEQgDRUQtEwlHYY4zau3ur3fXM9+x32zfY9K4eO+Owj9uc6SNv9K5GJMJTmJ5+qt2mT8/ZcScO8kZqx4cYIpFG+IiELidEIpIlIhEJUFCOSAggOmqBSDgKe4xR3/XPh9nvtr8wvEXP5Bl2/5kPj5CJ8UTinE902f33dpTsiRun/R5jiEQa2SMSupwQiUiWiEQkQEE5IiGA6KgFIuEo7FFG/cVLa+2Mu0sfPxs2veidy+zidy4rqRpPJA6aNWXEXo4/cdC+/8PdgHZIAJFII3REQpcTIhHJEpGIBCgoRyQEEB21QCQchT3KqPc9d4+du3rkzd61ikR4odz739uNSHBIDRNAJNI4GBAJXU6IRCRLRCISoKAckRBAdNQCkXAU9iijPvWHx+39dx4/4nevfPdyO2/++TWdkTj8kCn5m6aLPws/MGC33NYHaIcEEIk0QkckdDkhEpEsEYlIgIJyREIA0VELRMJR2GOMesG/fMbueua7w1scMevt9v2/vs/CvRLFn/EubVr5zUl25eWdwyXTp5v9ZA1vqfZ6lCESaSSPSOhyQiQiWSISkQAF5YiEAKKjFoiEo7DHGTWcmejt681vdcJBCypuPZ5IhKIXX2izF19sy9e/7chB6+mBsVcCiEQaySMSupwQiUiWiEQkQEE5IiGA6KgFIuEobMGo1YiEYDe0aBECiEQaQSISupwQiUiWiEQkQEE5IiGA6KgFIuEobMGoiIQAoqMWiEQaYSMSupwQiUiWiEQkQEE5IiGA6KgFIuEobMGoiIQAoqMWiEQaYSMSupwQiUiWiEQkQEE5IiGA6KgFIuEobMGoiIQAoqMWiEQaYSMSupwQiUiWiEQkQEE5IiGA6KgFIuEobMGoiIQAoqMWiEQaYSMSupwQiUiWiEQkQEE5IiGA6KgFIuEobMGoiIQAoqMWiEQaYSMSupwQiUiWiEQkQEE5IiGA6KgFIuEobMGoiIQAoqMWiEQaYSMSupwQiUiWiEQkQEE5IiGA6KgFIuEobMGoiIQAoqMWiEQaYSMSupwQiUiWiEQkQEE5IiGA6KgFIuEobMGoiIQAoqMWiEQaYSMSupwQiUiWiEQkQEE5IiGA6KhFq4nEXs9/3aZs+lE+wT1T51nvn/+fluuc4SjRxo6KSDSWb6t1RyTSSBSR0OWESESyRCQiAQrKEQkBREctWkkkgkT0/NvSkvT69l5gm995n6NEGzsqItFYvq3WHZFII1FEQpcTIhHJEpGIBCgoRyQEEB21aCWRmPXIQuva8uCI9F5+30bOSoiOaURCBNJJG0QijaARCV1OiEQkS0QiEqCgHJEQQHTUwoNIvLJgvQ1Mmeco1caNikg0jm0rdkYk0kgVkdDlhEhEskQkIgEKyhEJAURHLVpJJGY8+RmbuvG7JenlJvXYy6e87CjRxo6KSDSWb6t1RyTSSBSR0OWESESyRCQiAQrKEQkBREctWkkk2vq32j6PnTl8eVOQiFePudP6Zi5wlGhjR0UkGsu31bojEmkkikjockIkIlkiEpEABeWIhACioxYTLRJtvVttyr0/so4XNlj/UUfbrg98SE47CEX7nl4uZ5KTNUMkGgC1hVsiEmmEi0jockIkIlkiEpEABeWIhACioxYTKRJBIg74iyMs/G/h03fiAtv8Q56qlMohh0ikklQ21olIZCOH8VaBSIxHqPrfRySqZ1VxS0QiEqCgHJEQQHTUYiJFYtryqy38U/4JIhGEgk/2CSAS2c8oSytEJLKUxuhrQSR0OSESkSwRiUiAgnJEQgDRUQtEwlHYglERCQFERy0QiTTCRiR0OSESkSwRiUiAgnJEQgDRUQtEwlHYglERCQFERy0QiTTCRiR0OSESkSwRiUiAgnJEQgDRUYuJFIn8PRLHHG5t23qHCfedeJJt/uH9joinPSoikXZ+E716RGKiide3P0SiPm6VqhCJSJaIRCRAQTkiIYDoqMVEikTAmn9q0+p7rOPFF6z/yLfbrkWnOaKd/qiIRPoZTuQEiMRE0q5/X4hE/ezKKxGJSJaIRCRAQTkiIYDoqMVEi4QjtC05KiLRkrE2bChEomFopY0RCR1ORKIKljesWGU33746v+VRhx9iN117oe3dMy3/74hEFQAbvAki0WDALdYekWixQBs8DiLRYMAt1h6RSCNQREKXEyIxDssfrF5r6379tF11yTk2pbvLyv8dkdAdjPV2QiTqJeezDpHwmXu9UyMS9ZLzWYdIpJE7IqHLCZEYh2U4GxE+Fy1ZnP/fRx57xq5fsWr4rAQioTsY6+2ESNRLLlt14V6Cnsv/Ln8/Qfj/4V6C7Zd8Mf82aOWnFURi2rNX29SXvmsdOzdY//SjbfuhX7Rd+/m996K31+zKy7ts1e0d+UPl1EUDdsPX+qynJ/7IQSTiGXrqgEikkTYiocsJkRiH5bMbNtqSpdfbove9Ky8TQSwOnnOAfWTR0MukEAndwVhvJ0SiXnLZqutZdontteIbJYsamDvPXvnNeulCUxeJ7k332MxHzyxhkps0wzad8LANTJknZZVKswvO77K77hiSiMJn4QcG7Jbb+qJHQCSiEbpqgEikETciocsJkRiH5c5dfXbFdbdY7/bX7ee/enLEPRLbd/Tr0qBTXQQmd3XY4GDO+vcM1lXvpqgt25NOXfiX1vHg2hGL3L5xk9mMGbLFT57UYTnLWV+ix8vkZ75sXeu/PILHjnf/1Ab2fY+M0+BAzto7Mn7QvDHtnAM7LZyVKP9sE/z93DWpPd821eNFdkBkuVEuO4vrnNRu7e1ttrtvIDuLYiUjCEyb2gkVEQFEYhyQ5Wcgwj0Sq+5ZM3xpk+I/VKIs3bbp7my3gZwhEuMdARn6j22lpe71gcoise13YpHoardczqyvP03xnPxvX7YgE+Wf10/8qQ3MEopELmftbWmIxNyDKotE7x/jf9DT1dlugcLuRI+X8f5aaInfz9BhGsSzvc1sF8dLpg+tcGaaj4YAIjEGx8LZiDNOO9mOnX9YfstwqdOya1ba1ZedZ4fOm82lTZrjMKoLlzZF4ctM8bTlV1v4p/gT3rvwhzXrpGtszUubemzTCeu4tKnoSOHSJukfG5pVSYBLm6oE1eTNuLRJFwAiUcUZid9v2lLy1KbiMxLcI6E7GOvthEjUSy5bdeEG6+nLr7apt383/yboXR/4kG1fuoybrSvENHSz9W3WsfMF65/2dtv+p8vc32x9xbIuu3/10H0SCxcN2FVXc7N1tv6E+1gNIpFGzoiELidEYhyWhbMSP35g6KeivEdCd/CpOiESKpI++qjPSIQv9F2v/TwPr2/vk2zHQR/3AdLJlNxs7SRo0ZiIhAhkg9sgEjrAiEQkS85IRAIUlCMSAoiOWihFIpwZmPY/Sy/HCmcHth+6zBHR1h4VkWjtfNXTIRJqoo3ph0jouCISkSwRiUiAgnJEQgDRUQulSBz4wIHWtqf0cUHhEayvLNA+stZRPJkbFZHIXCSZXhAikel4hheHSOhyQiQiWSISkQAF5YiEAKKjFkqRmH3/1IrkNi7c4Yhoa4+KSLR2vurpEAk10cb0QyR0XBGJSJaIRCRAQTkiIYDoqIVSJPb9xXHWuf2JEnp9M0+yzcfe74hoa4+KSLR2vurpEAk10cb0QyR0XBGJSJaIRCRAQTkiIYDoqIVSJMJbpvd+8jPDlzflJvXYq8fcaX0zh958zyd9AohE+hlO5ASIxETSrn9fiET97MorEYlIlohEJEBBOSIhgOiohVIkAra2/q3DZyXCo1hznbq3cDuKJbOjIhKZjSaTC0MkMhnLiEUhErqcEIlIlohEJEBBOSIhgOiohVokHKFzOSoi4TL2uodGJOpGN6GFiIQONyIRyRKRiAQoKEckBBAdtUAkHIUtGBWREEB01AKRSCNsREKXEyIRyRKRiAQoKEckBBAdtUhFJDraN+RTGRic5yid7I2KSGQvkyyvCJHIcjpvrg2R0OWESESyRCQiAQrKEQkBREctsi4SnR2P28zpZ1mxSGzZdof1DxztKKXsjIpIZCeLFFaCSKSQkhkiocsJkYhkiUhEAhSUIxICiI5aZF0kZvUstK5JD5YksqvvQ7Zl+ypHKWVnVEQiO1mksBJEIoWUEAllSohEJE1EIhKgoByREEB01CLrIjF7n1FecvcqL7lrxmGKSDSDerr7RCTSyI4zErqcEIlIlohEJEBBOSIhgOioRdZF4sCZB1pbW29JIgODc+2V155xlFJ2RkUkspNFCitBJFJIiTMSypQQiUiaiEQkQEE5IiGA6KhF1kWiZ69LbK/ub5Qk8vquL1jv69c5Sik7oyIS2ckihZUgEimkhEgoU0IkImkiEpEABeWIhACioxZZF4m2tq32linfsMmda/Op7O5fYNt3LHOUULZGRSSylUfWV4NIZD2