
Pipelines and AutoML with mlr3
https://tinyurl.com/mlr3pipelines

Department of Statistics – LMU Munich

May 28, 2020

https://tinyurl.com/mlr3pipelines

SO YOU WANT TO DO ML IN R
R gives you access to many machine learning methods
. . . but without a unified interface
. . . resampling and performance evaluation are cumbersome

mlr3 provides an interface to several machine learning algorithms for training,
predicting, resampling, tuning, benchmarks and more.
Example:

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 1 / 36

https://tinyurl.com/mlr3pipelines

SO YOU WANT TO DO ML IN R
R gives you access to many machine learning methods
. . . but without a unified interface
. . . resampling and performance evaluation are cumbersome

mlr3 provides an interface to several machine learning algorithms for training,
predicting, resampling, tuning, benchmarks and more.

Example:

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 1 / 36

https://tinyurl.com/mlr3pipelines

SO YOU WANT TO DO ML IN R
R gives you access to many machine learning methods
. . . but without a unified interface
. . . resampling and performance evaluation are cumbersome

mlr3 provides an interface to several machine learning algorithms for training,
predicting, resampling, tuning, benchmarks and more.
Example:

data = tsk("iris")

algo = lrn("classif.ranger")

algo$train(data)

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 1 / 36

https://tinyurl.com/mlr3pipelines

SO YOU WANT TO DO ML IN R
R gives you access to many machine learning methods
. . . but without a unified interface
. . . resampling and performance evaluation are cumbersome

mlr3 provides an interface to several machine learning algorithms for training,
predicting, resampling, tuning, benchmarks and more.
Example:

data = tsk("iris")

algo = lrn("classif.ranger")

algo$train(data)

algo$predict_newdata(data.frame(

Sepal.Length = 4, Sepal.Width = 4,

Petal.Length = 2, Petal.Width = 0.4

))

#> <PredictionClassif> for 1 observations:

#> row_id truth response

#> 1 <NA> setosa

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 1 / 36

https://tinyurl.com/mlr3pipelines

SO YOU WANT TO DO ML IN R
R gives you access to many machine learning methods
. . . but without a unified interface
. . . resampling and performance evaluation are cumbersome

mlr3 provides an interface to several machine learning algorithms for training,
predicting, resampling, tuning, benchmarks and more.
Example:

data = tsk("iris")

algo = lrn("classif.ranger")

rr = resample(data, algo, rsmp("cv"))

rr$aggregate(msr("classif.acc"))

#> classif.acc

#> 0.96

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 1 / 36

https://tinyurl.com/mlr3pipelines

SO YOU WANT TO DO ML IN R
R gives you access to many machine learning methods
. . . but without a unified interface
. . . resampling and performance evaluation are cumbersome

mlr3 provides an interface to several machine learning algorithms for training,
predicting, resampling, tuning, benchmarks and more.
Example:

design = benchmark_grid(

tasks = list(tsk("iris"), tsk("german_credit")),

learners = list(lrn("classif.ranger"), lrn("classif.rpart")),

resamplings = list(rsmp("cv"))

)

bmr = benchmark(design)

bmr$aggregate(msr("classif.acc"))[,

.(task_id, learner_id, classif.acc)]

#> task_id learner_id classif.acc

#> 1: iris classif.ranger 0.9600000

#> 2: iris classif.rpart 0.9466667

#> 3: german_credit classif.ranger 0.7720000

#> 4: german_credit classif.rpart 0.7310000

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 1 / 36

https://tinyurl.com/mlr3pipelines

MLR3 PHILOSOPHY

Overcome limitations of S3 with the help of R6
Truly object-oriented: data and methods live in the same object
Make use of inheritance
Reference semantics

Embrace data.table, both for arguments and internally
Fast operations for tabular data
List columns to arrange complex objects in tabular structure

Be light on dependencies:
R6, data.table, Metrics, lgr, uuid, mlbench, digest
Plus some of our own packages (backports, checkmate, . . .)

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 2 / 36

https://tinyurl.com/mlr3pipelines

MLR3 PHILOSOPHY

Overcome limitations of S3 with the help of R6
Truly object-oriented: data and methods live in the same object
Make use of inheritance
Reference semantics

Embrace data.table, both for arguments and internally
Fast operations for tabular data
List columns to arrange complex objects in tabular structure

Be light on dependencies:
R6, data.table, Metrics, lgr, uuid, mlbench, digest
Plus some of our own packages (backports, checkmate, . . .)

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 2 / 36

https://tinyurl.com/mlr3pipelines

MLR3 PHILOSOPHY

Overcome limitations of S3 with the help of R6
Truly object-oriented: data and methods live in the same object
Make use of inheritance
Reference semantics

Embrace data.table, both for arguments and internally
Fast operations for tabular data
List columns to arrange complex objects in tabular structure

Be light on dependencies:
R6, data.table, Metrics, lgr, uuid, mlbench, digest
Plus some of our own packages (backports, checkmate, . . .)

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 2 / 36

https://tinyurl.com/mlr3pipelines

mlr3vizmlr3db

mlr3misc

mlr3measures

mlr3forecast

mlr3spatiotemporal

mlr3proba

mlr3ordinal

mlr3cluster

mlr3time

mlr3tuning

mlr3hyperband

mlr3mbo

mlr3fswrap

mlr3filters

mlr3keras

mlr3learners

mlr3

mlr3 Ecosystem

tasks, learners, train-test-eval,
 resample, benchmark

VisualizationData Formats

Utilities

ML Tasks

ML Pipelines

Learners

Feature SelectionTuning

Popular learners, ranger,
xgboost, glmnet, svm, ...

Many more learners,
organized as

Github extension packages

github.com/mlr3learners

Connecting Keras to mlr3

Feature Filtering

Wrapper Feature Selection
Hyperparameter Tuning

Hyperparameter Tuning

Bayesian OptimizationParameter Sets
paradox

Time-Series &
Functional Data

Probabilistic Learning &
Survival Analysis

Spatial learners &
resampling

Time-series forecasting &
resampling

Clustering

Learning with
Ordinal Targets

Performance Measures

Devel Helper Functions

DBs as Data Backends Visualization Preprocessing,
pipelines & ensembles

mlr3pipelines

Stable

Maturing

Experimental

Planned

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 3 / 36

https://tinyurl.com/mlr3pipelines

mlr3pipelines

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 4 / 36

https://tinyurl.com/mlr3pipelines

MACHINE LEARNING WORKFLOWS

Preprocessing: Feature extraction, feature selection, missing data
imputation,. . .

