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Abstract

We propose a novel way to regularise deep learning models by reducing high correlations
between neurons. For this, we present two regularisation terms computed from the weights
of a minimum spanning tree of the clique whose vertices are the neurons of a given net-
work (or a sample of those), where weights on edges are correlation dissimilarities. We
explore their efficacy by performing a set of proof-of-concept experiments, for which our
new regularisation terms outperform some popular ones. We demonstrate that, in these ex-
periments, naive minimisation of all correlations between neurons obtains lower accuracies
than our regularisation terms. This suggests that redundancies play a significant role in
artificial neural networks, as evidenced by some studies in neuroscience for real networks.
We include a proof of differentiability of our regularisers, thus developing the first effective
topological persistence-based regularisation terms that consider the whole set of neurons
and that can be applied to a feedforward architecture in any deep learning task such as
classification, data generation, or regression.

Keywords: Topological data analysis, persistent homology, optimisation, regularisation,
neuron correlation, deep learning

1. Introduction

Neural networks have proven to be powerful models to solve complex tasks. Usual neural
networks show a high capacity to generalise properly beyond the training dataset used to fit
their parameters (Zhang et al., 2021). Although there is no general explanation of why this
happens yet, abundant literature is available to tackle this problem (Dziugaite et al., 2020;
Graf et al., 2022; Jiang et al., 2020; Jiang* et al., 2020; Kawaguchi et al., 2022). Moreover,
many regularisation methods have been proposed to improve generalisation capacity from
both theoretical and practical perspectives. According to experimental results, explicit
regularisation may improve generalisation performance (Zhang et al., 2021).

Evidence from neuroscience indicates that correlation among human neurons is a sig-
nificant factor in the brain’s ability to encode and process information (Cohen and Kohn,
2011; Kohn and Smith, 2005). This was pointed out in Jin et al. (2020), where it was
observed that the generalisation error of a deep network is monotonic with respect to the
correlation between weight matrices of neurons or filters, suggesting that decreasing this
correlation can be beneficial to improve the generalisation capacity of a network. Further-
more, in Cogswell et al. (2016), overfitting of neural networks was reduced by decorrelating
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their neuron activations. Overall, these studies suggest that a reduced correlation between
neuron activations could improve the robustness of a network.

However, neuroscience also suggests that redundancy appears naturally in brain cir-
cuits and is useful to perform certain computations (Hennig et al., 2018; Mizusaki and
O’Donnell, 2021). For this reason, aggressively minimising correlations between all activa-
tions or weights may be detrimental for the performance of a neural network.

In this work, we propose a way to minimise only the most relevant high correlations
between neurons. For each batch of data during training, we compute regularisation terms
based on edge weights of a minimum spanning tree of the clique generated by the most
relevant neurons for the batch, based on an importance measure inspired by the activation
criterion for neural network pruning presented in Molchanov et al. (2017). Edge weights in
the clique are pairwise correlations between activation vectors of neurons. In order to prove
that our regularisation terms are almost everywhere differentiable, we use the differential
calculus framework for persistent homology developed in Leygonie et al. (2022).

Determining edge weights of a minimum spanning tree is an efficient way of computing
zero-dimensional persistent homology from a matrix of correlation dissimilarities. The use-
fulness of persistent homology to build regularisers is justified by results in Ballester et al.
(2022), where it was shown that topological summaries associated with lower activation
correlations can be associated with an increased generalisation capacity of the network.

1.1. Contributions

The main contributions of our work can be described as follows:

1. We propose two novel regularisation terms that minimise only some of the highest
correlations of the most relevant neurons in a specific training batch. This approach
allows for some redundancy in the neural network. Each regularisation term employs
a distinct method, and each of them outperforms the other in specific networks.

2. We use differentiable persistence descriptors to ensure differentiability of our regu-
larisation terms, thus developing, to the best of our knowledge, the first topological
regularisation terms that depend on the whole set of hidden internal representations
of the neurons of a neural network.

3. We provide a set of proof-of-concept experiments to validate the effectiveness of our
topological regularisation terms, and find that our regularisers achieve a better per-
formance than several popular regularisation terms in these experiments.

2. Related work

Many works in deep learning study explicit regularisation to improve the generalisation
capacity of neural network models. Popular approaches include dropout (Srivastava et al.,
2014), in which neurons are dropped randomly during training, and the classical l1 and
l2 regularisation terms (Tibshirani, 2011), that control the size of weights of a neural net-
work. Among many existing regularisation approaches, some have used correlations between
weights and activations of neurons for regularisation. In particular, Jin et al. (2020) uses
weight correlations for convolutional and fully-connected layers, and Cogswell et al. (2016)
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proposes to minimise a loss function computed from a covariance matrix of neuron activa-
tions on a batch. However, both methods have limitations: In Jin et al. (2020), the definition
of weight correlation is hardcoded only for fully-connected and convolutional layers, while
in Cogswell et al. (2016), correlations between neurons are computed for a set of neurons
defined by the user, which is not an easy task for large networks. Both articles reduce all
correlations at the same time, without taking into consideration that redundancy between
neurons can be important. While the regularisation terms proposed in these articles use
only layerwise correlations, without taking into account interactions between neurons of
different layers, we propose two regularisation terms that can be used in any feedforward
architecture and are not restricted to correlations in the same layer, and moreover they
only decorrelate the neurons with highest correlations, thus allowing the network to remain
flexible enough to keep an amount of redundancy that could be useful for the task.

