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Abstract

The paper introduces a generalization for
known probabilistic models such as log-linear
and graphical models, called here multiplica-
tive models. These models, that express
probabilities via product of parameters are
shown to capture multiple forms of con-
textual independence between variables, in-
cluding decision graphs and noisy-OR func-
tions. An inference algorithm for multiplica-
tive models is provided and its correctness is
proved. The complexity analysis of the infer-
ence algorithm uses a more refined parameter
than the tree-width of the underlying graph,
and shows the computational cost does not
exceed that of the variable elimination algo-
rithm in graphical models. The paper ends
with examples where using the new models
and algorithm is computationally beneficial.

1 Introduction

Probabilistic models that represent associations
and/or interactions among random variables have been
heavily applied in the past century in various fields of
science and engineering. The statistical methods orig-
inating with the work of Fisher (1925, 1956) [6, 7] cul-
minated in the log-linear models which describe the as-
sociation patterns among a set of categorical variables
without specifying any variable as a response (depen-
dent) variable [1].

A specific type of probabilistic models, probabilistic
graphical models, can be visually described as an inter-
action graph, and embody independence assumptions
in the domain of interest [15]. Their main attraction
is that the independences encoded in the structure of
the model allow to indirectly specify the join distribu-
tion as a product of functions ¥;(D;), each depends
only on a limited set of variables D;. Algorithms that
compute the posterior distribution conditioned on ev-

idence, called inference algorithms, exploit this struc-
ture, avoiding a direct computation of the join prob-
abilities [5, 19]. The complexity of such algorithms
depends on the topology of the model, and is expo-
nential in the tree-width of the underlying graph.

The common distinction within graphical models is
between undirected graphical models [15], a subset of
log-linear models, where there are no restrictions on
the functions 1, and Bayesian networks (BNs) [19]
in which every function is a conditional distribution
¥;(D;) = P(X;|II;) where II; is the set of parent vari-
ables of X; in the model. Another type of probabilistic
models that can be represented visually, called factor
graphs, extends undirected graphical models and in-
corporates many of the desired properties of graphical
modes [14].

Aside of the independences that are imposed by the
model’s structure, often there exist additional inde-
pendences stemming from the specific values of the
functions. These independences are not systemati-
cally exploited by the traditional inference algorithms,
resulting in an unnecessary computational cost. For
such non-structural independences we use the name
context-specific independence (CSI), which was sug-
gested in previous studies [2, 20]. We note that the
term CSI takes here a more general meaning as it is
not restricted to any specific type of independence.

Several studies have suggested changes in the tra-
ditional representation of graphical models in order
to capture context-specific independences. These in-
clude similarity networks suggested by Heckerman
(1991) [12], multinets (Geiger & Heckerman 1996) [9],
asymmetric influence diagrams (Fung and Shachter
1990) [8], and structured representations of the func-
tions 1 based on decision trees (Boutilier et al.
1996 [2], Poole& Zhang 2003 [20]). Other studies re-
sorted to revised representations for specific functions
(e.g. Quickscore algorithm by Heckerman 1989 for
noisy-OR functions [11]).



Although the new representations proved useful from
an empirical view point, they lack the ability to encom-
pass a wide variety of CSI. In addition, the theoretical
complexity of inference using these representation re-
mained a function only of the topology of the graph
underlying the model.

In this paper we approach the problem of inference
from a more general perspective. We introduce a set of
models called multiplicative models in which the func-
tions ¢ that account for the dependency of variables
are in a multiplicative representation, where a value of
an instance is a product over a set of parameters. We
show that multiplicative models generalize over log-
linear models, factor graphs, and graphical models. In
addition, we show that multiplicative models can cap-
ture multiple forms of CSI, including CSIs captured
via decision trees, decision graphs, and via noisy-OR
functions. This leads to the question whether an in-
ference algorithm that takes advantage of these inde-
pendences can be constructed without additional cost.
We provide such an algorithm, and show how different
types of independences are utilized in this procedure to
reduce the needed computations. The inference algo-
rithm provided herein simplifies over the inference al-
gorithm suggested by Poole & Zhang (2003) [20] when
applied to Bayesian networks, by avoiding the use of
tables and tables splitting operations. The more gen-
eral nature of the algorithm also enables it to deal
with different representations, and thus account for
CSI that can not be represented by decision trees and
decision graphs.