Ensemble methods: Model averaging, model stacking

mlr3: modular model fitting

⇒ mlr3pipelines: modular ML workflows

Training
Data LearnerFactor

Encoding
Median

ImputationScaling

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 5 / 36

https://tinyurl.com/mlr3pipelines

MACHINE LEARNING WORKFLOWS

– what do they look like?

Building blocks: what is happening? → PipeOp

Structure: In what sequence is it happening? → Graph

⇒ Graph: PipeOps as nodes with edges (data flow) between them

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 6 / 36

https://tinyurl.com/mlr3pipelines

MACHINE LEARNING WORKFLOWS

– what do they look like?

Building blocks: what is happening? → PipeOp

Structure: In what sequence is it happening? → Graph

⇒ Graph: PipeOps as nodes with edges (data flow) between them

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 6 / 36

https://tinyurl.com/mlr3pipelines

MACHINE LEARNING WORKFLOWS

– what do they look like?

Building blocks: what is happening? → PipeOp

Structure: In what sequence is it happening? → Graph

⇒ Graph: PipeOps as nodes with edges (data flow) between them

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 6 / 36

https://tinyurl.com/mlr3pipelines

MACHINE LEARNING WORKFLOWS

– what do they look like?

Building blocks: what is happening? → PipeOp

Structure: In what sequence is it happening? → Graph

⇒ Graph: PipeOps as nodes with edges (data flow) between them

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 6 / 36

https://tinyurl.com/mlr3pipelines

PipeOps

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 7 / 36

https://tinyurl.com/mlr3pipelines

PIPEOP: SINGLE UNIT OF DATA OPERATION

pip = po("scale") to construct

Scaling

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 8 / 36

https://tinyurl.com/mlr3pipelines

PIPEOP: SINGLE UNIT OF DATA OPERATION

pip$train(): process data and create pip$state

Scaling

Scaling

Scaling
Factors

Training
Data

Transformed
Data

$train()

State
(learned parameters

of operation)

Please do not change any of the slides, they are directly used by the 2019 useR mlr3pipelines
presentation and all presentations that inherit from that one. Instead, add new graphics at the
end.

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 8 / 36

https://tinyurl.com/mlr3pipelines

PIPEOP: SINGLE UNIT OF DATA OPERATION

pip$predict(): process data depending on the pip$state

Scaling

Scaling

Scaling
Factors

Training
Data

New
Data

Transformed
Data

Transformed
Data

$train()

$predict()

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 8 / 36

https://tinyurl.com/mlr3pipelines

PIPEOP: SINGLE UNIT OF DATA OPERATION
po = po("scale")

trained = po$train(list(task))

trained[[1]]$head(3)

#> Species Petal.Length Petal.Width Sepal.Length Sepal.Width

#> 1: setosa -1.335752 -1.311052 -0.8976739 1.0156020

#> 2: setosa -1.335752 -1.311052 -1.1392005 -0.1315388

#> 3: setosa -1.392399 -1.311052 -1.3807271 0.3273175

smalltask = task$clone()$filter(1:3)

po$predict(list(smalltask))[[1]]$data()

#> Species Petal.Length Petal.Width Sepal.Length Sepal.Width

#> 1: setosa -1.335752 -1.311052 -0.8976739 1.0156020

#> 2: setosa -1.335752 -1.311052 -1.1392005 -0.1315388

#> 3: setosa -1.392399 -1.311052 -1.3807271 0.3273175

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 9 / 36

https://tinyurl.com/mlr3pipelines

PIPEOP: SINGLE UNIT OF DATA OPERATION
po = po("scale")

trained = po$train(list(task))

trained[[1]]$head(3)

#> Species Petal.Length Petal.Width Sepal.Length Sepal.Width

#> 1: setosa -1.335752 -1.311052 -0.8976739 1.0156020

#> 2: setosa -1.335752 -1.311052 -1.1392005 -0.1315388

#> 3: setosa -1.392399 -1.311052 -1.3807271 0.3273175

head(po$state, 2)

#> $center

#> Petal.Length Petal.Width Sepal.Length Sepal.Width

#> 3.758000 1.199333 5.843333 3.057333

#>

#> $scale

#> Petal.Length Petal.Width Sepal.Length Sepal.Width

#> 1.7652982 0.7622377 0.8280661 0.4358663

smalltask = task$clone()$filter(1:3)

po$predict(list(smalltask))[[1]]$data()

#> Species Petal.Length Petal.Width Sepal.Length Sepal.Width

#> 1: setosa -1.335752 -1.311052 -0.8976739 1.0156020

#> 2: setosa -1.335752 -1.311052 -1.1392005 -0.1315388

#> 3: setosa -1.392399 -1.311052 -1.3807271 0.3273175

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 9 / 36

https://tinyurl.com/mlr3pipelines

PIPEOP: SINGLE UNIT OF DATA OPERATION
po = po("scale")

trained = po$train(list(task))

trained[[1]]$head(3)

#> Species Petal.Length Petal.Width Sepal.Length Sepal.Width

#> 1: setosa -1.335752 -1.311052 -0.8976739 1.0156020

#> 2: setosa -1.335752 -1.311052 -1.1392005 -0.1315388

#> 3: setosa -1.392399 -1.311052 -1.3807271 0.3273175

smalltask = task$clone()$filter(1:3)

po$predict(list(smalltask))[[1]]$data()

#> Species Petal.Length Petal.Width Sepal.Length Sepal.Width

#> 1: setosa -1.335752 -1.311052 -0.8976739 1.0156020

#> 2: setosa -1.335752 -1.311052 -1.1392005 -0.1315388

#> 3: setosa -1.392399 -1.311052 -1.3807271 0.3273175

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 9 / 36

https://tinyurl.com/mlr3pipelines

LIST OF PIPEOPS
Included

Simple preprocessors (scaling, Box-Cox, Yeo-Johnson, PCA, ICA)

NA imputation (constant, hist-sampling, model-based, dummies)

Categorical data encoding (one-hot, treatment, impact)

Text processing

Feature filtering (by name, by type, statistical filters)