During the last years, the popularity of topological methods in machine learning has
rapidly increased. An overall survey of these methods can be found in Hensel et al. (2021).
In Carrière et al. (2021); Leygonie et al. (2022), frameworks for differential calculus on
persistence barcodes were defined, allowing to optimise point cloud shapes and thus to con-
struct topological regularisation terms. In Chen et al. (2019a), the first regularisation term
for neural networks based on the topology of the decision region was proposed. From there,
specific topological regularisation terms have been discussed for image segmentation (Byrne
et al., 2021; Clough et al., 2022; Hu et al., 2019, 2021), autoencoder latent space (Hofer
et al., 2019), and classification using decision boundaries (Chen et al., 2019b).

Among the current approaches on regularising neural networks, the most similar to our
method are the ones suggested in Birdal et al. (2021); Hofer et al. (2020). In Hofer et al.
(2020), zero-dimensional persistent homology is used to optimise the mass concentration of
the internal representations in the last hidden layer assuming that the mini-batches used
during training are equally distributed among all classes. In Birdal et al. (2021), an upper
bound of the generalisation gap of a neural network N based on persistent homology of the
set of weights generated during the training of N was found and minimised.

Although the existing topological regularisation approaches perform satisfactorily, most
of them are restricted to specific tasks or have limitations that can be complemented with
our approach, which is fundamentally different from previous methods for the following
reasons: 1. Topological regularisation terms based on decision boundaries or the evolution
of the whole set of weights do not consider the whole structure of a network, that provides
substantial information about generalisation (Corneanu et al., 2020, 2019; Kawaguchi et al.,
2022; Rieck et al., 2019; Ballester et al., 2022). 2. Topological regularisation terms designed
for specific tasks are too restrictive in general scenarios. Our topological regularisation
terms based on correlations of neurons are agnostic to the problem (regression, classification,
generative models, etc.) and compatible with most model types, and they work on the whole
structure of the network by means of neuron activations.

3. Methodology

The presence of high correlations between neurons in a neural network may imply the exis-
tence of redundant features learned from the data. This fact suggests that excessively high
correlations between neurons restrict the network’s capacity to fully utilise its expressivity.
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However, entirely avoiding correlated features may be detrimental for learning tasks.
This is because (1) it imposes hard restrictions to the weights of neural networks during
training, and (2) there is evidence from neuroscience suggesting that correlation is beneficial
in brain operation (Hennig et al., 2018; Mizusaki and O’Donnell, 2021). In this paper, we
propose to generate a balanced amount of correlation between neurons by reducing only
some of the highest ones. To do this, we use zero-dimensional persistent homology to build
two regularisation terms that work in a complementary way.

For a thorough introduction to persistent homology, we refer the reader to Edelsbrunner
and Harer (2022). To a finite set X and a symmetric function d : X ×X → R≥0 such that
d(x, x) = 0 for all x ∈ X one associates a persistence diagram in every homological dimension
greater than or equal to zero (details are given in Appendix A). In this work we only
use persistent homology in dimension zero. Since points in a zero-dimensional persistence
diagram are aligned along the positive y axis, we only focus on their y-coordinates. Hence
we associate to each pair (X, d) as above a finite multiset D(X, d) of positive real numbers,
ignoring points at infinity. Such numbers are the nonzero weights of the edges of a minimum
spanning tree (MST) of the undirected weighted complete graph (V,E,w) with vertices
V = X and weights w({u, v}) = d(u, v). A proof of this fact is given in Appendix A.

Let N : X → Y denote a feedforward neural network, and let D = {(xi, yi)}ni=1 ⊆ X ×Y
be a dataset —in our case, batches of the training dataset. Let GN be the complete graph
of the network N , whose vertices are the neurons of N . As we do not know the marginal
distribution of the data on X , we approximate the correlation between two neurons seen as
random variables u, v : X → R using the sample correlation for the neuron activations in
the dataset D. The sample correlation of two vectors x, y ∈ Rn is defined as

corr(x, y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
,

where x̄ = 1
n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi. The correlation between two neurons u, v is

corrD(u, v) ≜ corr (u(D), v(D)) where u(D) ≜ (u(x1), . . . , u(xn)), v(D) ≜ (v(x1), . . . , v(xn)).
In our case, neurons are considered to be similar when they share a large correlation in

absolute value. Since correlations take values between −1 and 1, we define the correlation
dissimilarity between neurons as a function d : V (GN )×V (GN ) → [0, 1] given by d(u, v) =
1 − |corrD(u, v)|. Given this dissimilarity function, we can study correlations between any
subset of neurons V ′ ⊆ V (GN ) by means of the persistence diagram D(V ′, d).

By the cut property of minimum spanning trees, each MST of a graph contains, for each
of its vertices, at least one edge with the minimum weight among its incident edges. In our
case, as we use complete graphs, this is translated into the fact that the diagram D(V ′, d)
contains, for each neuron u ∈ V ′, an incident edge to u achieving the value

min
v∈V ′, u ̸=v

(1− |corrD(u, v)|) = 1− max
v∈V ′, u ̸=v

|corrD(u, v)|

among, possibly, other high correlations to form the MST. Therefore, by maximising the
values of D(V ′, d), we are in fact minimising a set of correlations between neurons in V ′

containing the highest correlations achieved by neurons in the set.
Current neural networks contain an enormous quantity of neurons and computing a MST

of the complete graph (V (GN ), d) is not feasible in many cases, as computing a MST has a
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complexity of O(e · α(e, v)) (Chazelle, 2000, Theorem 1.1), where α(e, v) is the functional
inverse of Ackermann’s function Tarjan (1975) and e and v are the number of edges and
vertices, respectively, with e =

(
v
2

)
because the graph is a clique.