We prove the correctness of the inference procedure
and give a new notion of complexity instead of the
exponent of the tree-width which is commonly used
to describe the complexity of inference in graphical
models. The new time complexity is shown to be less
than or equal to the standard complexity.

2 Multiplicative models

We propose a generalization of graphical models, fac-
tor graphs and log-linear models which represents the
dependency of variables in the model via the notion
of multiplicative models. In these models a value of
an instance in the dependency function is a product
over a specific set of parameters. The definition relies
on the concept of a lattice. A lattice (L,<,N,U) is
a partially ordered set (poset) with respect to some
relation <, in which for every two elements ly,ls € L
their least upper bound is denoted as [; Ny and their
greatest lower bound is denoted as I3 U ls.

We usually use upper case letters to denote random
variables and sets of random variables, and lower case
letters to denote their values. For a variable V we

denote its domain, or the set of possible values it can
get, by dom(V). For a set of variables D = {V;}_,,
the notation dom(D) corresponds to the cross product
of the domains dom(V;), i =1,...,n.

Let D = {V;}!, be a set of n multivalued variables,
and let the function (D) : dom(D) — R specify the
values in a full table for the set D, then the following
is a definition for a mapping function of D.

Definition 1 (Mapping function) A function f is
called a mapping function of D with respect to the lat-
tice L, if it is defined as f : dom(Z) — L for every
Z C D, and maps partial instances Z = z onto L.

We use this definition to define a lattice multiplicative
model of ¢(D).

Definition 2 (Lattice multiplicative model)

A model p = {S,,T,} of a function (D) is
called a lattice multiplicative model with respect
to a lattice (L,<,N,U) and a mapping function
foifS, € L, T, ={y € R:s € S,} and
sp=d= T %

s<f(d),seS,

The set S, is called the structure of the model, and
the set I', is called the parameters of the model. In
multiplicative models elements s € S for which vy, =1
can be removed from S.

Here we focus on a lattice L which is a set of proposi-
tional clauses over the variables and their values, and
call this model a propositional multiplicative model,
or simply a multiplicative model. In this model, the
operators on the lattice are A and V. The mapping
function used for this model is called the propositional
mapping function, and is defined as follows.

Definition 3 (Propositional mapping function)

A mapping function f is called a propositional map-
ping function of D with respect to the lattice L, if
for every set Z C D the function maps every partial

instance Z = z into the conjunction N (V; = v;),
Viez
where v; s the projection of z onto the variable V;.

Definition 4 (Propositional multiplicative model)
A lattice multiplicative model p = {S,,T',} of a func-
tion (D) is called a propositional multiplicative
model with respect to a lattice (L,=<,A,V) and a
propositional mapping function f, if the elements of
L are propositional clauses over the wvariables in D
and for two clauses ¢ and ¢ we denote ¢ < ¢ if ¢ is
implied by c'.

Example 1 Consider a set D which contains two
ternary variables A and B. The corresponding lattice



contains propositional clauses over A and B, and for
the two clausesc = (A =0) andc = (A=0)A(B =2)
we denote ¢ <X ¢’. The corresponding mapping function
maps the instance A = 0, B = 2 into the propositional
clause (A = 0) A (B = 2), and the partial instance
A =0 into the clause (A =0).

In this definition, the standard model which uses full-
table representations of the functions (D), such as
graphical models, and handles each instance sepa-
rately, is also a multiplicative model with the set S
containing all mapping f(d) of instances D = d, and
with values v4 = ¥(d).

Another well-known model that falls into Definition 2
is the log-linear model.

2.1 Log-linear models

Log-linear models are usually used to analyze categor-
ical data, and are a direct generalization of undirected
graphical models. These models that have been heav-
ily used for statistical analysis for the past four decades
describe the association patterns among a set of cat-
egorical variables without specifying any variable as
a response (dependent) variable, treating all variables
symmetrically [1].

Formally, a log-linear model specifies the natural log
of the expected frequency of values d for a set of vari-
ables D as a linear combination of the main effect )\L/
of every variable V; € D, and if |D| > 1 interaction ef-
fects Y of every subset of variables S C D, where the
instances s are consistent with d. For example, sup-
pose that we want to investigate relationships between
three categorical variables, A, B and C, then the full
log-linear model is

I(Fape) = pFAGHNE AT + MG +0EE +AEC B¢

abc

where p is the overall mean of the natural log of the
expected frequencies.