Combination of data: featureunion

Target column transformation (e.g. log-scaling)

Sampling (subsampling for speed, sampling for class balance)

Branching (simultaneous branching, alternative branching)

Ensembling of predictions (weighted average, optimized weights)

stacking (see later slides)

Planned

Time series and spatio-temporal data

Multi-output and ordinal targets

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 10 / 36

https://tinyurl.com/mlr3pipelines

Graph Operations

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 11 / 36

https://tinyurl.com/mlr3pipelines

GRAPH OPERATIONS

%>>% concatenates Graphs and PipeOps

%>>%

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 12 / 36

https://tinyurl.com/mlr3pipelines

GRAPH OPERATIONS

gunion() unites Graphs and PipeOps

,gunion()

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 12 / 36

https://tinyurl.com/mlr3pipelines

Linear Pipelines

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 13 / 36

https://tinyurl.com/mlr3pipelines

LINEAR PREPROCESSING

graph_pp = po("scale") %>>%

po("encode") %>>%

po("imputemedian") %>>%

lrn("classif.rpart")

Training
Data LearnerFactor

Encoding
Median

ImputationScaling

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 14 / 36

https://tinyurl.com/mlr3pipelines

LINEAR PREPROCESSING

train()ing: Data propagates and creates $states

predict()tion: Data propagates, uses $states

Training
Data LearnerFactor

Encoding
Median

ImputationScaling

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 15 / 36

https://tinyurl.com/mlr3pipelines

LINEAR PREPROCESSING

train()ing: Data propagates and creates $states

predict()tion: Data propagates, uses $states

LearnerFactor
Encoding

Median
ImputationScaling

LearnerFactor
Encoding

Median
ImputationScaling

State

Training
Data

Scaling
Factors

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 15 / 36

https://tinyurl.com/mlr3pipelines

LINEAR PREPROCESSING

train()ing: Data propagates and creates $states

predict()tion: Data propagates, uses $states

LearnerFactor
Encoding

Median
ImputationScaling

LearnerFactor
Encoding

Median
ImputationScaling

State

Training
Data

Scaling
Factors

Factor
Levels

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 15 / 36

https://tinyurl.com/mlr3pipelines

LINEAR PREPROCESSING

train()ing: Data propagates and creates $states

predict()tion: Data propagates, uses $states

LearnerFactor
Encoding

Median
ImputationScaling

LearnerFactor
Encoding

Median
ImputationScaling

State

Training
Data

Scaling
Factors

Feature
Medians

Factor
Levels

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 15 / 36

https://tinyurl.com/mlr3pipelines

LINEAR PREPROCESSING

train()ing: Data propagates and creates $states

predict()tion: Data propagates, uses $states

LearnerFactor
Encoding

Median
ImputationScaling

LearnerFactor
Encoding

Median
ImputationScaling

State

Training
Data

Scaling
Factors

Feature
Medians

Learner
Model

Factor
Levels

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 15 / 36

https://tinyurl.com/mlr3pipelines

LINEAR PREPROCESSING

train()ing: Data propagates and creates $states

predict()tion: Data propagates, uses $states

LearnerFactor
Encoding

Median
ImputationScaling

Training
Data

New
Data Prediction

LearnerFactor
Encoding

Median
ImputationScaling

Scaling
Factors

Feature
Medians

Learner
Model

Factor
Levels

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 15 / 36

https://tinyurl.com/mlr3pipelines

LINEAR PREPROCESSING

scale %>>% encode %>>% impute %>>% rpart

Setting / retrieving parameters: $param_set

graph_pp$pipeops$scale$param_set$values$center = FALSE

Retrieving state: $state of individual PipeOps (after $train())

graph_pp$pipeops$scale$state$scale

#> Petal.Length Petal.Width Sepal.Length Sepal.Width

#> 4.163367 1.424451 5.921098 3.098387

Retrieving intermediate results: $.result (set debug option before)

graph_pp$pipeops$scale$.result[[1]]$head(3)

#> Species Petal.Length Petal.Width Sepal.Length Sepal.Width

#> 1: setosa 0.3362663 0.140405 0.8613268 1.1296201

#> 2: setosa 0.3362663 0.140405 0.8275493 0.9682458

#> 3: setosa 0.3122473 0.140405 0.7937718 1.0327956

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 16 / 36

https://tinyurl.com/mlr3pipelines

LINEAR PREPROCESSING

scale %>>% encode %>>% impute %>>% rpart

Setting / retrieving parameters: $param_set

graph_pp$pipeops$scale$param_set$values$center = FALSE

Retrieving state: $state of individual PipeOps (after $train())

graph_pp$pipeops$scale$state$scale

#> Petal.Length Petal.Width Sepal.Length Sepal.Width

#> 4.163367 1.424451 5.921098 3.098387

Retrieving intermediate results: $.result (set debug option before)

graph_pp$pipeops$scale$.result[[1]]$head(3)

#> Species Petal.Length Petal.Width Sepal.Length Sepal.Width

#> 1: setosa 0.3362663 0.140405 0.8613268 1.1296201

#> 2: setosa 0.3362663 0.140405 0.8275493 0.9682458

#> 3: setosa 0.3122473 0.140405 0.7937718 1.0327956

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 16 / 36

https://tinyurl.com/mlr3pipelines

LINEAR PREPROCESSING

scale %>>% encode %>>% impute %>>% rpart

Setting / retrieving parameters: $param_set

graph_pp$pipeops$scale$param_set$values$center = FALSE

Retrieving state: $state of individual PipeOps (after $train())

graph_pp$pipeops$scale$state$scale

#> Petal.Length Petal.Width Sepal.Length Sepal.Width

#> 4.163367 1.424451 5.921098 3.098387

Retrieving intermediate results: $.result (set debug option before)

graph_pp$pipeops$scale$.result[[1]]$head(3)

#> Species Petal.Length Petal.Width Sepal.Length Sepal.Width

#> 1: setosa 0.3362663 0.140405 0.8613268 1.1296201

#> 2: setosa 0.3362663 0.140405 0.8275493 0.9682458

#> 3: setosa 0.3122473 0.140405 0.7937718 1.0327956

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 16 / 36

https://tinyurl.com/mlr3pipelines

Nonlinear Pipelines

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 17 / 36

https://tinyurl.com/mlr3pipelines

PIPEOPS WITH MULTIPLE INPUTS / OUTPUTS

Model
Averaging

Scaling
Path

Branching
Path

Un-Branching
PCA

Feature
UnionCopy

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 18 / 36

https://tinyurl.com/mlr3pipelines

ENSEMBLE METHOD: BAGGING

single_path = po("subsample") %>>% lrn("classif.rpart")