For this reason, we consider, for each batch B = {(x1, y1), . . . , (x|B|, y|B|)} during train-
ing, a subset of neurons VB ⊆ V (GN ) that may have smaller cardinality than V (GN ). In
particular, for the cases in which we cannot set VB = V (GN ), we sample VB using an impor-
tance sampling algorithm for each batch. We take the top percentage P of most important
neurons of each layer given the batch, except for the last layer, where we take all the neu-
rons, where P is a hyperparameter depending on the size of the neural network. This is
because the last layer showed to contain relevant information with respect to generalisation
in other works like the one by Carlsson and Gabrielsson (2020). For our experiments with
very large neural networks, we set P to 0.5% due to practical hardware limitations.

The importance of a neuron given a batch is set to the average quantity of absolute
activation achieved by the neuron, and it is inspired by the activation criterion for pruning
presented in Molchanov et al. (2017, Section 2.2). The higher this value for a neuron is, the

more relevance we allot to the neuron. More precisely, denote v̄B = |B|−1∑|B|
i=1 |v(xi)| and

let V (GN )l = {vi}nl
i=1 be the neurons of the l-layer of N in any descending order of their

v̄B values. In our case, the order is given by the argsort function of TensorFlow. We use

VB =
⋃
l

VB,l where VB,l =

{
{v1, . . . , v⌊0.005nl⌋} if l ̸= L,

V (GN )l otherwise,

where l iterates over all possible layers of N and L is the number of the last layer.
Since regularisation terms are minimised by network training algorithms, to maximise

a function f(θ) we minimise its opposite function −f(θ). We propose two regularisation
terms that maximise persistence diagram values in different ways:

T1(θ) ≜ −
∑

y∈D(VB,d)

y, (1) T2(θ) ≜ −αD̄(VB, d) + βσ(D(VB, d)), (2)

where α, β ∈ R≥0 are weight parameters, θ is the set of parameters of the network, and

D̄(VB, d) =
1

|D(VB, d)|
∑

y∈D(VB,d)

y, σ2(D(VB, d)) =
1

|D(VB, d)|
∑

y∈D(VB,d)

(y − D̄(VB, d))
2

are the mean and variance of the values of D(VB, d). The regularisation term T1 given by
Equation (1) maximises the sum of values in the persistence diagram, while the regularisa-
tion term T2 given by Equation (2) focuses on how the entries of the persistence diagram are
distributed, minimising their dispersion and maximising their average value. In our case,
we pick α = β = 1/2 since we treat mean and dispersion with the same strength.

Theorem 1 Let c, n ≥ 2 and let d : Rn × Rn → [0, 1] be d(x, y) = 1 − |corr(x, y)| where
corr denotes correlation. There is an open dense subset Dc,n ⊆ Rcn such that the functions

T1(x1, . . . , xc) ≜ −
∑

y∈D(X,d)

y, T2(x1, . . . , xc) ≜ −αD̄(X, d) + βσ(D(X, d))

are C∞ on Dc,n for all α, β ∈ R≥0, where X = {x1, . . . , xc} and D̄(X, d) and σ(D(X, d))
denote average and standard deviation of the zero-dimensional persistence diagram D(X, d).
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A proof of this result is provided in Appendix B. By the chain rule, our regularisation terms
are well defined as soon as the neuron activations of the set of neurons VB = {ν1, . . . , νc} in
the batch B = {x1, . . . , xn} form a vector

v = (ν1(x1), . . . , ν1(xn)), . . . , (νc(x1), . . . , νc(xn)) ∈ Rcn

such that v ∈ Dc,n and such that the neuron activations are obtained in a differentiable way.
Experimentally, we need not control when this vector v is inside Dc,n thanks to the fact
that Dc,n is a dense set. However, we note that ignoring points where non-differentiability
may occur in the domain could introduce errors in some iterations during training, as it
may also happen in fact with ReLU (Bertoin et al., 2021).

4. Results

In this section, we first describe the experimental setup and the computational resources
that we use to validate the hypothesis stated in the previous section. This is done in
Subsection 4.1. Then, we present and discuss the results in Subsection 4.2. The code used
to perform these experiments is linked as supplementary material1.

4.1. Experimental setup

In this section, we present two blocks of basic proof-of-concept experiments to demonstrate
the plausibility of the hypotheses formulated in Section 3. For each block, we train sev-
eral neural networks following a common architecture with different regularisation terms,
including our proposed ones, and without regularisation terms. For the first block, we use
multilayer perceptron models whereas we use VGG-like models for the second one. The
networks of the first block are trained in the MNIST dataset whereas the networks of the
second one are trained in CIFAR-10. In both blocks, we explore the same set of weights
for the regularisation terms. Finally, to compare the accuracies of our proposed regularisa-
tion terms to the other alternatives, we use the Friedman statistical test with its Nemenyi
post-hoc. Further details of the experiments are provided through this section.