hofVxaZMuJ0QikiUiEQlQUI5ICCA6apF1kXAURRKjIhJJxJSZRSISmYlizIUgErqcEIlIlohEJEBBOSIhgOioBSLhKGzBqIiEAKKjFohEGmEjErqcEIlIlohEJEBBOSIhgOioBSLhKGzBqIiEAKKjFohEGmEjErqcEIlIlohEJEBBOSIhgOioBSLhKGzBqIiEAKKjFohEGmEjErqcEIlIlohEJEBBOSIhgOioBSLhKGzBqIiEAKKjFohEGmEjErqcEIlIlohEJEBBOSIhgOioBSLhKGzBqIiEAKKjFohEGmEjErqcEIlIlohEJEBBOSIhgJhAi44XNtjUO76bX+nA3Hm246yP17VqRKIubG6LEAm30dc1OCJRF7YJL0IkdMgRiUiWiEQkQEE5IiGAmPEWXQ+ttVmnn1qyyteXfMF6r679JW2IRMbDztjyEImMBZLx5SASGQ/ojeUhErqcEIlIlohEJEBBOSIhgJjxFrNOX2hdDz04YpUbN++oeeWIRM3IXBcgEq7jr3l4RKJmZE0pQCR02BGJSJaIRCRAQTkiIYCY8RajicQrv1mfv8yp2k/Hzg02PbfRBnM5+2P7QTYwpfraavcR3kzd2fFkfvOBwbk2MFjdPnp3b7WnNw/VvXXaXJszvbq6atfFdvURQCTq4+a1CpFII3lEQpcTIhHJEpGIBCgoRyQEEDPeYuYnFlv3vT8ascpazkh0b7rHZj565nCP3KQZ9uoxd1jfzAWy6Ts7HrdZPR+wIBOFT+/ry+31XeePuY8Xt22whXceb0EmCp8r373czps/dp1s4TQalQAiwcFRCwFEohZazdsWkdCxRyQiWSISkQAF5YiEAGLGW4R7JPb5xJnWtq13eKXbly6z8E+1n/3XHmYdO18o2bxv5km2+dj7q20x7nYzpy227q4KwvPq2JdgnfPjxXb/v4+se+n82i/dGneRbFATAUSiJlzuN0Yk0jgEEAldTohEJEtEIhKgoByREEDMcIu23q3W+dsnbWDOXOv87RMWnt7Ud+JJ1n/U0TWtevb9Uytuv3Gh7sv6rJ6F1jVp5L0cf9j6sPUPjL7ej9690B5+aWTdf/3gw5bbeIwdf+JgTbOysY4AIqFj6aETIpFGyoiELidEIpIlIhEJUFCOSAggZrRF+b0Rvf+w3F7/bH2X+xz4L7OsbaBUGga659or73lGNv1oIrFxnDMSo4mEXZkbXttFS/fYxUv7ZWulUXUEEInqOLHVEAFEIo0jAZHQ5YRIRLJEJCIBCsoRCQHEDLbY65tft57Ll45YWa03WBcazP7JdLPcnpJ+uY632Mt/uUk2fVfnWps1vfQxtbv6PmRbtq8acx+/eGmtnXF3aZ09c7rZHf+tpO4n/32Xve2oN+VCtnAajUoAkeDgqIUAIlELreZti0jo2CMSkSwRiUiAgnJEQgAxgy2mLb/awj/ln80/vM/6Tqz9BukRlzaF7+NtbbZx4evS6YNMTO4cukxpYGCu7dj9iar6B5koXN701IN/Yvdfc+6Iurt+uNtO4DKnqniqNkIkVCR99EEk0sgZkdDlhEhEskQkIgEKyhEJAcQMtmi4SISZ2zps4/u31zX9qvW32ZU//7uSJy2FRj2TZ9gNp6ywUw85req+vb1mV17eZatu78jXTO8xK7qvfLgPIlE1UtmGiIQMpYtGiEQaMSMSupwQiUiWiEQkQEE5IiGAmMEWld5mHW643rRmneV6ZtS84n1/cZx1bn+ipK7epzaFx7Ue953Dx1zDuk+ur/pdEFcs67R/WjFpzH7Tp5ute3Sn9fTUPDoFEQQQiQh4DksRiTRCRyR0OSESkSwRiUiAgnJEQgAxoy2CTLzlm1+39m29tmfOvPzjXmt5AV35WDN/c6Z1b12b/+VdMxbYlr+4s67Jw9mICx9YMmbtXX99n51wUHWXYH309Mn28EPtI/otOHnQ+vvN3jonl7/Res5c7o+oK7CIIkQiAp7DUkQijdARCV1OiEQkS0QiEqCgHJEQQGyRFm39W63n3/5u+MxD394n2bZDv2i5zjfPYEyf2jn0ZuudpTde14LgvufusXNXv/lyu0q1CpF4+lnOQNSSSyO2RSQaQbV1eyISvnoYKAAAIABJREFUaWSLSOhyQiQiWSISkQAF5YiEAGKLtJjx5Gds6sbvlkyzY/bHbetR3xr+NYVIhEub3n/Hcbat780X5BXvdHpXj6371Pr8/RLVfK5f3mk3LC+9tOmII3P20zW7qilnmwoEAtP77+2w373QZsefOGAXXdJf1xOvEAkOr1oIIBK10GretoiEjj0iEckSkYgEKChHJAQQW6RFpZfODUyZZ68sWC8VidCs4iNbzWxyx2T77n/8YdWXNRUWFr743rf6zS++4VImHvVa34G58puT7MrLO0uKw2Vh635Tu5ghEvVl4LUKkUgjeURClxMiEckSkYgEKChHJAQQW6RFJZHITeqxl095OT/h1Mm32VumrM7//z/u/KDt2P3xqMkP+vrIt2WHsxHrPzO0Pz7NITDaPSdBJGq9zwSRaE6Gqe4VkUgjOURClxMiEckSkYgEKChHJAQQW6TFrEcWWteWoXc4FD679vuQbTlmlfXsdYnt1f2Nkt/bvnOZbd+xrO7pK72ReuGffMhu+eDYL6Cre4cUVkVgNJGo54V+iERVyNnoDQKIRBqHAiKhywmRiGSJSEQCFJQjEgKILdKic9vjNuO3S9682XrmSfbakd+ycHnTgTMPtLa20nsaBgbn2SuvvXnZU60YnvrD43bBA0vs6c1Dj5U9/qCT7MZTvlX1Y19r3R/bV0eg0j0n4clXv3yUS5uqI8hW9RJAJOolN7F1iISONyIRyRKRiAQoKEckBBATaBEkoXvTj4ZWOrjLrL07/393zzzJ+maO/5jV2fuMvAwp1G98dUcC07PEWgiEF/xdsazL7rpj6AV/QSJu+c7uuu454YxELeTZFpFI4xhAJHQ5IRKRLBGJSICCckRCADHjLbq2rLVZj5w66ip7/3y5vX7w+WNOsf/eh1lH+wsl2+zq+5Bt2c5lSBmPv6nLQySaij+5nSMSaUSGSOhyQiQiWSISkQAF5YiEAGLGW1S696F4yf3Tj7Y/HP/wmFN0djxus3pOHb68KZfrsc2991n/wNEZn57lNZMAItFM+untG5FIIzNEQpcTIhHJEpGIBCgoRyQEEDPeYjyRCMvfuLC6S5T2fssv8i+k6339xKZO/eILbfb0U0Nvsz7ibYM1P02oqYt3tHNEwlHYglERCQHECWiBSOggIxKRLBGJSICCckRCADHjLWY+uvjN+yMqrLVv5km2+dj7q5pC8UK6qnY0xkbhfRHnfrKrZIubv9Nnpy4aiG1NvZgAIiEG2uLtEIk0AkYkdDkhEpEsEYlIgIJyREIAMeMtwo3W4R6Jtj1FT13KmVnb0MK3HHOn7drvtKqmyIJIvOuYbvvdi28s/o1Vh5fPhceT8skWAUQiW3lkfTWIRNYTGlofIqHLCZGIZIlIRAIUlCMSAogJtGjr32qTX3vQ2vu32kDXvtbR9wcb7Jxh/dPenn+8a7WfLIjEQbOmVFzuS5t3VjsG200QAURigkC3yG4QiTSCRCR0OSESkSwRiUiAgnJEQgDRUYssiESlMxJHHJmzn67hjETWDkVEImuJZHs9iES28ymsDpHQ5YRIRLJEJCIBCsoRCQFERy2yIBKVXph25T/023mf3eMoiTRGRSTSyCkrq0QkspLE2OtAJHQ5IRKRLBGJSICCckRCANFRiyyIRMD9i4fa7eGHhl6YdvyJA3bCiYOOUkhnVEQinayysFJEIgspjL8GRGJ8RtVugUhUS2qU7RCJSICCckRCALEFWqxaf5td+fO/s97dW/PTXPzOZXbRO5eNmCwrItECyF2MgEi4iFk2JCIhQ9nQRoiEDi8iEckSkYgEKChHJAQQE2/x4rYNdtx3Dh8xxc2L7rRTDyl9mhMikXjYE7x8RGKCgSe+O0QijQARCV1OiEQkS0QiEqCgHJEQQEy8RTgbceEDS0ZMEc5IhDMTxR9EIvGwJ3j5iMQEA098d4hEGgEiErqcEIlIlohEJEBBOSIhgJh4i/ueu8fOXX1m3SLR22t25eVd9tRvh940/bYjB+3Kf+iznp7EwbD8aAKIRDRCVw0QiTTiRiR0OSESVbDcuavPrrjuFvvxA+vyW3956Tn2kUUL8v8fkagCYIM3QSQaDDiB9uHSpvffcZxt6yt6YZ2Z3fXX99kJBw39WS18Kp2RuOD8LrvrjqEbnwufM84asK9+vS+B6VliIwkgEo2k23q9EYk0MkUkdDkhEuOwLEjEce84YlgeiksQCd3BWG8nRKJecq1V94uX1toNv7raglTMmT7P/vbo80fcHxEmriQSlV4QN2duztb9hvc6tNZRUvs