Clearly in the log-linear models instances are partially
ordered by inclusion of their sets and by consistency
of instantiations. To formalize log-linear models as a
multiplicative models, for every subset Z C D and for
every instantiation Z = z such that A% # 0, the set S

contains all clauses of the form A (V = v), where v
Vez
is the projection of z onto the variable V. In addition,

we set the parameters of the model to v+ = e and
S
V() =€

2.2 Context-specific independence

With the introduction of graphical models and in par-
ticular Bayesian Networks (BNs), and the proof that
inference in these models is NP-hard [4], several stud-
ies looked for further independences encoded in mod-

els that can potentially reduce the amount of work
needed for inference [12, 9]. The notion of Context-
Specific Independence (CSI) was then introduced by
Smith et al. (1993) [23] and Boutilier et al. (1996) [2].
Context-specific independence corresponds to regular-
ities within probabilistic models based on the values
assigned in the model.

Formally, we say that the sets of variables X and Y
are contextually independent in the context of C' = ¢
given 7 if

P(X,Y|Z=2C=c¢c)= (1)

PX|Z=2C=c)-PY|Z=2C=c)

for every value Z = z. One aspect of this equation is
that if X and Y are contextually independent given
Z, then

PX|Y =y, Z=2C=¢)=PX|Y =y2,Z=2,C=¢)

(2)
for any two values y1,ys of Y, which appear as repet-
itive values in conditional probability tables, such as
those used in BNs. These repetition which are the ba-
sis of compact representations like decision trees and
graphs were exploited for inference in BN [2, 20].

Another kind of CSI which was exploited for enhanced
inference in BNs is the independence in noisy-OR func-
tions. A noisy-OR function is a conditional probabil-
ity function of a binary effect variable F given a set
of m binary cause variables C = {C4,...,C,,}. The
conditional probabilities of the function are P(F =
0|C1,....Cn) =co ]I P(E = 0]|C;), where ¢ is a
:C;=1

constant, and the values P(E = 0|C;) are some real
numbers.

For any particular CSI of the sets of variables X and YV
in the context C' = ¢ given the set Z, as in Eq. 1, there
exists a multiplicative model that captures this inde-
pendence. Such a model is any multiplicative model
where the structure does not contain elements s that
involve variables from X and Y, such that there exists
an instance Z = z for which s A (Z = z) = L and

sA(C=c)# L.

We now define two types of multiplicative models that
capture two different types of common CSIs.

2.2.1 Positive models

Representing the dependency of variables using log-
linear models has some desirable properties, such as
being general while ensuring the existence of a maxi-
mum likelihood without enforcing dependencies to be
strictly positive. However, in the representation dis-
cussed in Section 2.1 the log-linear models use more
parameters than necessary [3, 13]. Take for example
the log-linear model for two binary variables A and B.



Assuming all possible effects exist, the corresponding
log-linear model uses eight parameters rather than the
four parameters in a standard representation as a full
table: Ao, MY AE AB NG NGB ME A AE.

Another representation of the log-linear models that
accounts for these redundancies uses only parameters
which involve non-zero instantiations of variables [10].
In the above example the only parameters used in
this representation are: ', AP, A%, We describe this
representation of log-linear models as a multiplicative
model, which we call here the positive model.

Definition 5 (Positive model) A positive model p
of a function Y(D) is a multiplicative model wrt to
the lattice (L, <,A,V) and a (propositional) mapping
function f in which S, contains only elements s = f(z)
where Z C D and no variable in Z = z is set to zero.

Log-linear models, and thus positive models, are
known to capture conditional and contextual indepen-
dences [16].

Example 2 An example is a function ¢ over two
binary variables A and B where ¢¥(0,0) - (1,1) =
¥(0,1) - ¥(1,0). This implies that A is independent
of B and the function can be written as ¥(A,B) =
P(A) - (B). In the corresponding positive model the
parameter Y(a—1)a(B=1) = % = 1. Thus, this

mdependence is captured in the model.

Example 3 In a more complex function with three bi-
nary variables A, B and C, every pair of variables is
independent whenever the third variable is set to zero.
For this function the corresponding positive model as-
signs Yv=na@w=1) = 1 for every pair of variables
V,U € {A, B,C} and where V #£U.