Majority
Vote

Decision
TreeSubsample

Decision
TreeSubsample

Decision
TreeSubsample

single_path

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 19 / 36

https://tinyurl.com/mlr3pipelines

ENSEMBLE METHOD: BAGGING

single_path = po("subsample") %>>% lrn("classif.rpart")

graph_bag = ppl("greplicate", single_path, n = 3) %>>%

po("classifavg")

Decision
TreeSubsample

Decision
TreeSubsample

Decision
TreeSubsample

Majority
Vote

Training
Data

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 19 / 36

https://tinyurl.com/mlr3pipelines

ENSEMBLE METHOD: BAGGING

single_path = po("subsample") %>>% lrn("classif.rpart")

graph_bag = ppl("greplicate", single_path, n = 3) %>>%

po("classifavg")

Decision
TreeSubsample

Decision
TreeSubsample

Decision
TreeSubsample

Majority
Vote

Training
Data

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 19 / 36

https://tinyurl.com/mlr3pipelines

ENSEMBLE METHOD: BAGGING

single_path = po("subsample") %>>% lrn("classif.rpart")

graph_bag = ppl("greplicate", single_path, n = 3) %>>%

po("classifavg")

Decision
TreeSubsample

Decision
TreeSubsample

Decision
TreeSubsample

Majority
Vote

Training
Data

Model

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 19 / 36

https://tinyurl.com/mlr3pipelines

ENSEMBLE METHOD: BAGGING

single_path = po("subsample") %>>% lrn("classif.rpart")

graph_bag = ppl("greplicate", single_path, n = 3) %>>%

po("classifavg")

Decision
TreeSubsample

Decision
TreeSubsample

Decision
TreeSubsample

Majority
Vote

Training
Data

Model

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 19 / 36

https://tinyurl.com/mlr3pipelines

ENSEMBLE METHOD: BAGGING

single_path = po("subsample") %>>% lrn("classif.rpart")

graph_bag = ppl("greplicate", single_path, n = 3) %>>%

po("classifavg")

Decision
TreeSubsample

Decision
TreeSubsample

Decision
TreeSubsample

Majority
Vote

Training
Data

Model

Model

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 19 / 36

https://tinyurl.com/mlr3pipelines

ENSEMBLE METHOD: BAGGING

single_path = po("subsample") %>>% lrn("classif.rpart")

graph_bag = ppl("greplicate", single_path, n = 3) %>>%

po("classifavg")

Decision
TreeSubsample

Decision
TreeSubsample

Decision
TreeSubsample

Majority
Vote

Training
Data

Model

Model

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 19 / 36

https://tinyurl.com/mlr3pipelines

ENSEMBLE METHOD: BAGGING

single_path = po("subsample") %>>% lrn("classif.rpart")

graph_bag = ppl("greplicate", single_path, n = 3) %>>%

po("classifavg")

Decision
TreeSubsample

Decision
TreeSubsample

Decision
TreeSubsample

Majority
Vote

Training
Data

Model

Model

Model

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 19 / 36

https://tinyurl.com/mlr3pipelines

ENSEMBLE METHOD: BAGGING

single_path = po("subsample") %>>% lrn("classif.rpart")

graph_bag = ppl("greplicate", single_path, n = 3) %>>%

po("classifavg")

Decision
TreeSubsample

Decision
TreeSubsample

Decision
TreeSubsample

Majority
Vote

Training
Data

Model

Model

Model

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 19 / 36

https://tinyurl.com/mlr3pipelines

ENSEMBLE METHOD: STACKING

graph_stack = gunion(list(

po("learner_cv", learner = lrn("regr.lm")),

po("learner_cv", learner = lrn("regr.svm")),

po("nop"))) %>>%

po("featureunion") %>>%

lrn("regr.ranger")

Linear
Model

SVM

NULL

Feature
Union

Training
Data

Random
Forest

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 20 / 36

https://tinyurl.com/mlr3pipelines

BRANCHING

graph_branch = po("branch", c("pca", "ica")) %>>%

gunion(list(po("pca"), po("ica"))) %>>%

po("unbranch", c("pca", "ica")) %>>%

lrn("classif.kknn")

PCA

ICA

UnbranchTraining
Data LearnerBranch

 Execute only one of several alternative paths

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 21 / 36

https://tinyurl.com/mlr3pipelines

BRANCHING

graph_branch = po("branch", c("pca", "ica")) %>>%

gunion(list(po("pca"), po("ica"))) %>>%

po("unbranch", c("pca", "ica")) %>>%

lrn("classif.kknn")

PCA

ICA

UnbranchTraining
Data LearnerBranch

> graph_branch$pipeops$branch$
 param_set$values$selection = "pca"

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 21 / 36

https://tinyurl.com/mlr3pipelines

BRANCHING

graph_branch = po("branch", c("pca", "ica")) %>>%

gunion(list(po("pca"), po("ica"))) %>>%

po("unbranch", c("pca", "ica")) %>>%

lrn("classif.kknn")

PCA

ICA

UnbranchTraining
Data LearnerBranch

> graph_branch$pipeops$branch$
 param_set$values$selection = "ica"

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 21 / 36

https://tinyurl.com/mlr3pipelines

BRANCHING

Alternative:

graph_branch = ppl("branch",

list(pca = po("pca"), ica = po("ica"))) %>>%

lrn("classif.kknn")

PCA

ICA

UnbranchTraining
Data LearnerBranch

> graph_branch$pipeops$branch$
 param_set$values$selection = "ica"

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 21 / 36

https://tinyurl.com/mlr3pipelines

Targeting Columns

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 22 / 36

https://tinyurl.com/mlr3pipelines

RESTRICT PIPEOPS TO COLS WITH SELECTORS

Suppose we only want PCA on some columns of our data:

task$data(1:9)