Multilayer perceptron experiments. In the first block of experiments, we examine our
regularisation terms in a simplified problem. We train three different multilayer perceptron
architectures with 1000 hidden neurons, labelled 0, 1, and 2 using the MNIST dataset (Le-
Cun et al., 2010). Networks 0 and 1 share the same fully connected architecture. However,
network 1 is trained using dropout with a 50% probability of dropping a hidden neuron at
each iteration. Specifically, architectures 0 and 2 have a trapezium shape consisting of a
sequence of hidden layers of 450, 350, and 200 neurons for the first network, and of 300, 250,
200, 150, and 100 for the second one, respectively. In this block of experiments, we do not
aim to achieve state-of-the-art performance but to test our approach in a simple scenario
where no sampling of neurons is needed to compute persistence diagrams.

PGDL experiments. In the second block of experiments, the objective is to see if the
method scales well to more complex datasets and models. We train eight different neural
network architectures from the PGDL dataset introduced in Jiang et al. (2020) during the

1. https://github.com/rballeba/DecorrelatingNeuronsUsingPersistence
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NeurIPS 2020 competition track. The PGDL dataset is a collection of tasks where each task
is composed of a set of different neural network architectures with different generalisation
capabilities trained with a common dataset. The eight different neural network architectures
we take belong to the first task, which is composed of VGG-like neural networks trained in
the CIFAR10 dataset Krizhevsky et al. (2009). The architectures we selected are the ones
that correspond to the numbers 20, 21, 22, 23, 148, 149, 150, and 151 from the dataset.
Architectures 20, 21, 148, and 149 are the same as the architectures 22, 23, 150, and 151,
but with a layerwise dropout probability of 0.5, respectively. The difference between models
22 and 23 is the width of their convolutions, where architecture 22 has convolution widths
of 256 and architecture 23 has convolution widths of 512. Finally, the architectures 150

and 151 are the same as the architectures 22 and 23 but with one more dense layer.

Training procedures. In these experiments, we train different architectures with regulari-
sation terms weighted with several values. To train the networks, we replicate approximately
the training performed by the PGDL dataset used in the second block of experiments.

For both blocks of experiments we split the data into training, validation, and test
datasets. For the MNIST dataset, we split the original training dataset into new training
and validation datasets with 80% and 20% of the original data, respectively. Finally, we
use the original test dataset for testing. For the CIFAR10 dataset, we split the original
training dataset into new training and validation datasets, where we choose 1000 examples
of each class randomly for the validation dataset and we place the remaining examples into
the training dataset. Again, we reuse the original test dataset.

For the training procedure, we train for a maximum of 1200 epochs with early stopping
after 20 epochs without improvement in accuracy and with a batch size of 256. The algo-
rithm used for training is the usual stochastic gradient descent (SGD) with momentum 0.9.
For the first block of experiments, we use an adaptive learning rate αi ≜ α0 · (0.95)i/3520
where i is the iteration where the learning rate αi is used and α0 = 0.01. For the second
block of experiments, we use a fixed learning rate of 0.001, for which we obtained similar
accuracies to the ones given by the original trainings of the PGDL neural networks.

Let CCE(θ) denote the categorical cross entropy loss for a fixed neural network, clear
from the context, with a set of parameters θ. For each of the networks described before we
perform several trainings with the different regularisation terms that we study, weighed by
different values. In particular, each training minimises a loss function

L(θ) = CCE(θ) + ωR(θ), (3)

where ω ∈ {10−6, 10−5, 10−4, 0.001, 0.01, 0.1, 1.5, 10, 100} represents one of the possible
weight values used in the experiments, and R(θ) represents one of the regularisation terms.
We also train the models without any regularisation term, i.e., with ω = 0.

We use the full and sampled version of our regularisers T1 and T2 for the first and
second blocks of experiments, respectively, due to the small size of the networks of the
first block and to the large size of the networks of the second one. To see if reducing only
some correlations between neurons is better than minimising all of them, we also study the
regularisation term

C(θ) = 1

|C|
∑

(x,y)∈C

|corrB(x, y)|, (4)
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Table 1: Test accuracies for different training procedures and networks. Each
row represents training with a regularisation term except for the first row, that
represents no regularisation. T1: First topological regularisation term (1); T2: Sec-
ond topological regularisation term (2); l1: Lasso regression regularisation term;
l2: Ridge regression regularisation term; C: Regularisation term minimising all
pairwise correlations in VB (4); ∅: no regulariser. Each column corresponds to a
network in the PGDL dataset. Best accuracies per network are bolded.

MNIST and MLP PGDL and VGG-like

0 1 2 20 21 22 23 148 149 150 151

∅ 0.929 0.501 0.636 0.681 0.680 0.685 0.682 0.672 0.677 0.675 0.680
T1 0.928 0.547 0.883 0.687 0.705 0.675 0.700 0.688 0.704 0.678 0.698
T2 0.923 0.540 0.879 0.691 0.701 0.688 0.706 0.689 0.698 0.688 0.695
l1 0.914 0.536 0.870 0.682 0.680 0.682 0.683 0.677 0.675 0.685 0.678
l2 0.919 0.531 0.878 0.681 0.688 0.686 0.683 0.680 0.680 0.681 0.679
C 0.923 0.530 0.881 0.679 0.687 0.680 0.686 0.678 0.690 0.683 0.674

where C = {(x, y) ∈ VB × VB : x ̸= y and corrB(x, y) ̸= 0}, and VB is defined as in Section 3.
Note that for the first block of experiments we consider all the non-input neurons and for the
second block of experiments we perform the same sample of neurons due to the complexity
of computing all the possible pairwise correlations for each iteration of the training. Finally,
we also train the networks with l1 and l2 regularisation terms (Tibshirani, 2011).