2.2.2 Decision trees and graphs as
multiplicative models

Common structures for representing functions with
contextual independence are decision trees (DTs) and
decision graphs (DGs) [22, 18]. These structures cap-
ture contextual independences that are the result of
repetitive values, as specified in Eq. 2. Several studies
have used decision trees to enhance inference in graph-
ical models [2, 20]. We show how DTs and DGs fall
into the category of multiplicative models.

For a function ¢(D) over a set of variables D, a deci-
sion tree T' that represents (D) is a tree with variables
from D at internal nodes and values from (D) at the
leaves. Every edge from a variable V' to a child in T’
corresponds to a different set of values H C dom(V),

and can be represented as a set of clauses \/ (V =v).
veEH
A value at theend of a path p = v1 — v9 — -+ — vy,

where v; is some value of V;, equals to the value

of Y(d = viv2 - UmUpy1 -+ V), Where V; = v; for
m < j < n is any possible value of V;. We note that
in a decision tree every instance D = d is mapped to a
single path in the tree. An example of a decision tree
that encodes a function over the variables A, B,C, D
is shown in Figure 1.

One can choose to use decision graphs [18] instead of
decision trees. These are more compact structures that
can encode for more distributions. For a function (D)
over a set of variables D, a decision graph G that rep-
resents ¥(D) is a directed graph with sets of variables
from D at internal nodes and values from (D) at the
leaves. Similar to decision trees, every edge from a set
of variables W to a child Z corresponds to a different
set of values H C dom(W), and can be represented

as a set of clauses \/ (W = w). A value at the end
weH
of a path p equals to the value of ¢(d), where d is an

instance of D consistence with the sets of values en-
coded by p. Again, as in decision trees, we note that
in a decision graph every instance D = d is mapped to
a single path in the graph.

Definition 6 (Decision-graph model) A decision
graph model p of a function V(D) is a multiplicative
model wrt to the lattice (L, =X,A,V) and a mapping
function f where every two elements s1,s2 € S, sat-

isfy st ANsag =1, and \/ s=T, where L = false and
ses
T = true.

For a specific decision graph G that represents (D),
the decision graph model of G is p(G) in which the
structure contains one clause for every path from the
root to a leaf in G, which is a conjunction of the clauses
on the edges. For every such path s, we set 75 to
the value at the end of the path. We note that in
this model for every instance D = d there is only one
element s € S, such that s < f(d).

3 Inference for multiplicative models

Consider a model that encodes for the probabil-
ity distribution P(z) = [, ¢i(d;), with sets D; =
{Xis... X, }, and multiplicative models p; =
{S;,T;} over all the functions t;(D;) wrt a lattice
(L, =<, A, V). We first show how to perform inference,
and compute a probability of a set of query variables @
using a multiplicative model. In particular we perform
inference for a multiplicative model via the variable
elimination scheme (Zhang & Poole 1996 [24], Dechter
1999 [5]) which was originally suggested for inference
in BNs. Then, we prove the correctness of the algo-
rithm and analyze its time complexity.

We define an operation M (V, {p;}), which given a vari-
able V € X and a set of models {p;},7=1,...,m over
X returns a model p’ over the variables X \ V. This



A B C D (A B,CD)
0 0 0 0 0.4
0 0 0 1 0.4
00 1 0 0.4
0 0 1 1 0.4
01 0 0 0.8
0 1 0 1 0.8
01 1 0 0.8
0 1 1 1 0.8
1 0 0 0 0.1
1 0 0 1 0.1
1 0 1 0 0.032
1 0 1 1 0.08
1 1 0 0 0.1
1 1 0 1 0.1
1 1 1 0 0.65
11 1 1 0.08

A=0 A=1
) N
A &)
04 08 0.1 (o)
(A=0)A(B=0) (A=O)A(B=1) (A=1)A(C=0)
T (B=1) (A=1)
(8) 0.08
7~ (A=1)A(C=1)A(D=1)
/\ (A=1)A(C=1)A(D=1)
0.032 0.65
(A=1)A(B=0)A(C=1)A(D=0) (A=1)A(B=0)A(C=1)A(D=1)
(A=1)A(C=1) (A=1)A(C=1)A(D=1)

Figure 1: (left) A full-table over the binary variables A, B, C, D that specifies the value of the function 1) for each instance.
(right) A decision tree corresponding to the function v on left. Under every node in the tree appears the corresponding
proposition in the decision-tree representation, and below the corresponding proposition in a positive representation of

the propositions in the decision tree.

operator is analogous to marginalization in standard
inference algorithms. In addition, for a model p we de-
fine a relevance indicator I,(V') for each element s € S,
and each variable V in D, which is set to 1 if there ex-
ists a pair of instances dy,ds of D that differ only by
the value of V' and for which s < f(dy) but s £ f(d2).
Otherwise, I;(V) is set to 0.