#> Species Petal.Length Petal.Width Sepal.Length Sepal.Width

#> 1: setosa 1.4 0.2 5.1 3.5

#> 2: setosa 1.4 0.2 4.9 3.0

#> 3: setosa 1.3 0.2 4.7 3.2

#> 4: setosa 1.5 0.2 4.6 3.1

#> 5: setosa 1.4 0.2 5.0 3.6

#> 6: setosa 1.7 0.4 5.4 3.9

#> 7: setosa 1.4 0.3 4.6 3.4

#> 8: setosa 1.5 0.2 5.0 3.4

#> 9: setosa 1.4 0.2 4.4 2.9

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 23 / 36

https://tinyurl.com/mlr3pipelines

RESTRICT PIPEOPS TO COLS WITH SELECTORS

Option 1: PipeOps affect_columns parameter

my_pca = po("pca", affect_columns = selector_grep("^Sepal"))

result = my_pca$train(list(task))

result[[1]]$data(1:3)

#> Species PC1 PC2 Petal.Length Petal.Width

#> 1: setosa -0.7781478 0.37813255 1.4 0.2

#> 2: setosa -0.9350903 -0.13700728 1.4 0.2

#> 3: setosa -1.1513076 0.04533873 1.3 0.2

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 23 / 36

https://tinyurl.com/mlr3pipelines

RESTRICT PIPEOPS TO COLS WITH SELECTORS

Option 2: Use po("select")

Select [X]

Select [¬X]

Feature
Union

...

...

...

...

Copy

sel1 = selector_grep("^Sepal")

sel2 = selector_invert(sel1)

my_pca = gunion(list(

po("select", selector = sel1) %>>% po("pca"),

po("select", selector = sel2, id = "select2")

)) %>>% po("featureunion")

my_pca$train(task)[[1]]

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 23 / 36

https://tinyurl.com/mlr3pipelines

Having trouble remembering these?

“Pipelines” Dictionary & Short Form

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 24 / 36

https://tinyurl.com/mlr3pipelines

“PIPELINES” DICTIONARY & SHORT FORM
Many frequently used patterns for pipelines

Making Learners robust to bad data (imputation + feature encoding + . . .)

Bagging

Branching

Collection of these is in mlr3pipelines

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 25 / 36

https://tinyurl.com/mlr3pipelines

“PIPELINES” DICTIONARY & SHORT FORM
Many frequently used patterns for pipelines

Making Learners robust to bad data (imputation + feature encoding + . . .)

Bagging

Branching

Collection of these is in mlr3pipelines

ppl() accesses the mlr_graphs “Dictionary” of pre-constructed partial
Graphs.

head(as.data.table(mlr_graphs), 5)

#> key

#> 1: bagging

#> 2: branch

#> 3: greplicate

#> 4: robustify

#> 5: targettrafo

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 25 / 36

https://tinyurl.com/mlr3pipelines

“PIPELINES” DICTIONARY & SHORT FORM
Many frequently used patterns for pipelines

Making Learners robust to bad data (imputation + feature encoding + . . .)

Bagging

Branching

Collection of these is in mlr3pipelines

gr = ppl("robustify")

plot(gr)

● ●
●

●
●
●
●
●
●

●

●
●

imputehist missind

char_to_fct

featureunion

imputenewlvl

fixfactors

imputesample

collapsefactors

encode

<INPUT>

removeconstants

<OUTPUT>

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 25 / 36

https://tinyurl.com/mlr3pipelines

“PIPELINES” DICTIONARY & SHORT FORM
Many frequently used patterns for pipelines

Making Learners robust to bad data (imputation + feature encoding + . . .)

Bagging

Branching

Collection of these is in mlr3pipelines

gr = ppl("branch", list(po("pca"), po("nop")))

plot(gr)

● ●

●

●

●

●

pca nop

branch

<INPUT>

unbranch

<OUTPUT>

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 25 / 36

https://tinyurl.com/mlr3pipelines

AutoML with ‘mlr3pipelines‘

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 26 / 36

https://tinyurl.com/mlr3pipelines

AUTOML <3 PIPELINES

AutoML: Automatic Machine Learning

Let the algorithm make decisions about
1 what learner to use,
2 what preprocessing to use, and
3 what hyperparameters to use.

(1) and (2) are decisions about graph structure in mlr3pipelines

⇒ The problem reduces to pipelines + parameter tuning

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 27 / 36

https://tinyurl.com/mlr3pipelines

AUTOML <3 PIPELINES

AutoML: Automatic Machine Learning

Let the algorithm make decisions about
1 what learner to use,
2 what preprocessing to use, and
3 what hyperparameters to use.

(1) and (2) are decisions about graph structure in mlr3pipelines

⇒ The problem reduces to pipelines + parameter tuning

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 27 / 36

https://tinyurl.com/mlr3pipelines

AUTOML <3 PIPELINES

AutoML: Automatic Machine Learning

Let the algorithm make decisions about
1 what learner to use,
2 what preprocessing to use, and
3 what hyperparameters to use.

(1) and (2) are decisions about graph structure in mlr3pipelines

⇒ The problem reduces to pipelines + parameter tuning

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 27 / 36

https://tinyurl.com/mlr3pipelines

AUTOML <3 PIPELINES

AutoML: Automatic Machine Learning

Let the algorithm make decisions about
1 what learner to use,
2 what preprocessing to use, and
3 what hyperparameters to use.

(1) and (2) are decisions about graph structure in mlr3pipelines

⇒ The problem reduces to pipelines + parameter tuning

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 27 / 36

https://tinyurl.com/mlr3pipelines

AUTOML WITH MLR3PIPELINES
AutoML in a Nutshell

Preprocessing steps

ML Algorithms

Tuner

V7
V2
V1

{k, type}{}

{k, distance} {c, kernel}

Model Selection

Preprocessing

{minsplit, α,
maxdepth}

...

......

Hyperparameter
configuration λ

Cross-validation
performance f(λ)

Hyperparameter optimizer

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 28 / 36

https://tinyurl.com/mlr3pipelines

GRAPHLEARNER

Graph as a Learner

All benefits of mlr3: resampling, tuning, nested resampling, . . .