Evaluation procedure. To evaluate the performances of the regularisation terms com-
pared, we use a Friedman test with the Nemenyi post-hoc, as proposed in Demšar (2006),
and we report the test accuracies for each regularisation term and network. To obtain test
accuracies, we choose, for each term and network, the weight that maximises the validation
accuracy after training. Then, we compute the test accuracy using the selected weight. For
the training procedures without regularisation terms, we compute test accuracies directly.

4.2. Results and analysis

Table 1 contains test accuracies for all the networks and regularisation terms studied in
our experiments. Each cell shows the test accuracy of the regularisation term with the
weight that obtained the best validation accuracy in its column. The Friedman test with
null hypothesis that all the algorithms are equivalent (Demšar, 2006) gives a p-value of
0.00001, so we reject the null hypothesis. Therefore, we perform a Nemenyi post-hoc test,
obtaining the p-value matrix shown in Table 2. The null hypothesis of this test is that there
is no difference between the accuracies yielded by the two training approaches. A critical
difference diagram for the Friedman and Nemeny statistical tests is shown in Appendix D.

When comparing test accuracies individually, T1 and T2 outperform the other training
methods for all the networks except for model 0. In fact, T1 and T2 obtain the best test
accuracies in five of the networks each, respectively, out of eleven total networks. Both of
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Table 2: Nemenyi p-value matrix. Cells contain p-values of the Nemenyi post-hoc test
(p-values < 0.05 are bolded). The meaning of column labels is specified in Table 1.

∅ T1 T2 l1 l2 C

∅ 0.018 0.002 0.900 0.785 0.900
T1 0.900 0.036 0.380 0.159
T2 0.006 0.122 0.036
l1 0.900 0.900
l2 0.900

them are significantly better than training without regularisation term, according to the
Nemenyi p-value matrix, showing p-values of 0.018 and 0.002 for T1 and T2, respectively.

Regarding the differences between minimising all the correlations and minimising only
the highest ones, we see that T1 and T2 obtain low p-values against C. In particular, for
T2 and C we obtain a p-value of 0.036, that validates the hypothesis that minimising only
the highest correlations is significantly different than minimising all the correlations for a
sampled set of relevant neurons in our experiments.

As for classical regularisation terms, both T1 and T2 obtain p-values lower than or equal
to 0.05 with respect to l1, making our regularisation terms better than l1. The p-values of
T1 and T2 with respect to l2 are lower than the other p-values for l2, although not as low as
for l1. This, together with the fact that l2 never obtains the best accuracies, suggests that
our regularisers are better than l2, although more experiments are needed to confirm this
claim. Overall T1 and T2 perform better than other training approaches in our experiments.

5. Limitations and future work

The computational cost of determining persistence diagrams can pose limitations in practi-
cal scenarios. To extend the applicability of our regularisation terms, improvements to the
algorithms for computing zero-dimensional persistence should be developed. For example,
advances in the implementation of these algorithms in a distributed manner, as discussed
in Rostrup et al. (2013); Sanders and Schimek (2023), could be relevant.

A crucial bottleneck in our pipeline is the computation of pairwise correlations. With
a large number of neurons, it is impractical to compute correlations for all neurons at each
training step. The effect of selecting a range of different percentages of neurons for sampling
in large networks should be tested, since neuron selection may greatly impact the perfor-
mance of regularisation terms. To enhance the computational efficiency of regularisation
focused on high correlations, one approach could involve implementing weighted dropout
based on the average correlation of each neuron with others, discarding at each step of the
training procedure the nodes with lowest overall average correlation. Selectively training
only neurons with higher average correlations may yield a positive effect by forcing them
to learn independent functions.

We emphasise that our experiments were performed in simple tasks as a proof of con-
cept of our methodology, and that further work is needed to understand how correlations
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affect generalisation capacity, especially in complex scenarios. For example, Birdal et al.
(2021) found that their regulariser was more effective in suboptimal hyperparameter set-
tings. A similar phenomenon might occur with our regularisers.

As correlations within neurons are independent of dataset labels, our approach is well-
suited for application in unsupervised or semi-supervised learning.

6. Conclusions

In this work, we introduced regularisation terms that minimise high correlations between
the most important neurons given a training batch, by maximising the values of their zero-
dimensional persistence computed with the dissimilarity function d(u, v) = 1−|corrD(u, v)|.
The use of persistent homology in Corneanu et al. (2020, 2019) and Ballester et al. (2022)
was intended to assess trained models as a post-hoc method. The present article adds
evidence that the association between activation correlations and generalisation gap can be
exploited to build regularisers with the aim of enhancing generalisation.

Our regularisation terms outperformed classical regularisation terms and improved per-
formance compared to minimising all pairwise correlations of important neurons in the
MNIST and CIFAR10 datasets with MLP and VGG-like architectures, respectively. These
findings support the hypothesis that neuron correlations play a role in the generalisation ca-
pacity of neural networks, consistently with previous studies such as Cogswell et al. (2016);
Jin et al. (2020). Additionally, we demonstrated that, when minimising higher correlations
using persistent homology, several loss functions that are used with the same objective can
yield different performances, suggesting that, for differentiable persistence descriptors, the
choice of a loss function is a crucial step in the process.