These operations allow us to write an inference proce-
dure which computes the probability of a set of query
variables in a multiplicative model as in Algorithm 1.

The algorithm operates like the bucket-elimination al-
gorithm [5], where given an order on the variables we
iterate over them (Line 2), and marginalize out one
variable at a time (Line 9). Only elements that include
terms that involve the current variable are considered
in the marginalization.

Note that for graphical models, in which the elements
of S; are a mapping of instances of the functions D,
this algorithm is exactly the known variable elimi-!
nation algorithm, in its implementation as bucket-1
elimination [5], where the sets S;[j] are the tables in

the bucket of the variable X;. )

A general algorithm for computing M (V, {p;}) is given1
as Algorithm 2. We use there the notation sV V for an

element s € S and a variable V' to denote s \/ (V =
V=v

v). This operation removes all terms that specify a

value for V. For example, if s = (V = 0) A (U = 0)

then s VV = (U =0).

The algorithm has two main parts: upto Line 5 the al-
gorithm generates the set R of possible new elements
in the model. From Line 6 it computes the new param-
eters ,., where at each iteration a “minimal” element

Algorithm 1: VE for multiplicative models

Input: A model with n variables X; (i =1,...,n)
and m functions ¢;(D; C X), that encodes for
the distribution P(X). A set of multiplicative
models p; = {S;,T';} wrt a mapping function
f, where p; model ¥;(D;), and a set of k
query variables Q = {X; : i <k}

Output: The distribution P(Q).

1t=m+1;
2 for j=k+1 tondo

3 fori=1tt—1do

4 Sz[]]<_{8 SeSi ) IS(X]):]-}a
5 Fi[j]H{WSZSESi[j],VSEFZ},
6 Si — 8; \ Silj;

7 Iy — i\ Ti[j];

8 end for;

o {SuTu} — M(V{SL Tl

0 t=t+1;

1 end for;

2 s;=2f(q)

3 return P(Q);

Figure 2: Algorithm for variable elimination with a mul-
tiplicative model

of R is chosen, and selects those elements r with pa-
rameters v, # 1.

To compute the possible new elements, Lines 2 and 3
first create a closure under the operator A of each
structure S;. Then, in Line 5 all conjunctions of terms



Algorithm 2: M(V,{p;})

Input: A variable V' and a set of representations
pi ={S;,T;},i=1,...,t, wrt a lattice
(L, =, A, V), where I, (V) =1 for every i and
s; € 5.

Output: A representation p’ = {S’,I"}.

18 «— 0; TV « 0

fori=1totdo
Ri={ A\ ¢:5CS;}
s'€S]
end for;

R<—{ /\ TiITiERi};
5

1<i<t

6 while R # () do

10
11

12
13

14
15

*ris a minimal element in R *
r€ Min(R)={r'":7" € R ,}r" € Rst. 7" <1r'};
> 10 II Ve

_ V=v i sZ(rA(V=0)),5€S; |
Yr = ;
I1 Vi

r'es! v’ <r
R— R\ {r};
if v, # 1 then

S — S'u{r};
" —=T"U{v}

end while;
return {S",IT"};

Figure 3:

Algorithm for computing the operation

from the different closures consist of the set of possi-
ble new elements. In analogy to inference in graphical
models, this operation is equivalent to the operation
of tables’ multiplication, often denoted as ®. In these
models the set R is the set of instances in the table
after marginalization.

We note that for some models, like graphical models,
lines 2-5 are trivial, and are executed implicitly, since
the elements in R are known to be all instances of a
full-table over variables in |J.S;.

3.1 Correctness of the inference procedure

We prove the correctness of Algorithm 1 by showing
that the algorithm maintains the property that after
iterating over the set of variables U, the models p; =
{5;,T;} encode to the probability distribution P(X \
U).