GraphLearner

PipeOp
Learner

Factor
Encoding

Median
ImputationScaling

graph_pp = po("scale") %>>% po("encode") %>>%

po("imputemedian") %>>% lrn("classif.rpart")

glrn = GraphLearner$new(graph_pp)

glrn$train(task)

glrn$predict(task)

resample(task, glrn, rsmp("cv", folds = 3))

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 29 / 36

https://tinyurl.com/mlr3pipelines

TUNING

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 30 / 36

https://tinyurl.com/mlr3pipelines

PIPELINES TUNING

Works exactly as in basic mlr3 / mlr3tuning

PipeOps have hyperparameters (using paradox pkg)

Graphs have hyperparameters of all components combined

⇒ Joint tuning and nested CV of complete graph

p1 = ppl("branch", list(

"pca" = po("pca"),

"nothing" = po("nop")

))

p2 = flt("anova")

p3 = ppl("branch", list(

"svm" = lrn("classif.svm", id = "svm", kernel = "radial"),

"xgb" = lrn("classif.xgboost", id = "xgb"),

"rf" = lrn("classif.ranger", id = "rf")

), prefix_branchops = "lrn_")

gr = p1 %>>% p2 %>>% p3

glrn = GraphLearner$new(gr)

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 31 / 36

https://tinyurl.com/mlr3pipelines

PIPELINES TUNING

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 32 / 36

https://tinyurl.com/mlr3pipelines

PIPELINES TUNING

ps = ParamSet$new(list(

ParamFct$new("branch.selection", levels = c("pca", "nothing")),

ParamDbl$new("anova.filter.frac", lower = 0.1, upper = 1),

ParamFct$new("lrn_branch.selection", levels = c("svm", "xgb", "rf")),

ParamInt$new("rf.mtry", lower = 1L, upper = 20L),

ParamInt$new("xgb.nrounds", lower = 1, upper = 500),

ParamDbl$new("svm.cost", lower = -12, upper = 4),

ParamDbl$new("svm.gamma", lower = -12, upper = -1)))

ps$add_dep("rf.mtry", "lrn_branch.selection", CondEqual$new("rf"))

ps$add_dep("xgb.nrounds", "lrn_branch.selection", CondEqual$new("xgb"))

ps$add_dep("svm.cost", "lrn_branch.selection", CondEqual$new("svm"))

ps$add_dep("svm.gamma", "lrn_branch.selection", CondEqual$new("svm"))

ps$trafo = function(x, param_set) {

if (x$lrn_branch.selection == "svm")

x$svm.cost = 2^x$svm.cost; x$svm.gamma = 2^x$svm.gamma

return(x)

}

inst = TuningInstance$new(tsk("sonar"), glrn, rsmp("cv", iters=3),

msr("classif.ce"), ps, term("evals", n_evals = 10))

tnr("random_search")$tune(inst)

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 33 / 36

https://tinyurl.com/mlr3pipelines

mlr3(pipelines) Resources

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 34 / 36

https://tinyurl.com/mlr3pipelines

MLR3(PIPELINES) RESOURCES
mlr3 book

https://mlr3book.mlr-org.com/

mlr3 Use Case “Gallery”

https://mlr3gallery.mlr-org.com/

“cheat sheets”
, Machine learning with mlr3 : : CHEAT SHEET mlr
, Intro

The mlr3 package builds on R6 classes and pro-vides the essential building blocks of a machinelearning workflow.

mlr3 Dictionaries
Key-value store for sets of mlr objects. These areprovided by mlr3:
I mlr_tasks - ML example tasks.
I mlr_task_generators - Example generators.
I mlr_learners - ML algorithms.
I mlr_measures - Performance measures.
I mlr_resamplings - Resampling strategies.
These dictionaries can be extended by loadingextension packages. For example, by loadingthe mlr3learners package, the mlr_learnersdictionary is extended with more learners.
Syntactic sugar functions retrieve objects fromdic-tionaries, set hyperparameters and assign fieldsin one go e.g. lrn("classif.rpart", cp = 0.1) .
Dictionary$keys(pattern = NULL)
Returns all keys which match pattern . If NULL ,all keys are returned.
Dictionary$get(key, ...)
Retrieves object by key and passes arguments"..." to the construction of the objects.
Dictionary$mget(keys, ...)
Retrieves objects by keys and passes namedarguments "..." to the construction of the objects.
as.data.table(Dictionary)
Lists objects with metadata.

Class: Task
Stores data and metadata. backend can be a
data.table , target points to y-column byname.
task = TaskRegr$new(backend, target)
task = TaskClassif$new(backend, target)
Create task for regression or classification.
task = tsk(.key)
Sugar to get example task from mlr_tasks :
ITwoclass: german_credit , pima , sonar ,

spam
IMulticlass: iris , wine , zoo
IRegression: boston_housing , mtcars
Print the mlr_tasks dictionary for more.
task$positive = "<positive_class>"
Set positive class for binary classification.
Column Roles
Column roles affect the behavior of the task for dif-ferent operations. Set with
taskcol_roles<role> = "<column_name>" :
I feature - Regular features.
I target - Target variable.
I name - Labels for plots.
I group - Groups for block resampling.
I stratum - Stratification variables.
I weight - Observation weights.
Data Operations
task$select(cols)
Subsets the task based on feature names.
task$filter(rows)
Subsets the task based on row ids.
task$cbind(data) / task$rbind(data)
Adds additional columns / rows.
task$rename(from, to)
Rename columns.

Class: Learner
Wraps learners from R with a unified interface.
learner = lrn(.key, ...)
Get learner by .key (from mlr_learners) andconstruct the learner with specific hyperparame-ters and settings "..." in one go.https://github.com/mlr-org/mlr3learners (R pack-age) and https://github.com/mlr3learners (GitHuborganization) hold all available learners.
learner$param_set
Returns description of hyperparameters.
learner$param_set$values = list(id = value)
Change the current hyperparameter values byassigning a named list(id = value) to the
$values field. This overwrites all previously setparameters.
learner$param_set$values$<id> = <value>
Update a single hyperparameter.
learner$predict_type = "<type>"
Changes/sets the output type of the prediction. Forclassification, "response" means class labels,
"prob" means posterior probabilities. For re-gression, "response" means numeric response,
"se" extracts the standard error.
Example
task = tsk("sonar")
learner = lrn("classif.rpart")
train_set = sample(task$nrow, 0.8 * task$nrow)
test_set = setdiff(seq_len(task$nrow), train_set)
learner$train(task, row_ids = train_set)
prediction = learner$predict(task, row_ids = test_set)
prediction$score()
classif.ce
0.2619048

Train & Predict
learner$train(task, row_ids)
Train on (selected) observations.
learner$model
The resulting model is stored in the $model / slotof the learner .
prediction = learner$predict(task, row_ids)
Predict on (selected) observations.
prediction
<PredictionClassif> for 42 observations:
row_id truth response
2 R M
3 R M
5 R M
- - -
198 M M
200 M M
207 M M

prediction$data$tab
Returns predictions as data.table .