Our results also show that topological regularisation terms can be used to improve the
performance of neural networks not only by considering the final representations of the
data, but also by looking at intermediate representations as well. In summary, our findings
provide insight into the relevance of topological data analysis and neuron correlations on
the generalisation capacity of neural networks, as well as their potential for future advances.
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David Bertoin, Jérôme Bolte, Sébastien Gerchinovitz, and Edouard Pauwels. Numer-
ical influence of ReLU’(0) on backpropagation. In M. Ranzato, A. Beygelzimer,

173

https://arxiv.org/abs/2203.12330


Ballester Casacuberta Escalera

Y. Dauphin, P. S. Liang, and J. Wortman Vaughan, editors, Advances in Neu-
ral Information Processing Systems, volume 34, pages 468–479. Curran Associates,
Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/

043ab21fc5a1607b381ac3896176dac6-Paper.pdf.

Tolga Birdal, Aaron Lou, Leonidas J Guibas, and Umut Simsekli. Intrinsic dimension,
persistent homology and generalization in neural networks. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P. S. Liang, and J. Wortman Vaughan, editors, Advances in Neu-
ral Information Processing Systems, volume 34, pages 6776–6789. Curran Associates,
Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/

35a12c43227f217207d4e06ffefe39d3-Paper.pdf.

Nick Byrne, James R. Clough, Giovanni Montana, and Andrew P. King. A persistent
homology-based topological loss function for multi-class CNN segmentation of cardiac
MRI. In Esther Puyol Anton, Mihaela Pop, Maxime Sermesant, Vı́ctor Campello, Alain
Lalande, Karim Lekadir, Avan Suinesiaputra, Oscar Camara, and Alistair Young, edi-
tors, Statistical Atlases and Computational Models of the Heart. M&Ms and EMIDEC
Challenges, pages 3–13, Cham, 2021. Springer International Publishing. ISBN 978-3-030-
68107-4.
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Appendix A. Equivalence between zero-dimensional persistence and
minimum spanning trees

In this appendix, we prove that there is a bijection between the set of non-diagonal points
with finite death parameter in the zero-dimensional persistence diagram of a finite set
X equipped with a dissimilarity function d : X × X → R≥0 and the set of weights of a
minimum spanning tree of the complete weighted graph whose vertices are the elements
of X and whose weights are given by d. We call d a dissimilarity if it is symmetric and
d(x, x) = 0 for all x ∈ X. An example is the Euclidean distance function when X is a set
of points in Euclidean space, and another example is the correlation dissimilarity used in
this article when X is a set of neurons of a neural network.

The persistence diagram Dgmk(V (X, d)) of X = {p1, . . . , pc} in homological dimension
k with respect to the given dissimilarity d is an unordered multiset of points {(bi, di)}i∈I
in R2 where bi is the birth parameter and di is the death parameter (possibly infinite) of
an element in a full set I of linearly independent generators of kth simplicial homology
Hk(Vt(X, d)) of the Vietoris–Rips filtered simplicial complex V (X, d) = {Vt(X, d)}t≥0. The
simplicial complex Vt(X, d) at filtration level t has an m-simplex for every collection of
points pi0 , . . . , pim in X such that d(pir , pis) ≤ t for ir, is ∈ {1, . . . , c}. By convention,
persistence diagrams include all points in the diagonal ∆∞ = {(x, x) : x ≥ 0} with infinite
multiplicity. We compute simplicial homology with coefficients in the field of two elements.

For a connected weighted graph G = (V,E,w), we denote the multiset of weights of
G by WG = {w(e) : e ∈ E}. A minimum spanning tree of G is a subgraph without
cycles containing all the vertices with the minimum possible total edge weight. Kruskal’s
algorithm (Kruskal, 1956) finds a minimum spanning tree of every weighted graph G and
shows that the multiset of weights of all minimum spanning trees of G coincide.

Theorem 2 Let (X, d) be a finite set and let d : X × X → R≥0 be a symmetric function
such that d(p, p) = 0 for all p ∈ X. Let G be the complete weighted graph with set of
vertices X and weights given by d. Let D<∞ = {(bi, di) ∈ Dgm0(V (X, d)) : bi < di < ∞} be
the multiset of finite, non-diagonal points of the Vietoris-Rips zero-dimensional persistence
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diagram of (X, d). Then all points (bi, di) in D<∞ have bi = 0 and

{di : (0, di) ∈ D<∞} = {w ∈ WT : w > 0}

for any minimum spanning tree T of G.

Proof Note first that, since the function d takes non-negative values and d(p, p) = 0 for all
p ∈ X, we have that Vr(X, d) = ∅ for r < 0 and {p} ∈ V0(X, d) for all p ∈ X. This means
that all connected components of V (X, d) are born at r = 0 and consequently all (bi, di) ∈
Dgm0(V (X, d)) ∖∆∞ have bi = 0. The corresponding death values di are filtration levels
at which connected components merge. Moreover, V (X, d) becomes connected eventually,
since X is finite. Hence there is a single point in Dgm0(V (X, d)) with di = ∞.

WriteD<∞ = {(0, d1), . . . , (0, dn)} with d1 ≤ · · · ≤ dn without loss of generality, counted
with the respective multiplicities. For each connected component Ci in V0(X, d), choose a
minimum spanning tree Ti with total weight 0, and write the edges of Ti as ei1, . . . , e

i
ki
.