At the beginning of the algorithm every model p; rep-
resents the corresponding function ;(D;). Thus,

P(X =z)= Hwi(Di =d)=]] I

i s=f(di),s€S;

Yis-

Assume that after removing the set of variable U we
are left with the set X’ = X \ U, and now wish to
eliminate a variable V' € X’. We write the probability
of an instance z/, of X’ \ V which is the projection of
an instance X’ = 2/ onto X'\ V via the parameters 7:

P =S P =11 11
V=v

V=u i s=f(az),s€S,;

Yis

We can decompose the product into terms that in-
volve the variable V' and those which do not. Denoting

afzy,) =11 Yig, We get
i s=f(2'),5€8:,1.(V)=0

P(2) = ae}) - ST

V=u i s2f(a'),s€8;L.(V)=1

Now, lets examine what the algorithm encodes for
after removing variable V', and show that it equals
Eq. 3. While the elements that do not involve vari-
able V' are not changed, the elements that do involve
V are removed and the elements s; € S; are added.
Therefore, after applying Algorithm 2 for V' the re-
maining sets encode for P(z!) = a(z) - () where

B = I e )

To express B(x)) in the
se2f(2),5: €St

terms of Algorithm 2, recall that S; C R and if an
element s € R and s ¢ Sy then v = 1. Thus, we can
rewrite G(x) using elements of R as

I

r2f(z"),reR

From lines 2-5 in Algorithm 2, there is one element
r* < f(2’) in R for which Vr € R such that r < f(2')
also satisfies r < r*. First, to show there is such an
element r* we recall from Line 5 that all elements in
R can be written as r = A r;, where r; € R;, and
1<i<t
R; is the closure of S; under the operator A. Consider
the set of elements r} < f(z), i = 1,...,t, for which
all other elements r; € R; such that r; < f(z') satisfy

r; = rf. Then, every element r = /A r; such that
1<i<t
r =X f(a') also satisfies r < r*.

Now, assume by contradiction that there were two such
elements, r7,75 € R. Then from the definition of ]
and 75 we get ] X 75 and r5 = 77, yielding r] = r3.

Thus, from line 9 in Algorithm 2

I w»=>10 I =

r<r*,reR V=v i s2(r*A(V=v)),s€S;

5(93;) = Tr*"

where the last equality is due to the fact that the de-

nominator in the computation of v,« is  [[ 7. In
rr*reR
the terms of Algorithm 1 the set {s:s < (r* A(V =



v)),s € S;} can be rewritten as {s : s < f(z'),s €

Si, Is(V) = 1}. Thus, we can write

ﬁ('x;) = H H Vs

i s=f(a'),s€8:, 0. (V)=1

and from Eq. 3 we get P(2!) = P(«/). Namely, the
new models encode for P(X’\ V).

3.2 Incorporating evidence

In many practical scenarios we observe the value of
some of the variables in the model, and wish to incor-
porate this evidence. The multiplicative models allow
us to do so in a most natural way. Consider a set
E of evidence nodes for which we observed the values
E = e, and a multiplicative model p = {S,,I',}. Then,
in order to incorporate the evidence into p, we adjust

the elements in S, by s =s A (V =v), where v is the
VeE
projection of e onto the variable V' € E. Then, we re-

move every element not consistent with the evidence,
s=1.

3.3 Complexity of inference

It is well known that the complexity of inference in
graphical models is NP-hard and its cost exponential
in the tree-width of the underlying graph [4].

We analyze the time complexity of the inference pro-
cedure for multiplicative models given in Algorithm 1.
As a by-product we refine the standard complexity and
provide a new complexity bound which is based on
the representation used. One can then say that the
complexity of the problem is the minimum complexity
among all possible representations.

3.3.1 Diameter of multiplicative models

The structure of a multiplicative model determines the
amount of computations needed to obtain the value
¥(d) of a single instantiation of values to variables in
a set D. Although at first glance it seems that for
a model p = {S,I'} of a function ¥ (D) the number
of operations needed to obtain values of all instances
D = d amounts to a total of > |{s:s =< d}|, the real
D=d

number of operations can be dramatically lower and we
denote it by d(p). For hierarchical models, in which
if an element s is not in the structure of the model
then all elements s < s’ are also not in the model,
Good (1963) provides a method that computes all such
values in time |S|log|S| [10]. We denote the ratio
between the number of computations and the number
of elements in S, which is the size of the model, by
diam(p) = % and name it the diameter of p.