Measures & Scoring
measure = msr(.key)
Get measure by .key from mlr_measures :
I classif.ce - Classification error.
I classif.auc - AUROC.
I regr.rmse - Root mean square error.
Print mlr_measures for all measures.
prediction$score(measures)
Calculate performance with one or more mea-sures.

mlr-org.com, cheatsheets.mlr-org.com

, Hyperparameter Tuning with mlr3tuning : : CHEAT SHEET mlr
, Class Overview

The package provides a set of R6 classes whichallow to (a) define general hyperparameter (HP)tuning instances and (b) run algorithms whichoptimize on these. (a) is called a TuningInstance,which defines a blackbox optimization functionthat maps HP candidate configurations to resam-pled performance values for arbitrary performancemeasures.

Measure

Learner

Task

Resampling

ParamSet

Terminator

TuningInstance Tuner

$eval()

$tune()$new()

ParamSet - Parameters andRanges
Scalar doubles, integers, factors or logicals arecombined to define a multivariate tuning space.
tune_ps = ParamSet$new(list(ParamInt$new(id, lower, upper),ParamDbl$new(id, lower, upper),ParamFct$new(id, levels),ParamLgl$new(id)))
id is the Param identifier. lower / upper definenumerical ranges, levels is for categories.
Transformations for Rescaling
tune_ps$trafo = function(x, param_set) {x$id = 2ˆx$id; return(x)}
Apply a custom transformation before passing theparam to the Learner .
Parameter Dependencies
Dependencies prevent invalid learner configura-tions.
tune_ps$add_dep(id, on, cond)
Adds a dependency for param id so that param
id depends on param on , optional to condition
cond .

Terminators - When to stop
Construction: term(.key, ...)
I evals (n_evals)After a given amount of iterations.
I clock_time (secs , stop_time)After a given absolute time.
I model_time (secs)After a given training time.
I perf_reached (level)After a specific performance was reached.
I stagnation (iters , threshold)After the performance stagnated for giveniterations.
as.data.table(mlr_terminators)
Lists all available terminators.

TuningInstance - Search Scenario
Evaluator and container for resampled perfor-mances of HP configurations during tuning. Themain (internal) function eval_batch(dt) calls
benchmark() to evaluate a table of HP config-urations. Also stores archive of all evaluatedexperiments and the final result.
instance = TuningInstance$new(task, learner, resampling, measures,tune_ps, terminator, bm_args)

Example
optimize hyperpar of RBF SVM on logscale
learner = lrn("classif.svm", kernel = "radial")

tune_ps = ParamSet$new(list(
ParamDbl$new("cost", lower = -8, upper = 8),
ParamDbl$new("gamma", lower = -8, upper = 8)))

tune_ps$trafo = function(x, param_set) {
x$cost = 2^x$cost; x$gamma = 2^x$gamma; x}

evals20 = term("evals", n_evals = 20)

instance = TuningInstance$new(
task, learner, resampling, measures, tune_ps, evals20)

tuner = tnr("random_search")
tuner$tune(instance)
instance$result

Tuner - Search Strategy
Tuning strategy. Generates candidate configu-rations and passes these to TuningInstancefor evaluation until termination. Creation:
tnr(.key, ...)
I grid_search (resolution , batch_size)Grid search.
I random_search (batch_size)Random search.
I gensa (smooth , temperature)Generalized Simulated Annealing.
I design_points (batch_size , design)User supplied settings.
as.data.table(mlr_tuners)
Lists all available tuners.

Executing the Tuning
tuner$tune(instance)
Starts the tuning. Tuner generates candidateconfigurations and passes these to the $eval()method of the TuningInstance until the budgetof the Terminator is exhausted.
instance$archive(unnest = "no")
Returns all evaluated configurations and theirresampling results. Use unnest to display HPwithout (tune_x) or with (params) trafo applied.
instance$archive()
nr batch_nr ... resample_result iters params tune_x classif.ce
1 1 ... <ResampleResult> 5 <list> <list> 0.2825482
2 1 ... <ResampleResult> 5 <list> <list> 0.2825482
3 2 ... <ResampleResult> 5 <list> <list> 0.2696206
4 2 ... <ResampleResult> 5 <list> <list> 0.2721586

instance$result
Returns list with optimal configurations and esti-mated performance.
learner$param_set$values = instance$result$params
Set optimized HP in Learner .

AutoTuner - Tune before Train
Wraps learner and performs integrated tuning.
at = AutoTuner$new(learner, resampling, measures,tune_ps, terminator, tuner, bm_args)
Inherits from class Learner . Training startstuning on the training set. After completion thelearner is trained with the "optimal" configurationon the given task.
at$train(task)at$predict(task, row_ids)

Nested Resampling
Resampling the AutoTuner results in nestedresampling with an inner and outer loop.
Example
resampling_inner = rsmp("holdout")
at = AutoTuner$new(learner, resampling_inner,
measures, tune_ps, evals20, tuner)
at$store_tuning_instance = TRUE
resampling_outer = rsmp("cv", folds = 2)
rr = resample(task, at, resampling_outer,
store_models = TRUE)
rr$data
... learner resampling iteration prediction
... <AutoTuner> <ResamplingCV> 1 <list>
... <AutoTuner> <ResamplingCV> 2 <list>

rr$aggregate()
Aggregates performances of outer folds.
rr$data$learner[[1]]$tuning_result
Retrieves inner tuning results.

Logging and Parallelization
lgr::get_logger("mlr3/mlr3tuning")$set_threshold("<level>")
Change log-level only for mlr3tuning.
future::plan(strategy)
Sets the parallelization backend. Speeds up tuningby running iterations in parallel.

mlr-org.com, cheatsheets.mlr-org.com

, Dataflow programming with mlr3pipelines : : CHEAT SHEET mlr
, Introduction

Combine ML operations to flexible pipelines andprocessing graphs, which can be configuredtrained, resampled, tuned as any regular learner.Themain purpose of a Graph is to build combinedpreprocessing and model fitting pipelines that canbe used as a Learner .