Next, order the edges of the complete graph G in such a way that the first elements of the
list are e11, . . . , e

1
k1
, . . . , en1 , . . . , e

n
kn

in any order.
For each point (0, di) in D<∞, there is at least one edge ei in G with weight di connecting

two previously separated connected components in the Vietoris-Rips filtration. Place the
edges e1, . . . , en before all the edges in G with their same weights. If there exist i ̸= j such
that w(ei) = w(ej), order them arbitrarily and place them consecutively. Then, by applying
Kruskal’s algorithm, we obtain a minimum spanning tree T of G containing the edges{

e11, . . . , e
1
k1 , . . . , e

n
1 , . . . , e

n
kn , e1, . . . , en

}
.

Therefore, {w ∈ WT : w > 0} = {di : (0, di) ∈ D<∞}. Since the multisets of weights of all
minimum spanning trees of G coincide, the equality is satisfied for any minimum spanning
tree T of G, as claimed.

Appendix B. Differentiability of functions on persistence diagrams

In this appendix, we prove Theorem 1 using methods and results from Leygonie et al.
(2022). We consider finite ordered sets X ⊆ Rn with c elements, where n ≥ 2 and c ≥ 2.
Each such set X corresponds to an element (p1, . . . , pc) ∈ Rcn, where pi ∈ Rn denotes the
ith point of X.

Given points p1, . . . , pc in Rn, where c ≥ 2, the covariance between pi and pj is

cov(pi, pj) =
1

n

n∑
k=1

(pi,k − p̄i)(pj,k − p̄j),

where p̄i =
1
n

∑n
k=1 pi,k. Since the covariance function is polynomial on the entries, the set

Dc,n = {(p1, . . . , pc) ∈ Rcn : cov(pi, pj) ̸= 0 for all i, j ∈ {1, . . . , c}}

is open and dense in Rcn.
Suppose given a dissimilarity d : Rn×Rn → R≥0. A persistence diagram in homological

dimension k can be viewed as a function Bk = Dgmk ◦ F defined on Rcn taking values in
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the set Diag of families of points with multiplicities in the upper quadrant of R2 extended
with points at infinity:

Rcn F−−−−−→ RK Dgmk−−−−−→ Diag. (5)

Here we denote by RK the set of all functions f : K → R, where K is the collection of
nonempty subsets of {1, . . . , c}, which we view as faces of a (c − 1)-dimensional simplex.
The function F is defined as

F (X)(σ) = max
i,j∈σ

d(pi, pj)

for σ ∈ K and X = {p1, . . . , pc}. The function Dgmk assigns to each function f : K → R
the corresponding Vietoris–Rips persistence diagram in homological dimension k, where f
is treated as a filtering function on the faces of a (c− 1)-dimensional simplex.

Differentiability of functions valued in Diag is defined in Leygonie et al. (2022) as
follows. For m, ℓ ∈ Z≥0, consider the quotient map Qm,ℓ : R2m × Rℓ → Diag sending each
point

D̃ = (x1, y1, . . . , xm, ym, z1, . . . , zℓ) ∈ R2m × Rℓ

to the diagram obtained by forgetting the order of the points:

Qm,p(D̃) = {(xi, yi)}mi=1 ∪ {(zj ,∞)}ℓj=1 ∪∆∞.

Let M be a smooth manifold and let B : M → Diag be any map. For x ∈ M and
r ∈ Z≥0 ∪ {∞}, the map B is said to be r-differentiable at x if there exists an open
neighborhood U of x and there exist integers m, ℓ ∈ Z≥0 and a map B̃ : U → R2m × Rℓ

of class Cr such that B = Qm,ℓ ◦ B̃ on U . Similarly, for a smooth manifold N , a map
V : Diag → N is said to be r-differentiable at a diagram D, where r ∈ Z≥0 ∪{∞}, if for all
m, ℓ ∈ Z≥0 and all D̃ ∈ R2m×Rℓ such that Qm,ℓ(D̃) = D the map V ◦Qm,ℓ : R2m×Rℓ → N
is Cr on an open neighborhood of D̃.

As proved in Leygonie et al. (2022, Proposition 3.14), if a function B : M → Diag is
r-differentiable at x ∈ M and another function V : Diag → N is r-differentiable at B(x),
then V ◦B : M → N is Cr at x as a map between smooth manifolds.

In what follows, we consider the projections for i, j ∈ {1, . . . , c},

πi,j : Rcn → Rn × Rn, πi,j(p1, . . . , pc) = (pi, pj).

Proposition 3 Let d : Rn × Rn → R≥0 be a dissimilarity which is Cr on an open set
U ⊆ Rn × Rn, where r ≥ 0. Let p = (p1, . . . , pc) ∈ Rcn such that p ∈ π−1

i,j (U) for all i, j ∈
{1, . . . , c}. Suppose that d(pi, pj) ̸= d(pk, pl) when {i, j} ≠ {k, l}, where i, j, k, l ∈ {1, . . . , c}.
Then the function Bk = Dgmk ◦ F defined in (5) is r-differentiable at p.

Proof Since d(pi, pj) ̸= d(pk, pl) for {i, j} ≠ {k, l}, the values d(pi, pj) for i ̸= j are strictly
ordered. As the projections πi,j are C∞ and d is Cr on U , and πi,j(p) ∈ U , we infer that
d ◦ πi,j is Cr in p. Since, in particular, d ◦ πi,j is continuous, there is a neighbourhood U ′

of p where the order of the values d(p′i, p
′
j) remains the same. Then F (p) and F (p′) induce

the same preorder on the set of simplices of K for every p′ ∈ U ∩
⋂

i,j π
−1
i,j (U). Hence, the

hypotheses of Leygonie et al. (2022, Theorem 4.7) hold and Bk is r-differentiable at p.
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In what follows, we denote, for a given dissimilarity d,

Dc,n = {(p1, . . . , pc) ∈ Dc,n : d(pi, pj) ̸= d(pk, pl) if {i, j} ≠ {k, l}} .