From a computational perspective, it is clearly ben-
eficial to use models with a small diameter, as this

directly leads to fewer operations whenever we want
to either obtain a value of 1 or update the values ~s.
Examples of models with a diameter of 1 are graphical
models and decision graph models, in which for every
element s € S, the only element s’ such that s’ < s,
is s itself. On the other hand, the diameter of a pos-
itive model can be as high as %. This maximum
is achieved for a positive model of m binary variables,
when all 2" parameters do not equal one, and hence
all possible elements are in S. In this scenario the
diameter is exactly 3.

Although in the worst scenario the diameter of a posi-
tive model can be large, often this is not the case, and
the diameter is typically bounded to be very small.

Example 4 Consider as an example the Potts

model [21] in which a function (D) over a set

D = {V;}*, decomposes according to Y(D = d) =

co [T¢(vi,vj), where v; and v; are projections of d
0]

onto the variables V; and V; respectively, and cy is a
constant. Although in general a positive model over n
binary variables has a diameter of 5, in this example,
the structure of the positive model includes only ele-
ments that involve at most two variables. Therefore,
the diameter of the model is bounded by two.

Similarly, in a more complex scenario where the func-
tion v decomposes to functions of k-tuples of variables,
the diameter will be bounded by k.

Consider a tree decomposition of the graph in which
there is an edge between a pair of variables V,U if
there exists an element s in one of the models for which
I;(V)-I(U) = 1. We denote by S(W) = {sV(X\Z):
s € S;} the set of parts of elements in the models p;
that involve variables from the set of graph vertices
Z which is mapped onto the tree node W. Further
denoting as S~ (W) the closure of S(W) under the
operator A, we say that complexity of the algorithm for
this tree decomposition is the maximum over the nodes
W in the tree of |S~(W)|-diam (S~ (W)), as described
in Section 3.3.1. Then, the overall complexity of the
algorithm is the complexity for the tree decomposition
that yields the minimum for this term.

To see that this is indeed the time complexity of the
algorithm, consider the elements in a set R in Algo-
rithm 2. The number of elements there does not ex-
ceed the number of elements in S~ (W) for the corre-
sponding tree decomposition and where W maps onto
the variables that appear in R. Most of the compu-
tation stems from computing the products in Line 9,
and these can be done for the entire set of elements
of R in time proportional to |R| - diam(R). Therefore,
having the ability to choose an elimination order, the
complexity of the algorithm is |S~ (W)|-diam (S~ (W))



maximized over all nodes W in a tree decomposition
and minimized over all possible such decompositions.

3.4 Benefits of inference for multiplicative
models

Different multiplicative models capture different con-
textual independences, hence specifying different num-
ber of parameters. Take for example the function over
four binary variables A, B, C, D with values according
to the table in Figure 1. The structure of the cor-
responding decision-tree model contains six elements
while the structure of the corresponding positive model
contains eight elements. In this latter model, the CSI
captured in the decision tree, yielding the value of ¢
to be independent of B given that A, C and D are set
to one, does not have any effect. This variation and
the structure of the model affect the run time of the
inference algorithm.

An example where there are substantial computational
savings when using the inference algorithm proposed
can be found in a model such as the QMR-DT net-
work [17], which is comprised of noisy-OR functions,
mentioned in Section 2.2. The QMR-DT network is
a two-level or bipartite BN where all variables are bi-
nary. The top level of the graph contains nodes for
the diseases C, and the bottom level contains nodes
for the findings F. The conditional probabilities in
the network P(E; = e;|II;), where II; are the parents
of finding F; in the network, are represented by noisy-
OR functions.

Heckerman (1989) has developed an algorithm, called
Quickscore, which takes advantage of the indepen-
dence of the cause variables in the context of a negative
finding F; = 0 and uses it to speed up inference in the
QMR-DT network [11].

For every noisy-OR function P(E|CY,...,C,,) a struc-
ture of a multiplicative model that captures the in-
dependence does not contain elements s such that
sAN(E =0)# L for which I,(C;) =1 and I;(C;) =1,
for all 4,5 < m.

In addition, running Algorithm 1 using multiplicative
models with structures

S; = {(El = 1) /\ (Cz = Ci) VC; = CZ‘}\/
Ci€ell;

{(E: =0)A(C; =1): C; e IL}V((E; =0) J\ (C;=0))

Ciell;
is identical to the Quickscore algorithm and gains the
same savings automatically.
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