0iETtzDxXIBJppI9I6HJCJMZh+YPVa+35F39vFy1ZXHFLREJ3MNbbqVVEoq13q02/7ivW+eQTNtjTYzvO+rjtWlR6o3C9jOqtm3r7bdZ974+svbfXBo6bYR3v2mz2lkm246CP5/9J8VOtSEyfbvaTNbvshus67XcvtNlb5+bsjLP28JjWFEOPWDMiEQHPYSkikUboiIQuJ0RiHJY3rFhlN9++enirA/ffx1Ysv9gOnTc7/2uIhO5grLdTq4jEvicfZ52/faIEw+Yf3md9J5ZemlMvp1rr9vrm163n8qWlZeHBSJcP/dL2P11m2w8d+XjVWvcz0dtXEomPnj7ZHn5o6P6Iwud9fzVgv/5Vh4X7J4o/4SxFOFvBxwcBRMJHzqopEQkVycb2QSR0fBGJMVgWLms647ST7dj5h+W3DGcoVt2zxm669kLbu2eabd62W5cGnYYJtNXAYmr3JBsYyNnu/oEaqrK1accTj9uMk941YlG7/7dP2B9vWtmUxfZ88P026edrR+77e0O/NNBztG096Zfjrq1z81qbtGWoz56ZC6x/VnPEqLDQqZMn2WAuZ7v63jxennyizS6/rNMe+vnQkXfiu3P2qU/vsc+c2zlivqWXDtjSy1r/DdS5nFlbLX8Qxz0S0tygu6vDAoadRcdLmpOw6okg0N3ZYe0dbbZjV9p/R7T6j0pmTZ88EYeDi30gEjWKxGu92+1zl95oFy9ZnJeL3fzHpSF/UGr5S6yzo83CO4GDTGT10/7//NDan3g8v7zBk95jg+95T8lSO+680zo/+Tcjlj+44D3W99MH8r/e8bX/y9re+PH4wMc/abmDD6573Lbnn7eO734nX5+bMcNCP5sxo6Rf11+dYu1rfzZyH181s33NrLPHdp3+asU1tG/6mbVv/pm1/+FnFv5//pvYG5++E/6rDc4+vaa13/bEP9sL2zbkaz70Z//Rvr9+lf1q45DEfOhP/6P9p3f+71X3m9QxtJg94xwvt32nzT5zXulZilC37PKcXf6l1n8Ldfjz1PEGq6rhtuCG1R4vLTg6I9VBIPyZCX9r9Gf4v0fVjNXqP0OY3FX6cI1qmLBNZQKIxDhHRri06eA5BwzfaB1E4rKvrLRLPn9W/vImLm1q/h+trF/aNG351Rb+Kf5s/doK2/GxT+R/qeOFDbbfycdZ27aya2jMrPcfltvrnz3fZp2+0LoeerCkxx/++8PWf9TRNQeQ3997j7dwT0bhE/qEfsWfGed/xqbe8d3S/lPN7I0TJLv2+5BtOWbViP13b7rHZj468lGshQ37Zp5km4+9v+p1n/PjxXb/v/9ozO1P/ZPT7OYP3llVz2rfI/HUk232/vd2j+h549f6bPHH0j37VRUkNhomwKVNHAy1EODSplpoNW9bLm3SsUckxmH5yGPP2GXXrBy+LyJc2rTu10/bVZecY1O6uxAJ3bFYd6esi8TsWeHbd+mn78STbPMPh75MVxKN8Ov9R77dwj0S4Ubn/f9i5Fubw83YW7/+rZq5jba/8vsxgnDM/OSZb963EcYI73z7D2YDU+balvl3Wv/0kSIz65GF1rWlVHrKF7lx4Y6q1t27e6sdsXLofqSxPt2Tuu3Zz24Zb7P871crEmHbK5Z12j+tmDTcd+EHBuyW23gkbFWgW2QjRKJFgpygMRCJCQIduRtEIhJgUTkiUQXLIA9fWn5LfsujDj9k+P6I8O+ckagCYIM3SVEkctN77OXnXs6TqfiTf7O8RIQbrbseWmuzTj91BMViGakFcc+yS2yvFd8YUfLq975vuxcuGvHrnU8+nj9bEtbSuW3o8qxKAlEoHFUkwpVnbWa1nJEIj3Q94+6Rs1ea96Xzx5eTF19os8f+304LSznmP/RXddN0uJosvKguvKRO+YK6sJZ1vxi6dOq4EwarWkstObOthgAioeHopQsikUbSiIQuJ0QikiUiEQlQUJ51kTjwkANHXLZULAEVn45klr/UKFxyFC5BOvDQkT+Vf33JF6z36utqJjja/nJvmWab1v7KBubOq7lnccHMRxdb96bRL0Xafux/se0z/966u+6xzo4nbHvfvrZ950Kb1jVyv9WekZje1WPrPzMkZqN97lvdYed+sqvkt2/+Tp+dumjiL1PK0lqiwnZQjEg4CFk4IiIhhNnAVoiEDi4iEckSkYgEKCjPukiEdzHM+E/hmqChTzgb8eptdw4/1jWIQrhHouPFF4a3Kb9sqfwswsCcuflLo+r50p/f34J3WsdLvxtBv145KW4UzlrMeuRUa9tTdM9HcIQDzWx/s77JJ1lbW29eIgqf57eafez7R9rfv3ulvW3f0sulrv/V1fkXzRU+XR2TrW+g9GlpX/iL/2JfPOHvxzya3nVMt/3uxdJbCI8/cdC+/8OJf/JapbW87aic/eS/8wI8wV8J0haIhBRnyzdDJNKIGJHQ5YRIRLJEJCIBCsqzLhJhxHC/QXhHRHjR3MCceRUFIFzClH/x25y5FW+iDpcYhR575s7L3z+R6yl9ylItKNWXS5Xvu61/q3Vuf8JmTTnVbG8z22v81V14v9n6Vz5kt3xw5A3cT/3hcXtq8xP21unz7G2z3m7/9urT9i/P35dv+pcHn2rvnH3CiB2Em6W3bWuzt87J5S8bqvT26lD00uad4y9OvEWW1iIereXaIRItF2lDB0IkGopX1hyRkKE0RCKSJSIRCVBQnoJICMaUtghio7yBe7TFHTjzwPzZh+LPwOBc62h/8+xL4feu+pnZjQ/PsKfP2xg9a/kL5i5ausf+6ZuTbNu20tZHHJmzn66Z+LMAlc5INGst0bBbvAEi0eIBi8dDJMRAG9QOkdCBRSQiWSISkQAF5YhEfRBnfmKxdd9bei9DvY+UHW0F06ZebdOmlD76dtuO/8OmTx15GVI4I/H9p+baLz/1TMV24abnp387dHNy4SxDpQ1XfnOSXXn5yBfJffxTe+y7//zmE5hCbbMe5Xr98k67YXnpWq78h34777Npv8SqviMx21WIRLbzydrqEImsJVJ5PYiELidEIpIlIhEJUFCOSNQPMdy/Ubg3I9yXUc89F+PtvatzrU3uHHoc7O7+k6yvf4HtO+O4knskNvSazf+m2Uf//At21UkjbyAPlymd8eFue+N9fPleo33xrvQlPWx/1xv3QvzmV50W3tr8jnf12wknNu/Fcr94qN0efmjopUjHnzjQ1LWMl6Hn30ckPKdf++yIRO3MmlGBSOioIxKRLBGJSICCckRCADG8qHrb4zbjqc8OP+K1b+8F9tpRK2xgysinKbW1bbV9pp1lQRLCZ2Bwnr32xxV5SSj+hHsbLvzXz1r43/A54aAFdsMpK2zO9Hk22HaHPbrpJnv8lV5bu2EfO2rf99nfHv0F65lceu9H+ML9sf91su0Z5Yf1QQZu+FqfhSch3XhdZ4lsFK8liETYttJ7JIKoXPifJ1v43/w6R+kZzhgEgeHjhwAi4SdrxaSIhIJi43sgEjrGiEQkS0QiEqCgHJEQQDSzSu9/GO3t1TPe8hmbOrn0rddBJl55bX3JYj5690J7+KXSl9Mt/JPKN1SPNsXhh0wZcW9D+bbhi38QjtE+4VKon6zZlX8PRCWRKL+nIvRZcPKgrV0zsmezHhmrSZkutRJAJGol5nt7RCKN/BEJXU6IRCRLRCISoKAckRBANLP/v71zgZKquPP/t7vnxcBMDzC8BgGFrEF5aRINyEI07gZECdFVwA0a1xcaMKuyTETMX92ImuH42ASj+IoRXBHdqItLwI2BoAjKUQQUMCvoMJHnAPOAeff0/1Q33dPd9/bjdtXt7nvv957DUaerflX1+ZXQH+pWVcVa7Q3cYjXi0MRoORCtlXsnoSBPe3v1gWP74fd3rSgMXKKNKVYcQhuq1+xdhZ21wWNgxw6cEFixiHzECsEPLipKOsBu3YBmncOXhEBMv9qHG2e3hy+T0xMJvVOU4sUUG7fnVXJVImlSbFKAImGTRGZoGBSJDIGWbIYiIQkwojpFQpIlRUISoILq2RIJcR9D6eIHUbR6VeDY1tbxE1D/QJUp+wyMYBJHr3o//zkKjwVfO2rtNRH13/wVCo+/ix5fPYGC4xsgXls6cfoctPSdGg6tJxJwF6L222+irVfXF/x8zzb09l4Gt+uoplv7j0bfLq0nEoWeQiz/4ZtYX/2/eOLjR6Ji3DX2ftz2nfnhn6UqEr3LgaO1Wkp6X/pTFQkjMY3kh2WtRYAiYa18Zbu3FIlsZyC19ikSqXFKpRRFIhVKCcpQJCQBKqieLZEoqVoE8SvyaRs/EbVvBu83yNaj+4pSvx+h6NAbmi7VnrcmLAnxbqT255Xh4MSd8OcHVxr69Ryue3xrW8cE1NavjWrj9j/djFd3R78CJQqIVYnG1gZ0Inqzc1lRT3x249