We note that, if the dissimilarity d(x, y) = 1 − |corr(x, y)| is chosen, then Dc,n is an open
dense subset of Rcn, since d(pi, pj) = d(pk, pl) precisely when |corr(pi, pj)| = |corr(pk, pl)|,
and the square of correlation is a rational function.

Proposition 4 Let c, n ≥ 2, k ∈ Z≥0, and d : Rn×Rn → [0, 1] be the dissimilarity given by
d(x, y) = 1− |corr(x, y)|. The function Bk = Dgmk ◦ F in (5) is ∞-differentiable on Dc,n.

Proof Take p = (p1, . . . , pc) ∈ Dc,n. By the definition of Dc,n, we have that d(pi, pj) ̸=
d(pk, pl) for all {i, j} ̸= {k, l}. Furthermore, the correlation is well-defined and C∞ on
πi,j(p) = (pi, pj) for all i, j ∈ {1, . . . , c}, because cov(pi, pj) ̸= 0 for points in Dc,n. We
also have that |corr(x, y)| is C∞ on every (pi, pj), since the absolute value function is C∞

on R ∖ {0}. Therefore, d is C∞ on πi,j(p) = (pi, pj) for all i, j ∈ {1, . . . , c} and thus the
assumptions of Proposition 3 hold, implying that Bk is ∞-differentiable on Dc,n.

Proof of Theorem 1 By Proposition 4, the function B0 is ∞-differentiable on Dc,n, where
B0(X) is the persistence diagram of X in homological dimension zero. Therefore, we only
need to display functions T̃i : Diag → R that are ∞-differentiable on B0(Dc,n) such that
Ti = T̃i ◦B0 for i ∈ {1, 2}.

Here we view zero-dimensional persistence diagrams as consisting of points (0, y), al-
though we keep denoting them in the general form (b, d). When computing the average
persistence and standard deviation of persistence of the points in B0(X), the number of
points in the diagram is assumed to be equal to the number of edges of a minimum spanning
tree for (X, d), that is, |X| − 1. Therefore, the functions T̃i can be defined as

T̃1(D) ≜
1

c− 1

∑
(b,d)∈D∗

(d− b), T̃2(D) ≜ −αT̃1(D) + βσ(D),

where

σ2(D) ≜
1

c− 1

∑
(b,d)∈D∗

((d− b)− T̃1(D))2

with D∗ = {(b, d) ∈ D : d < ∞}. Points in the diagonal ∆∞ are sent to zero by d − b and
are not taken into consideration in the sums, and neither are points at infinity.

In order to prove that the functions T̃i are ∞-differentiable, take any m, ℓ ∈ Z≥0 and
D̃ ∈ R2m×Rℓ such that Qm,ℓ(D̃) = D. If we write D̃ = (x1, y1, . . . , xm, ym, z1, . . . , zℓ), then
the functions T̃i ◦Qm,ℓ are given by

T̃1(Qm,ℓ(D̃)) =
1

c− 1

m∑
i=1

(yi − xi), T̃2(Qm,ℓ(D̃)) = −αT̃1(Qm,ℓ(D̃)) + βσ(D̃),

where

σ2(D̃) ≜
1

c− 1

m∑
i=1

[(yi − xi)− T̃1(Qm,ℓ(D̃))]2.
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The functions T̃i ◦Qm,ℓ are C∞ on all their domain because they are compositions of C∞

functions on a neighborhood of D̃. The only function that is not C∞ in all its domain is the
square root function, which is not differentiable at zero. However, for points p ∈ Dc,n we
have pairwise different distances, and consequently the persistence diagram B0(X) contains
at least two different points, making σ(D̃) ̸= 0 for a neighbourhood U of D̃ and thus
making σ(D̃) a C∞ function on U . Hence, T̃i is ∞-differentiable. Therefore, as B0 and T̃i
are ∞-differentiable in D and B0(Dc,n) respectively, the functions Ti are C∞ on Dc,n. ■

Appendix C. Resources used and computation

The experiments were computed in a server with 503 GB of RAM, a CPU AMD EPYC 7452
32-Core Processor with a frequency up to 3.35 GHz, and seven GPUs NVIDIA GeForce RTX
3090 with 24 GiB of memory. The storage consisted of 3 Samsung SSDs, two of them with
3840 GB of memory and the other one with 960 GB. All the experiments were executed in
parallel using one of the GPUs per experiment. The computational bottlenecks were related
to the computation of correlation matrices of neurons and persistence diagrams. The first
process was done using TensorFlow (in GPU mode) and the second one was performed
using the library giotto-ph (Pérez et al., 2021).

Appendix D. Figures

123456
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Figure 1: Critical difference diagrams (Demšar, 2006) for the Friedman and Nemenyi post-
hoc statistical tests conducted in both blocks of experiments. The position of each
training approach on the diagram corresponds to its average rank based on the
test accuracies of the trained network —see Table 1. Lower ranks indicate that a
regularisation term, or the training without regulariser, outperforms competitors
with higher ranks. Regularisation terms are connected if the p-value obtained
from the Nemenyi post-hoc test is greater than 0.05. See Table 2 for a description
of the training approaches and the p-values.
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