Each operation in the above example is a PipeOpwhich transforms the data in each step. PipeOp sare chained with the %>>% operator.
PipeOpFlow operation with $train() and $predict()step.

Construction example: pca = po("pca")
I $train(input) : Named list
I $predict(input) : Named list
I $state : Learned parameters
I $param_set : See hyperparameters

Popular PipeOps
Class Key OperationPipeOpRemoveConstants "removeconstants" Repair TasksPipeOpScale "scale" Scale FeaturesPipeOpImputeMean "impute" Impute NAsPipeOpFilter "filter" Feature FilterPipeOpEncode "encode" Factor EncodingPipeOpPCA "pca" PCAPipeOpSelect "select" Restrict ColumnsPipeOpColApply "colapply" Transform ColumnsPipeOpClassBalancing "classbalancing" Imbalanced DataPipeOpLearner "learner" Use LearnerPipeOpLearnerCV "learner_cv" Crossval LearnerPipeOpMutate "mutate" Fearure EngineeringPipeOpChunk "chunk" Split DataPipeOpSubsample "subsample" Subsample RowsPipeOpFeatureUnion "featureunion" Combine FeaturesPipeOpFixFactors "fixfactors" Handle Unknown LevelsPipeOpNOP "nop" Do Nothing
Full list: as.data.table(mlr_pipeops)

Graph
Connects PipeOp s with edges to control dataflow during training and prediction. Input is sentto sources (no in-edges), output is read from sinks(no out-edges).
Important methods and slots:
IDisplay: print(gr) , gr$plot(html = TRUE)
IAccessing PipeOp s: gr$pipeopsNamed list of all contained POs.

Graph Construction
The %>>% operator takes either a PipeOp ora Graph on each of its sides and connects allleft-hand outputs to the right-hand inputs.
For full control, connect PipeOp s explicitly:
gr = Graph$new()gr$add_pipeop(po("pca"))gr$add_pipeop(lrn("classif.rpart"))gr$add_edge("pca", "classif.rpart")

GraphLearner
GraphLearner behave like Learner and enable
all mlr3 features. : grl = GraphLearner$new(gr)
See slots $encapsulate for debugging and
$model for results after training.

Linear Graphs
Concatenate POs with %>>% :
Example
gr = po("scale") %>>% po("encode") %>>%
po("imputemean") %>>% lrn("classif.rpart")

grl = GraphLearner$new(gr)
access the scale pipeop: grl$graph$pipeops$scale
grl$train(task)
grl$model
grl$predict(task)
rr = resample(task, grl, rsmp("cv", folds = 3))

Hyperparameters
For POs: Exactly as in a Learner .
enc = po("encode")
enc$param_set
enc$param_set$values = list(method="one-hot")
po("encode", param_vals = list(method="one-hot"))

For Graph / GraphLearner : All HPs are collected
in a global ParamSet stored in $param_set . IDsare prefixed with the respective PipeOp ’s id .

Tuning
Can jointly tune any Pipeline.
Example
gr = po("encode") %>>% lrn("classif.rpart")
grl = GraphLearner$new(gr)
tune_ps = ParamSet$new(list(
ParamFct$new("encode.method",
levels = c("one-hot", "poly")),

ParamDbl$new("classif.rpart.cp",
lower = 0, upper = 0.05)

))
tt = term("evals", n_evals = 20)
rs = rsmp("holdout")
inst = TuningInstance$new(task, grl, rs,
msr("classif.ce"), tune_ps, tt)

tuner = tnr("random_search")
tuner$tune(inst)

Usage of AutoTuner is identical.
Feature Engineering
PipeOpMutate adds new features. This works byproviding expressions in a list .
Example
task = tsk("iris")mutations = list(Sepal.Sum = ~ Sepal.Length + Sepal.Width)mutate = po("mutate", param_vals =list(mutation = mutations))GraphLearner$new(mutate %>>% lrn("classif.rpart"))

Nonlinear Graphs
gunion() arranges PipeOp s or Graph s next toeach other in a disjoint graph union.

greplicate() creates a new Graph containing
n copies of the input (PipeOp or Graph).

PipeOpFeatureUnion aggregates features fromall input tasks into a single Task .
Example - Feature Union
train on orig and pca features
gunion(list(po("nop"), po("pca"))) %>>%
po("featureunion") %>>% lrn("classif.rpart")
Example - Bagging Ensemble
pr = po("subsample") %>>% lrn("classif.rpart")
bagging = greplicate(pr, n = 10) %>>%
po("classifavg", innum = 10)

Branching
Controls the path execution. Only one branch canbe active. Which one is controlled by a hyperpa-rameter. Unbranching ends the forking.
Example - Preprocessing
choices = c("pca", "scale")
gr = po("branch", options = choices) %>>%
gunion(list(po("pca"), po("scale"))) %>>%
po("unbranch", options = choices)

set the "pca" path as the active one:
gr$param_set$values$branch.selection = "pca"

Tuning the branching selection enables powerfulmodel selection.
mlr-org.com, cheatsheets.mlr-org.com

https://cheatsheets.mlr-org.com/

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 35 / 36

https://mlr3book.mlr-org.com/
https://mlr3gallery.mlr-org.com/
https://cheatsheets.mlr-org.com/
https://tinyurl.com/mlr3pipelines

OUTLOOK

What is to come?

mlr3pipelines: caching, parallelization

Better tuners: Bayesian Optimization, Hyperband

Survival and Forecasting (via mlr3proba, mlr3forecast)

Deep Learning (via mlr3keras)

Thanks! Please ask questions!

© May 28, 2020 Pipelines and AutoML with mlr3 , https://tinyurl.com/mlr3pipelines – 36 / 36

https://tinyurl.com/mlr3pipelines

	mlr3pipelines
	PipeOps
	Graph Operations
	Linear Pipelines
	Nonlinear Pipelines
	Targeting Columns
	Having trouble remembering these? 0.4em``Pipelines'' Dictionary & Short Form
	AutoML with `mlr3pipelines`
	mlr3(pipelines) Resources