dRMfSOSo0dyNhxndi+3Y2mk9GfiAvexEVvkY+eSNw+twCvrghufA49l0714d2/eDSvVYX2WmQrv2w3swQoEpnlbfXWKBLWyCBFQl2eKBKSLCkSkgAVVM+WSJRPm4SCjdrXe/bXRv+tvIIhGgqht7LQmd8b7nbtCkLjNxaicdjCQHyxktHng+8j78RuIHQBtPgO7gJCwiFWI/qUjdP0p9PfF0fq/hLYdB351LfW4crXJ4dfX0plIF/PjeZXs8+FexfmBy6XE8/3LvJhzxfuwC3V4rPI26rF60jidabyPn7cOLsDk6f4NE3qiYQ4DerehQXhWCNGduLOynZ89qk7cP9ETY0bXm/8mKmMi2WsSYAiYc28ZavXFIlskTfWLkXCGK9EpSkSkiwpEpIAFVSnSERD1BWJgt5wt+mLhK9oMIq/fgnobEHeiV1wdzR2icSp0O3fG42WnlPR1nEuepdeqclac0chfvzqGBw6WYRxAyfgzvODciJEYtZ/T8PHh7aklGmXrxDj/tyEG3QkYOXLHry6Inj3gjgu9aqrOzD23G6auFfN9OHxJW2anwtZeG5pHj7cHIxx/tgOiFef+JBAIgIUCc4PIwQoEkZoZa8sRUIde4qEJEuKhCRABdWzJRJlc29G8YqYk4sGDcahrfoXqikYakohjLzadHLQbHSvWRod99QqRPiH4m63KQC6Ax2+b8LjPgCXK+aKaAB1LUDPXwVrCZGYd/5CxHu1qbTAi5NH+sLn/b/otr+8CPj9nwM/izwdSe+SObFqIFYMYp9x4zvx2qk7IyI/03t9iRunU5pSji5EkXB0+g0PniJhGFlWKlAk1GGnSEiypEhIAlRQPVsiITZbexdWhmWi7dRm6/ZRYxSMKv0Q4j4I7+eVKDgWfO2qrdcEHD3nFXQ7vAre3ZVwddTDn+fFidPnBjZkh8rptijeJpogrpLu+tTvL4HLdQJA9N4DUcJ1f7DciD5j8PaMTdDbbJ3vzsdTk5fjhh+eCVx2C3DaB8FKf/susHwN0BLcizHpEh+eXxZcWdA7njUeoch6kWX0TmYaNNiPzR+3pA+bNW1PgCJh+xQrHSBFQilO04JRJNShpUhIsqRISAJUUD1bIqGg68pDiH0Oxftfgru9LhD7xJA54U3Seo3prV4EykWuSvyztmZHZx7y3NrXgib8DnhvHyBWHDb/ZBfOfqZCU1l8tuvmA9D7Yh9ZOHJlIZ5InPvtTmz9KHpVIt5maL32SkuBXXt1zo1VnhkGtCoBioRVM5edflMkssPdaKsUCaPE4penSEiypEhIAlRQnSIRhCgkou+mcfA0V4epxp64FIu7bMfNKN6vPVUpXE5sQbhcm6Tj4jUmnesdQisS3x8yCf93fDdqGrr6Eooy3PVDvDNnBQb36wafdi90uLHrbujAol8F72vQey0pJAHitafQRuzJl3RoTmkKBfzHC4uw89PQLvLgT+OtXiiYlgxhEwIUCZskMkPDoEhkCLRkMxQJSYAR1SkSkiwpEpIAFVSnSAQhFh1ehV5bZ2iI1n+zCidPn6tLWkhH+ZbJUfIRXo0Q37kvABB9EFMgzq8/AG7+NlAU3LcceB5+D1jwDnBayWD87Ds/R+W6Odo2W7wY+t46vPvGcPz3627MvaUwrkxMu8KH3z4dfLVJnM50/bWFYREQEvHYkjbdU5niTSlxJ4WIETrlSZzu9PyLrXHFQ8HUZAgbEKBI2CCJGRwCRSKDsCWaokhIwIupSpGQZEmRkASooDpFIgixZM8ilHwRfa+F+HnkEa8FxzageP9/Bk5n6ugxAk0DZ6G9x9no/5dvwuVrjM7GtOAG63bfcOR7ujaQbzsEXPhCcHP13w8GBpYA2w6OwOShP0RpQQmmDLsc4sbq+96r1GZ3/b3A+vvwdW3X60TPPe3B/7u7QFNWb9O0EIqGekR9+ReCsOl9D8R+h7EX+MI3WMebWseP5KPT70fvvjyxScH/frYPQZGwfYqVDpAioRSnacEoEurQUiQkWVIkJAEqqE6RCEIUkiBWF2KfupFL0TTwGvR5fyzyG7dHf+wHGof9G1r6/RP61FwAtPkB8Z3+m+LmOcDXOQiHjn+OooJVyM/bjvrmYRj1zPUBiUj0zP/u/8PiD/5dW2TNYxjn+VnUqUriWNazh2mPcRX3QNy/KPhqU7xH3C/x7NKuZRGvF1i7riUgFfEevXskFExDhrApAYqETRNr0rAoEiaBVRyWIqEOKEVCkiVFQhKgguoUiS6IsbdTt5eMxpELNseVDPEakz/fiwMXH0BF72JNNvz+7jhw7EjUzx/5cBEe/VC78hFZSNwlITZVr/3yra4fHxyD0v/8BM8ta8UF46NvtH6kKh+PVnUJgXjtSBzhmkgI4glIvHskQh2hSCj4n85BISgSDkq2gqFSJBRAzEAIioQ6yBQJSZYUCUmACqrnukjk79gGV0MD/KWlyMTRsMU1v4PLdxJ+T3c0DfqXAOF4rz2F8LfPGANxa7Xec/+fqzCyfExg78Og0uCGiUteGY/tR7YmzJ64ofqzI9vwRU0DDh92YUTJRAwa5I8rB+IVpfpTt1eLOyLE6kKi5/2Nblw1rVBTJN49EhQJBf+zOTAERcKBSZcYMkVCAl4Gq1Ik1MGmSEiypEhIAlRQPZdFIvbSurbxE1H75hoFo9YPEXsKU1vPiTg+din6tFwI97pD2kriDSDxKtNV+vHqW4Gyh4OfiRWG+ydUYfpZ1+DK1ydh09fBeyr0HrEi8drla00bpwjMFQlT8TL4KQIUCU4FIwQoEkZoZa8sRUIde4qEJEuKhCRABdVzVSTESkSfi8ZpRlj3m6VouvoaBSOPDiEuouuzSdte+3fGIP/MbcBqcf10TLNCJEYCiHOHXugkplAtb2EZdt60H+9/vQFXva7djxEq99yUVzB56FTlY4wNqHcs7NvrWhKexMRXm0xPi60aoEjYKp2mD4YiYTpiJQ1QJJRgDAShSEiypEhIAlRQPRdEQtxy7feWIfRPMaySqkWBX7FPY+VCiF96j7umGp2DdM5bjSks7ozw55cF7o4I/bP46+WBG61jH9+IwfCM2QeIk1T/BkBc7SAOaBL7m8+MPt714Ike+PyouLUaeHIL8Mpn2l4KkRC3Tze4qrFy93K0tgB9Sr3425F6lHqByWdcFrjZOvIRqwfJXlVKNBUS1V/5sgc1NcFL6abP7Ei4r0KUoUgo+J/OQSEoEg5KtoKhUiQUQMxACIqEOsgUCUmWFAlJgAqqZ0skPPuq0fO22SjYuCE4Co8HoUsRxF6Ik9fdiLJ5t2lGWP9AFU7eEn2vQ9/zRiLvy72nyrrQ9ONrUfcfT4brijsieu64Ga6O+oh4bsDfCYTuWIu8jTqy1VEAxK8UnjvWAo9vTlJw8+3AmsfiFioqAl5+rRXnj+2E2Pdww08KA/dAiGfEKD+e+33iTdSRgSNXHISI3DG/HTfdIndsK0UihYnAImECFAlOBiMEKBJGaGWvLEVCHXuKhCRLioQkQAXVsyUSsfsfYofS8o+TUPjBZrjExQenHn+pF4fXb4ZvcNeqQ9m/3oril36vIVH71p/QNlbcCAcMeGdAjEQA4YvjEjHMBzAleB9EsuePXwBTXkpW6tTnK14Hdv8obuG+ff3YurMFV04rxKaNwdWC0JPqbdJipeGO27T3S2z+OPHxrslGQJFIRoifRxKgSHA+GCFAkTBCK3tlKRLq2FMkJFlSJCQBKqieLZEonzYJBRvjbzgWslD7xhoUr1iOwo0b0Dp+IppmzoqSCDH86NWILiChlYt490OES4ZWImL/KVYhhqYmESJWSqsRoUZPXSyXKH3i0rmB5dr7IcTKws49XRfSxYsRe0dEqNyrb2qPjzUyjSgSRmixLEWCc8AIAYqEEVrZK0uRUMeeIiHJkiIhCVBB9VwVifaRo3FkfbL3hIB4QhISiXibqDXoIkVCLAJcbQyuSpFwuYBnf9+GG67VriiIOyI+2JrkRjsAsXdLhEbzwkutWP1WHt78gwft7UBnJ3D+dzsx/+52zf0UegQoEsbmhdNLUyScPgOMjZ8iYYxXtkpTJNSRp0hIsqRISAJUUD1bIhFvM3VoSCdnz0H9osVJR9j9qSXw3qPdJH1w667wxut+G4bD07wvaaxAASEUpQAMHpp0+uNAdeQWjEStPbUVOHhO3BJud/ALvt6Tyo3Vop7ePRGlpcB3zvfhz3/yaEKLlY5NHzcn3dRNkUhtGrFUkABFgjOBxG+LAAAgAElEQVTBCAGKhBFa2StLkVDHniIhyZIiIQlQQfVsiYToupAJ8doSOjrgPn4cnT17Anl5gdeYTsyeEzjJKZVH7JPotuqNoAcUFaF+URWaL++63MHTXI0+m/8e7rajwXBCFk49fk8RXJ0tXXsmigBckbxVX2cJWnzNONHmw7/+0a85oanQU4hWX6s20AvrgK8uTNhA335+HD4U2gXeVVRcFvfci61Jv+yHaqxZ7cGzS4M3XpeW+jGvsh0/uEgMUP9J5bUnikTyucESXQQoEpwNRghQJIzQyl5ZioQ69hQJSZYUCUmACqpnUyQUdD9uCHG0a4/qJ9Dt0OvwNNcEbqsGtH/N33bVRBTkfwBA50t/gg5e+tIQVNd70dregi/q/qopebrvB/jK83b0z7/6HvDC+vDPxGtKF13sw7IXgl/2Q4/YUL32j9pVgzsrOwIyIPPo7bsIxaNIyJBlXT0CFAnOCyMEKBJGaGWvLEVCHXuKhCRLioQkQAXV7SoSvbZOR9HhtxITEqcxTUsPouv+JPVeWIdJV+8Bhr+BTR81ouHDHwGfXBe4Q0I8f3emH8tWBI9yfeapvLA4iLscxMrD2G9pVw5S+aKfbDR6J0GJOuK1p7fXJz/RiSsSyQjz80gCFAnOByMEKBJGaGWvLEVCHXuKhCRLioQkQAXV7SoSFWuLE9MR39MvAtAzWMyPArgCt84BTe3Alv3AOf0Bb2H0SbE+P3D3n4Cq9+OErxsSFIb19wXufRA3RYv7IMTm59Aqg1hxeGxJW8JXlMRrSeLkpb/VuAJf8m+8RX41QvRYXE53x9yCqBWPioF+/PKhdkye4ks6oygSSRGxQAQBigSngxECFAkjtLJXliKhjj1FQpIlRUISoILqdhMJcdxr4bF3UbJHeyt2GJfYI9EPwD90AfTDg0XrbsEvNjyRPtWYV5eEAOzam/yo1vQbzHxNikTmmVu5RYqElbOX+b5TJDLPPJ0WKRLpUNOvQ5GQZEmRkASooLqdRKL462Uo+3R2alS+BWB4dNHmDqA4gX8kDSxurBY3V596xKbprZ8lP6o1adwcKkCRyKFkWKArFAkLJCmHukiRyKFkJOgKRUJdnigSkiwpEpIAFVS3k0iUb5mEgmPxL7nr+oYPYCIA7TUNhi6Wc8EFf+gIKLEaseKN8B4I0VZBAfDlfq5IKJimDGFRAhQJiyYuS92mSGQJvMFmKRIGgSUoTpGQZEmRkASooLrVREJcMCc2Ufu6DUFz38vgz+86IjauSFwSAUpssNYRiFCJZBfLeQt7Yu2M4AaJQaVD8NmRbTitdAjOHjhANxvihmo7PVyRsFM2zR8LRcJ8xnZqgSJhjWxSJNTliSIhyZIiIQlQQXUriUTZjptRvH95eNT+vDIcvmBTQCrEo3tSUz6ArislkhKb+Ro0d0JEVurfvQIf/csXmjiD+3WDL2avMvdIJMXNAjYnQJGweYIVD48ioRioSeEoEurAUiQkWVIkJAEqqG4VkRCXyvXbcJZmxCeHzEH98OAN2GK1onzLZLg6Iq6YHgtgqBbUrlrgjDKgKOIKhz3HgW/8OjHUGWddg0cvXqop9OAv8/HEf0TfB3HfA+246ZYOBVnKnRBckcidXFihJxQJK2Qpd/pIkcidXCTqCUVCXZ4oEpIsKRKSABVUz1WREBfK5TfuCIzQ120whEgISYh92npNQO15a8M/DtbbjvLSyUAPAOJVJp2nvhUoexi4XYgGgAONiVciRJmzy0fjtcvXwFuof+P2h5vd2PaJOxBv8qUdGDRIQYJyLARFIscSkuPdoUjkeIJyrHsUiRxLSJzuUCTU5YkiIcmSIiEJUEH1XBQJsbLQ65OZAXkIPQ1nPojSv96tGfHJQTei/mztMkJF78T3SHxyEDhXu7Cgie/56gd4eNo8nD7UjwsGih3azn4oEs7Ov9HRUySMEnN2eYqENfJPkVCXJ4qEJEuKhCRABdVzUST09jr487xwtdcDruhBnxgyBw2nXm2K/CSZSEz4HfDeviQA24uAJbsx6YLT8Pyy4GV1Tn8oEk6fAcbGT5EwxsvppSkS1pgBFAl1eaJISLKkSEgCVFA9XZEom3szilcENz77vWWof+BXaB0/Eb7BwY3PMk/c05fERXIhkTj177GvNoXajScSb+wG9tTOwLaDPVDd8CWGeIdiY8067K3fo+3yb7cDh0cFbqDeuacZNftcGDRYNBx8Yv9bZsxWqUuRsEqmcqOfFIncyINVekGRsEamKBLq8kSRkGRJkZAEqKB6OiJR/PIylN2mf/GbEInjv1mKtvHpvwaU8n0QAJoqZqFu1NMaEnoiEdoXccd37sKvP14MX2fwmCW3y41Of6eW5n1BaSjuDjSdDH4sRKJ/fz+2fBjcCyEk474H2jD96pgjmxTkJhdDUCRyMSu52yeKRO7mJhd7RpHIxaxo+0SRUJcnioQkS4qEJEAF1dMRicjVCL0uCJk49PGutHund0O1EIa8lmrNhXO1561BWy+ttPQpG4t8z/aoPojViIXvjMae439Fqy/JjdO7pwUvmEvx2fxxS9RqRYrVLFeMImG5lGW1wxSJrOK3XOMUCWukjCKhLk8UCUmWFAlJgAqqpyMS3oXz0X3pEwlb31/bJNW7gmMb0O3wqsC+iPaS0Th5+lyIE5mKv16OwuMb0F46Bq09J+hKRKjhsu63Ap4/4XhzB96r7oHdh2dj+lmzcPYzFbp9u3HMHNS31qN93znI//h2eL1+vPsXNz7fHVx9SPS8+mYrLhivs6qRrKLFPqdIWCxhWe4uRSLLCbBY8xQJaySMIqEuTxQJSZYUidQAevZVw3tPJYpWrwrsR2ieMjWwJ0H8ezqPiFOy+EHk79gG/5DT0bzgHtRd+c8phxL1e107I2H5ut8sRdPV1wTKFB1ehZI9DwbueRCXxzUOuxvNfafC+/nP0e3QKrg66tDSd2rg50IQUn1qGqpx33uVWLN3VeBI1u8PmQTxMtK66rWob63D5KFTced5d2NEn+iYA5doT3Qq9BRh763HNE1fOa0QmzZSJEJgKBKpzk6WEwQoEpwHRghQJIzQyl5ZioQ69hQJSZYUidQAlk+bhIKN70YVbpo5C3VLtHsDkkUUUtLvW9qL3Y6s24T2Ual/iRf7JMRm67z/+yvchw/pNitidn6jTPciueYB09HtwErdem09J+LouSvgz08sSle+Pgmbvo7mEhtQSMTbMzZF/fiCZSNRXb836mcjykfj7ZmbNf15pCofj1ZFXzQXW+i0QX68vb4lsF/C7g9Fwu4ZVjs+ioRannaPRpGwRoYpEuryRJGQZEmRSA1gRbn2b9DFl37xRd3o0/2pJYHVjdinsXIhxK90nt7Tp6Hwz/+rG7Nzuhfez7XtBS+Zi3/+arxN1JGN6K0s6PX/67nRr1mJlYwbVs+A+Kd4RvQZjccufhqDSvVPnBIyEVqVENIw8Xs+/OfyoFyUlvpx/6J2R+yPCIy3OB+dfj9ONNvrxu505j3rJCdAkUjOiCW6CFAkrDEbKBLq8kSRkGRJkUgNoK5IjByNI+u1f4MeGdFdU43e185E3hd/hautDZ3de8A38DTk7/pM03DH352Jzr79Az9vunoW2keMQtEf3wr+98xZ4WNdPTt3oM/ll8JddzzwWUfFQDT98AqUPvG4Jqbvx0PQOb0H8k9o20smEiguhH9aUSCmr7MctQ1vobMz+ot+uiKRCvU1qz14bukpWfD6cef8dowY1XX0ayox7FiGImHHrJo3JoqEeWztGJkiYY2sUiTU5YkiIcmSIpEawHRfbep/9hlxXztKreWuUsdefAUtU6aioqIn0NYaVb1zQAXcB/ZrQz4IIPTdP/IOCAC6rzZFlhEOcUVXSL/fiwPHDkS1MfLZQTjecjThUM4uH43/1XllKVGl9ze6cdW0wqgi4rWlTR83O+L1pURsKBJG/89xdnmKhLPzb3T0FAmjxLJTniKhjjtFQpIlRSI1gIHN1gvnB1YI/KXe4GbrRVVJN1vrrWSk1qK2VNv4Cah9cy10Y7pcOPb7FSipWoT8T7cD5QD+CUDEqawd3YYir3kvxEpE47CFwc3WuyuDJzN11GsbLABwZfSP9x+NfkVJb0XCW+ANbLhuaKvHpDMuw7zzF2o2WydjEG9fhFNOZqJIJJsh/DxVAhSJVEmxnCBAkbDGPKBIqMsTRUKSJUVCEmCS6ipFAvn5aLyjMiALek/ouNeyHTejeH/wxuvIJ959D6JMxZpTe0Aib63uDuBH0TEOHt8V9XqTnkicVjIYH/xktxTYexfm49lTrzVFBqJIcI+E1MRyYGWKhAOTLjFkioQEvAxWpUiog02RkGRJkZAEmEmRSNJWSCS6f7VEd3P1oYm7Ake/6j39NgzXbrw+LXpFA/Bg/9HGqOrf/f1w/K0xesO2WIV4/lL906BSpb3yZQ/uuE0siUQ/Trl0LhEnvtqU6ixiOUGAIsF5YIQARcIIreyVpUioY0+RMMByyye7cd3tD+OFx+/CeecMD9SkSBgAmEZRIysSfk8eXL40T+LJy8P+gw3hHvbaOh1Fh4Mbtf15XtQPr0LTwOCdEnqPuF+i1yczwjLhKx0G94WH4eoREgcP6k8+hJMtc6Oqb/5yG/5l1Uw0uIOnLw30jMZ//fiVuKcvGUF4+9wCvLrCE6hSWgrcv6gN06/2GQlhy7IUCVum1bRBUSRMQ2vLwBQJa6SVIqEuTxSJFFmGJEIUp0ikCM1AMXGxnN4JS0ZEQuyBaLpiOsrm3Wag5VNF8/Ox/4B2n4OnOfgFX0iFu70OHQPORF75XwM/a2qdBV/MKUzi5uqAfETcH+F2V2tOawp1MPxlvyhYDy1luLOyA/Mq242PIU6N+no4foN1JBqKhLKp5YhAFAlHpFnZICkSylCaGogioQ4vRSIFlnuq92Pxb1egcs7VuPuhZzBv9nSuSKTALdUiYs9C7L6F8AlL/UoAX2p/i974r/+Gxl/8O/ROiErWl5Z/mIRjK17XFCs4tgHlWyZH/3wUAPELwLHGV9DSNjVZ+LifDyzvpvlMHNH69rqWtGOyYmICFAnOECMEKBJGaLEsRcIac4AioS5PFIkkLIVELHzoGSxacBN6lZXg1rseo0iom3+BSAOGDoCrIXo1IOEJSzrt+71eHNjTdbRqwcYN4VKFG9+NEpXO8j5wtbbC1Rh8lUmcIlX75hrdW7HLt0xCwTGdm6f/ORi+rWMCauvXpk1ETyTEa0i79janHZMVKRKcA+oIUCTUsXRCJIqENbJMkVCXJ4pEApbH6xux4MFnMP+nMzFsSAXEf8eKhN/PC75kp6PL7daGGDIE/i+/hO5nkaWHDYP/gQeAGTMSd+OrrwDxSzwXXhj899B/n3MOIA5dqtsW/Lz7EKD76YF/db1zEXD4L9rYp0QC8MLvD15s91XdV6iuD74KNabfGJQVlSVFc8YZLlQHq4SfadOA11/nvEoKjwVMJdDa3onCfJ3/N01tlcFJgARIwHwCLlfoiEXz27J7CxSJBBkWqxGzKx/BgUPaC8NC+yS42Vr+fxGZFYmT190IPPkk2n1+NLWkt9FabJQu33IJXB2n9ikIpxi5NLC5OtUViTV7V+HOd2ajvjUYw1tYhmenrMAFAyMuotBB9dkOF66cVoSGU/u8Txvkx/MvtvIGavlpFTcCX20yEa4NQ3NFwoZJNXFIXJEwEa7C0FyRUAeTImGApd6KBEXCAMA4Rbs/tQTeeyqjPg3tkeh17QwUrV4Vt5ETs+fA9fjjUiIReUJTqCF/XhkOXLwfqe6ROOvpAYEL5CIfI8e4CqEo9QKDBnMlQn5GJY5AkTCbsL3iUyTslU+zR0ORMJuwmvgUCTUcRRSKhAGWFAkDsAwWFac2FWwM7kVomTIVvsFd9zV0e/1VdH/2KRR8sEkTtX3kaLRt+ciQSIiTlUr3PIj8ug8D8TxtB7V3QIijfScFb6EWJzcVHVoFt68eHf3PhLv3oWA/26aGT23SvaG6sAw7b9pvkASLm02AImE2YXvFp0jYK59mj4YiYTZhNfEpEmo4UiQMcqRIGASmsLgQjT4XjYsbsXXOz3D0/odTalGcwiRWGpI9IZFIVk58ricS4wZOwGuXp78RO5V2WcY4AYqEcWZOrkGRcHL2jY+dImGcWTZqUCTUUeeKhCRLvtokCdBA9WTHuoqTl9rGJ96TIJqrWCt2Vid+mipmoW7U08mKhT+/9935eHbbE1Hl7/v7Ktx0TvQFdCkHZEHTCFAkTENry8AUCVum1bRBUSRMQ6s0MEVCHU6KhCRLioQkQAPVXfV1KH55OYpXLEf+p9s1NRsrF0L8SvboioTLjcZhCwKXzrWXjE54i3W8+Ct3LcNntdtRWliGEeWjMXlo+vdLJBsDP0+fAEUifXZOrEmRcGLW0x8zRSJ9dpmsSZFQR5siIcmSIhEfoPji773n5yh+eVmgkFgtqH/gV7r3NRhJg4hXdttsTZX6B6pw8pbkKwB6IuHPK8WBiw8a6QbLWpQARcKiictStykSWQJv0WYpEtZIHEVCXZ4oEpIsKRLxAZbNvTmwehD5tI8agyPrtJumjaTBs68afS8cq7nE7tDHu6I2aceL2fvDSSg8HnHJnB84cfocNAxfbKQbLGtRAhQJiyYuS92mSGQJvEWbpUhYI3EUCXV5okhIsqRIxAfY58Kxuq8g7a8NnoYk84jN1yVVi+BuqIenV080//Q2NJw3PqWQ4tSmHvueQGHt2wDy0Fr+fTQOS/5KVErBWSjnCVAkcj5FOdVBikROpSPnO0ORyPkUBTpIkVCXJ4qEJEuKRHyA8TZHpysSYiVC3Dfhrg/e19B09Sw0zZwFb/d8Q8e/Sqac1S1OgCJh8QRmuPsUiQwDt3hzFAlrJJAioS5PFAlJlhSJ+AC9C+ej+9Lok4zaxk9A7ZvpHYna79zh8NTsi2pQXFxXeNUVFAnJeeyk6hQJJ2VbfqwUCXmGTopAkbBGtikS6vJEkZBkSZGIDzCw2XphJQo3bgisIrSOn4D6RYtT2scQG7Vg4waUT5usaUysSPh/9zuKhOQ8dlJ1ioSTsi0/VoqEPEMnRaBIWCPbFAl1eaJISLKkSEgCTLF6PJFoueQy+P7wOkUiRY4sBlAkOAuMEKBIGKHFshQJa8wBioS6PFEkJFlSJCQBplhdrG70P/cszUlN4sjXvHl3UCRS5MhiFAnOAWMEKBLGeDm9NEXCGjOAIqEuTxQJSZYUCUmABqqL+yPEq1KuhuBma7EacXzJ0yit6EORMMDR6UW5IuH0GWBs/BQJY7ycXpoiYY0ZQJFQlyeKhCRLioQkQAXVeWqTAogOCkGRcFCyFQyVIqEAooNCUCSskWyKhLo8USQkWVIkJAEqqE6RUADRQSEoEg5KtoKhUiQUQHRQCIqENZJNkVCXJ4qEJEuKhCRABdUpEgogOigERcJByVYwVIqEAogOCkGRsEayKRLq8kSRkGRJkZAEqKB6OiJRs8+Fv9W4Aq2fPbITXq+CjjCEJQhQJCyRppzpJEUiZ1JhiY5QJCyRJt5srTBNFAlJmBQJSYAKqhsViTWrPbjh2oJwy0Iinn2xFReM71TQG4bIdQIUiVzPUG71jyKRW/nI9d5QJHI9Q8H+cUVCXZ4oEpIsKRKSABVUNyoSZw3thoaG6IYnXeLD88vaFPSGIXKdAEUi1zOUW/2jSORWPnK9NxSJXM8QRUJ1higSkkQpEpIAU6ye37ANnfll8HUboqlhVCQGlnfTxvACO/c0p9gbFrMyAYqElbOX+b5TJDLP3MotUiSskT2uSKjLE0VCkiVFQhJgkuoFxzag99aZcHXUBUoKkag9b02UUKgQiXHjO/Ham63mDobRc4IARSIn0mCZTlAkLJOqnOgoRSIn0pC0ExSJpIhSLkCRSBmVfkGKhCTAJNX7bRgOT/O+qFItfS/DsXNXhn9mVCQeqcrHo1V5UTHve6AdN93SYe5gGD0nCFAkciINlukERcIyqcqJjlIkciINSTtBkUiKKOUCFImUUVEkJFGlVb1ibbGmnliVODRxV9oiISqufNmDmhp3IMa48T5utE4rO9asRJGwZt6y1WuKRLbIW7NdioQ18kaRUJcnioQkS65ISAJMUl1PJNp6TUDteWulRMLcXjN6LhOgSORydnKvbxSJ3MtJLveIIpHL2enqG0VCXZ4oEpIsKRKSAJNU77V1OooOvxVVqvEbC9E4bCFFwlz0to1OkbBtak0ZGEXCFKy2DUqRsEZqKRLq8kSRkGRJkZAEmKS6q70OPfY9gcJjGwIlmypmoWngNVG1jO6RMLfHjJ7rBCgSuZ6h3OofRSK38pHrvaFI5HqGgv2jSKjLE0VCkqUdRCJ/xzaULH4Qnpp98Jd60TxlKk7OniNJJnPVKRKZY22HligSdshi5sZAkcgcazu0RJGwRhYpEuryRJGQZGkHkeh37vCAREQ+x158BS1TpkrSyUx1ikRmONulFYqEXTKZmXFQJDLD2S6tUCSskUmKhLo8USQkWVpdJAo2bkD5tMkaCk0zZ6FuydOSdDJTnSKRGc52aYUiYZdMZmYcFInMcLZLKxQJa2SSIqEuTxQJSZZ2FYmWSy7DsWVddzVIYjK1OkXCVLy2C06RsF1KTR0QRcJUvLYLTpGwRkopEuryRJGQZGl1kXDV16H/uWfB1VAfRaL+gSqcvGWuJJ3MVKdIZIazXVqhSNglk5kZB0UiM5zt0gpFwhqZpEioyxNFQpKl1UVCDL9o9Sr0nHtzWCas9FqT6D9FQnISO6w6RcJhCZccLkVCEqDDqlMkrJFwioS6PFEkJFlaUSTEKkTxipfgrq9Dp7cMTTN/DL+3TJJE9qpnUiTWrPZg56euwGDHju/kjdjZS3vaLVMk0kbnyIoUCUemPe1BUyTSRpfRihQJdbgpEpIsrSYSQiL6XjQOnn3V4ZH7Bg/B4XWbLCsTmRKJR6ry8WhVXtSMee7FNkye4pOcRayeSQIUiUzStn5bFAnr5zCTI6BIZJJ2+m1RJNJnF1uTIiHJ0moiUfzyMpTdNlsz6rrfLEXT1dEXvUmiyVj1TInEwPJumjGNG9+J195szdhY2ZA8AYqEPEMnRaBIOCnb8mOlSMgzzEQEioQ6yhQJSZZWE4mSqkUQv2KfxsqFEL+s+GRTJEpLgV17m62IzbF9pkg4NvVpDZwikRY2x1aiSFgj9RQJdXmiSEiytJpIiI3Vva6doRm1lS6gi+18pkTirKHd0NAQ3TpXJCT/B8pCdYpEFqBbuEmKhIWTl4WuUySyAD2NJikSaUCLU4UiIcnSaiIhhtvnwrHI/3R7eOTtI0fjyPrNkiSyVz1TIrHyZQ/uuK0gPFCxGvHcslZuuM5e6tNqmSKRFjbHVqJIODb1aQ2cIpEWtoxXokioQ06RkGRpRZEQQxY3WhdufBet4yegbfxESQrZrZ4pkRCjrNnnwqaNbpR6gREjOzFosD+7g2frhglQJAwjc3QFioSj02948BQJw8iyUoEioQ47RUKSpVVFQnLYOVU9kyKRUwNnZ9IiQJFIC5tjK1EkHJv6tAZOkUgLW8YrUSTUIadISLKkSEgCVFCdIqEAooNCUCQclGwFQ6VIKIDooBAUCWskmyKhLk8UCUmWFAlJgAqqUyQUQHRQCIqEg5KtYKgUCQUQHRSCImGNZFMk1OWJIiHJ0g4iIU5y8t5TGb6k7uQtc1H/QJUkmcxVp0hkjrUdWqJI2CGLmRsDRSJzrO3QEkXCGlmkSKjLE0VCkqXVRULcdN3/W2dD/DPysdIFdRQJyUnssOoUCYclXHK4FAlJgA6rTpGwRsIpEuryRJGQZGl1kRCnN5VPm6yh0HLJZTi2bKUkncxUp0hkhrNdWqFI2CWTmRkHRSIznO3SCkXCGpmkSKjLE0VCkmW2RUKsJHjv+Xn4XgghACdmz4HfW5bSyOKJRNPMWahb8nRKMbJdiCKR7QxYq32KhLXyle3eUiSynQFrtU+RsEa+KBLq8kSRkGSZbZEonzYJBRvfjRpFY+VCiF+pPgOGDoCroT6qOF9tSpUey1mNAEXCahnLbn8pEtnlb7XWKRLWyBhFQl2eKBKSLLMtEhXlxZoRtI2fgNo316Y8svwd21BStShwQV37qNFoHT/RkIik3JBJBbkiYRJYm4alSNg0sSYNiyJhElibhqVIWCOxFAl1eaJISLLMRZFoHzkaR9ZvjjsyT3M1elQ/gfyG7egoHoLGYXfD122IJInsVadIZI+9FVumSFgxa9nrM0Uie+yt2DJFwhpZo0ioyxNFQpJltkWi37nD4anZFzWKRPsbhET0fX8cXB1dpzT588pwcOJO+PNT21chiUx5dYqEcqS2DkiRsHV6lQ+OIqEcqa0DUiSskV6KhLo8USQkWWZbJMRrSb2unRGWCfFa09EXX4m72br7V0vg/bxSM+q6kUvRNPAaSRrZqU6RyA53q7ZKkbBq5rLTb4pEdrhbtVWKhDUyR5FQlyeKhCTLbIuE0e6X7FmEki8Waao1fmMhGoelvkHbaLtmlqdImEnXfrEpEvbLqZkjokiYSdd+sSkS1sgpRUJdnigSkiytJhJFh1eh19YZmlEfGbcJ7aVjJGlkpzpFIjvcrdoqRcKqmctOvykS2eFu1VYpEtbIHEVCXZ4oEpIsrSYSYrhlO25G8f7l4ZGfHDIH9cMXS5LIXnWKRPbYW7FlioQVs5a9PlMkssfeii1TJKyRNYqEujxRJCRZWlEkxJBd7XXIb9weOK3Jyic2ibFQJCQnscOqUyQclnDJ4VIkJAE6rDpFwhoJp0ioyxNFQpKlVUVCctg5VZ0ikVPpyPnOUCRyPkU51UGKRE6lI+c7Q5HI+RQFOkiRUJcnikQSlls+2Y3rbn84XOrSi8fi/vnXo1tRQeBnFAl1kzHdSBSJdMk5sx5Fwpl5T3fUFIl0yTmzHkXCGnmnSKjLE0UiCcs/rN6AQSlwTCUAABCNSURBVBV9cd45w9Hc0oZ7Fz+P/n174c7Z0ykS6uahVCSKhBQ+x1WmSDgu5VIDpkhI4XNcZYqENVJOkVCXJ4qEQZZCLDZ/tDO8KsEVCYMATShOkTABqo1DUiRsnFwThkaRMAGqjUNSJKyRXIqEujxRJAyyfHTpykANrkgYBGdicYqEiXBtGJoiYcOkmjgkioSJcG0YmiJhjaRSJNTliSJhgKXYL/HI0pV48uE70NNbEqjZ1u4zEIFFzSDg8bjh9/vR2ek3Izxj2oyAx+2GH6rmi8tmdLqG0+HrRJ7HbdvxpTowtxsQWfZ1plojWTn+PpWMkJU/d7tdcLlc8KmbMFbGkbN9L8j35GzfrNYxikSKGRMSseChZ7C0ah6GDakI1zpS35piBBYzi0CPIg86OoGWNkqdWYztFLd7kQd+P9DUqmK+2PdLoZBz8YXI6U9xYV4AQVNrhyIUZKoIZE6G6VbggfDvEy0qfn/JySHaolN9vIW2GEcuDIIikUIW4kmEqMo9EikANLkIX20yGbDNwvPVJpsl1OTh8NUmkwHbLDxfbbJGQvlqk7o8USSSsNR7nSmyCkVC3WRMNxJFIl1yzqxHkXBm3tMdNUUiXXLOrEeRsEbeKRLq8kSRSMJSbK5+7uXVUaUG9OsdfsWJIqFuMqYbiSKRLjln1qNIODPv6Y6aIpEuOWfWo0hYI+8UCXV5okhIsqRISAJUUJ0ioQCig0JQJByUbAVDpUgogOigEBQJaySbIqEuTxQJSZYUCUmACqpTJBRAdFAIioSDkq1gqBQJBRAdFIIiYY1kUyTU5YkiIcmSIiEJUEF1ioQCiA4KQZFwULIVDJUioQCig0JQJKyRbIqEujxRJCRZUiQkASqoTpFQANFBISgSDkq2gqFSJBRAdFAIioQ1kk2RUJcnioQkS4qEJEAF1SkSCiA6KARFwkHJVjBUioQCiA4KQZGwRrIpEuryRJGQZEmRkASooDpFQgFEB4WgSDgo2QqGSpFQANFBISgS1kg2RUJdnigSkiwpEpIAFVSnSCiA6KAQFAkHJVvBUCkSCiA6KARFwhrJpkioyxNFQpIlRUISoILqFAkFEB0UgiLhoGQrGCpFQgFEB4WgSFgj2RQJdXmiSEiypEhIAlRQnSKhAKKDQlAkHJRsBUOlSCiA6KAQFAlrJJsioS5PFAlJlhQJSYAKqlMkFEB0UAiKhIOSrWCoFAkFEB0UgiJhjWRTJNTliSIhyZIiIQlQQXWKhAKIDgpBkXBQshUMlSKhAKKDQlAkrJFsioS6PFEkJFlSJCQBKqhOkVAA0UEhKBIOSraCoVIkFEB0UAiKhDWSTZFQlyeKhCRLioQkQAXVKRIKIDooBEXCQclWMFSKhAKIDgpBkbBGsikS6vJEkZBkSZGQBKigOkVCAUQHhaBIOCjZCoZKkVAA0UEhKBLWSDZFQl2eKBKSLCkSkgAVVKdIKIDooBAUCQclW8FQKRIKIDooBEXCGsmmSKjLE0VCkiVFQhKgguoUCQUQHRSCIuGgZCsYKkVCAUQHhaBIWCPZFAl1eaJISLKkSEgCVFCdIqEAooNCUCQclGwFQ6VIKIDooBAUCWskmyKhLk8UCUmWFAlJgAqqUyQUQHRQCIqEg5KtYKgUCQUQHRSCImGNZFMk1OWJIqGOJSORAAmQAAmQAAmQAAmQgGMIUCQck2oOlARIgARIgARIgARIgATUEaBIqGPJSCRAAiRAAiRAAiRAAiTgGAIUCcekmgMlARIgARIgARIgARIgAXUEKBLqWDKSSQSO1zdiwYPPYP5PZ2LYkIpwK80tbbh38fP4n3c2B372y8rrccWUieHPRb1b73oMO3btDfzshcfvwnnnDDeplwybbQJ7qvdjduUjOHDoaKAro84aiicfvgM9vSXhrv1h9Qb8our5wH9fevFY3D//enQrKgj8N+dLtjOY2fZj8835kln+Vm4t9GePGEPk7yGJfn9J9ueVlXmw784mQJFwdv5zevSRv/EO6NcbS6vmRYnEo0tXBvp/5+zp4S+B82ZPD8hCqO7Yb58dkAvxJXPhQ89g0YKbomLkNAB2zhCBLZ/sRs3+w2GZFPPj4OFj4T/oxeePLF0ZlovI+cP5Ygi1LQrHzhfxJXDzRzs5X2yRXfMGEfnnUuRfRiT6/UX0JtGfV+b1lpFJwHwCFAnzGbMFSQJ6KxJ6P4v8jVqIw+LfrsBDd98U+Bvp2C+Kkl1idQsQ0PuD/fRB/cOiEfn5sbpGzhcL5NTMLnK+mEnXPrHFnzPi9xHxRIpn6OehVfHI+STKxq6qR/55ZR86HIkTCVAknJh1i41ZTxr0Vhgi/0bx0917o/72OfZvhCyGgN1Ng0DkfBDVxWtwoRUq8d+Rc+jY8QbOlzQY26lK5AoW54udMqtuLJFf/o38/iJ6ELsiHrsCpq6XjEQCmSVAkcgsb7aWBoF4IhG54iDCxorEq6vWR72/yr8BSgO+RavEimZoReqqqReG98nEigTni0WTLdnt0HvtkXskOF8kodqwupgnX9UcDLxKG/vnTUg84/3+Ij5P9OdVaJ+WDbFxSA4gQJFwQJKtPkSuSFg9g5ntf2jT9UMLbgpLg96rbVyRyGxecr21yFdRigoLuYKV6wnLcP/EX0Q99/JqTatin8Rdt83Cw79ZHnfFkysSGU4Wm8soAYpERnGzsXQIcI9EOtScWUdPIkIkEr3DzD0SzpwvkaOO/X2G84VzIhGB2FeTuEeC88WpBCgSTs28hcYd7/hXntpkoSRmoKvJTubiqU0ZSIKFmhBfBAdV9A2vWon/XrlqffhUL84XCyUzC101csqX6B5PbcpCkthkRghQJDKCmY2kQyD23G0RI/K4vWTncvNegHSoW7dO5BnukaOIvD+E90hYN7+qe857R1QTdVY8vc3SvEfCWXOAow0SoEhwJpAACZAACZAACZAACZAACRgmQJEwjIwVSIAESIAESIAESIAESIAEKBKcAyRAAiRAAiRAAiRAAiRAAoYJUCQMI2MFEiABEiABEiABEiABEiABigTnAAmQAAmQAAmQAAmQAAmQgGECFAnDyFiBBEiABEiABEiABEiABEiAIsE5QAIkQAIkQAIkQAIkQAIkYJgARcIwMlYgARIgARIgARIgARIgARKgSHAOkAAJkAAJkAAJkAAJkAAJGCZAkTCMjBVIgARIgARIgARIgARIgAQoEpwDJEACJEACJEACJEACJEAChglQJAwjYwUSIAESIAESIAESIAESIAGKBOcACZAACZAACZAACZAACZCAYQIUCcPIWIEESIAESIAESIAESIAESIAiwTlAAiRAAiRAAiRAAiRAAiRgmABFwjAyViABEiABEiABEiABEiABEqBIcA6QAAmQAAmQAAmQAAmQAAkYJkCRMIyMFUiABEjA2gSO1zfi1rsew7zZ03HeOcOtPRj2ngRIgARIIGsEKBJZQ8+GSYAESCA9Anuq92N25SM4cOhoOMCAfr2xtGoehg2pSBpUlUg0t7Th3sXPo3/fXrhz9vSk7bIACZAACZCAvQhQJOyVT46GBEjA5gT+sHoDflH1PF54/K6o1YQtn+zGq6vW4/7516NbUUFCCqpEwuaoOTwSIAESIIEkBCgSnCIkQAIkYBECoZWIhxbclPCVJL0Vi19WXo8rpkwMjFRPJGLr3HD1lPAqQ2jlYey3z8ZXNQfx3MurMeqsoXj0vjl4/OlXIX4eii3iP7p0ZaCMeGJXSkKx/uedzWHqkX2zSCrYTRIgARIgAQAUCU4DEiABErAIAbEasXLVejz58B3o6S2J22shBe+8+xFunjU1UCZWQGJFIvbz2FeWIr/8R66ERApGSCSERIgn9KqTWClZ8NAz4deuYj8Xffndij/i1p/8KOlKikXSxG6SAAmQgGMIUCQck2oOlARIwOoExJfwg4ePpfT6UuxYRd3TB/UPrBzEioQQlM0f7YyKKwTgkaUrA9JSVFgY2AsRu/IQKxJCSBb/dgUeuvumsOhElrnk+2N141g9L+w/CZAACTiVAEXCqZnnuEmABCxHwIhICBG47vaHo8YYel0pViQiJSNUQZRZ8OAzmP/TmajoV56SSOi1GYoXen0ptMdD/PzSi8emJUWWSxw7TAIkQAI2JUCRsGliOSwSIAH7EUj11SYhBqv//EHUKU6RrxSZKRKhVYxEr16JzFAo7Dc/OSISIAHnEaBIOC/nHDEJkIBFCSTabC1eIfqv//kLplw8Dg//Zjmumnph1IbsRCKh8tWmhQ89g0ULbkrpGFqRhshXqJLJh0XTxm6TAAmQgG0JUCRsm1oOjARIwI4E9I5/Da0wDK7oi7tumxUQici7HUKvHMV7tSnVzdbJ9kiE9kPs2384akO46POgir74xhkD8dCvX8KCn/04vIdCT2LsmDeOiQRIgATsSIAiYcesckwkQAK2JqB3vGvkca0hsdixa2+Ag/gs9IjTlGSOf4085lXv1CbRTuTxr+K/xVGxoZOmEn1m66RxcCRAAiRgQwIUCRsmlUMiARIgARIgARIgARIgAbMJUCTMJsz4JEACJEACJEACJEACJGBDAhQJGyaVQyIBEiABEiABEiABEiABswlQJMwmzPgkQAIkQAIkQAIkQAIkYEMCFAkbJpVDIgESIAESIAESIAESIAGzCVAkzCbM+CRAAiRAAiRAAiRAAiRgQwIUCRsmlUMiARIgARIgARIgARIgAbMJUCTMJsz4JEACJEACJEACJEACJGBDAhQJGyaVQyIBEiABEiABEiABEiABswlQJMwmzPgkQAIkQAIkQAIkQAIkYEMCFAkbJpVDIgESIAESIAESIAESIAGzCVAkzCbM+CRAAiRAAiRAAiRAAiRgQwIUCRsmlUMiARIgARIgARIgARIgAbMJUCTMJsz4JEACJEACJEACJEACJGBDAhQJGyaVQyIBEiABEiABEiABEiABswlQJMwmzPgkQAIkQAIkQAIkQAIkYEMCFAkbJpVDIgESIAESIAESIAESIAGzCVAkzCbM+CRAAiRAAiRAAiRAAiRgQwIUCRsmlUMiARIgARIgARIgARIgAbMJUCTMJsz4JEACJEACJEACJEACJGBDAhQJGyaVQyIBEiABEiABEiABEiABswlQJMwmzPgkQAIkQAIkQAIkQAIkYEMCFAkbJpVDIgESIAESIAESIAESIAGzCVAkzCbM+CRAAiRAAiRAAiRAAiRgQwIUCRsmlUMiARIgARIgARIgARIgAbMJUCTMJsz4JEACJEACJEACJEACJGBDAhQJGyaVQyIBEiABEiABEiABEiABswlQJMwmzPgkQAIkQAIkQAIkQAIkYEMCFAkbJpVDIgESIAESIAESIAESIAGzCVAkzCbM+CRAAiRAAiRAAiRAAiRgQwIUCRsmlUMiARIgARIgARIgARIgAbMJUCTMJsz4JEACJEACJEACJEACJGBDAhQJGyaVQyIBEiABEiABEiABEiABswlQJMwmzPgkQAIkQAIkQAIkQAIkYEMCFAkbJpVDIgESIAESIAESIAESIAGzCVAkzCbM+CRAAiRAAiRAAiRAAiRgQwIUCRsmlUMiARIgARIgARIgARIgAbMJUCTMJsz4JEACJEACJEACJEACJGBDAhQJGyaVQyIBEiABEiABEiABEiABswn8f6bZO7gFZR1YAAAAAElFTkSuQmCC", "text/html": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "df['Quintile'] = df['Quintile'].astype(\"string\")\n", "df = df.sort_values(['apc'],ascending=True)\n", "# Now color data points by quintiles of ABV/Calories\n", "fig = px.scatter(df, x=\"Calories\", y=\"ABV\", hover_data=['Brand'], color=\"Quintile\"\n", " ,color_discrete_map={\n", " \"1\" : \"blue\"\n", " ,\"2\" : \"green\"\n", " ,\"3\" : \"yellow\"\n", " ,\"4\" : \"orange\"\n", " ,\"5\" : \"red\"\n", " }\n", " ,width=700, height=700)\n", "fig.update_layout(title_text=\"Alcohol per calorie by ABV and Calorie\", title_x=0.5)\n", "fig.show()" ] }, { "cell_type": "markdown", "id": "aba7b6ce-a38b-4b1c-a084-62c555baf7f3", "metadata": {}, "source": [ "No surprise that the highest quintile APC are above where the regression line would be but that \"Dogfish Head 120 Minute IPA\" red dot at 18% is interesting. With that exception, the mass of the highest quintile ratio distribution is at the lower calorie range. So maybe there is something to light beers after all - just not taste!" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.8" } }, "nbformat": 4, "nbformat_minor": 5 }