
Proceedings of Machine Learning Research 228, 2023 Symmetry and Geometry in Neural Representations

Sheaf-based Positional Encodings
for Graph Neural Networks

Yu He∗ heyu@cs.stanford.edu
Stanford University

Cristian Bodnar cbodnar@microsoft.com
Microsoft Research AI4Science

Pietro Liò pl219@cam.ac.uk

University of Cambridge

Editor: Sophia Sanborn, Christian Shewmake, Simone Azeglio, Nina Miolane

Abstract

Graph Neural Networks (GNNs) work directly with graph-structured data, capitalising
on relational information among entities. One limitation of GNNs is their reliance on lo-
cal interactions among connected nodes. GNNs may generate identical node embeddings
for similar local neighbourhoods and fail to distinguish structurally distinct graphs. Po-
sitional encodings help to break the locality constraint by informing the nodes of their
global positions in the graph. Furthermore, they are required by Graph Transformers to
encode structural information. However, existing positional encodings based on the graph
Laplacian only encode structural information and are typically fixed. To address these
limitations, we propose a novel approach to design positional encodings using sheaf theory.
The sheaf Laplacian can be learnt from node data, allowing it to encode both the structure
and semantic information. We present two methodologies for creating sheaf-based posi-
tional encodings, showcasing their efficacy in node and graph tasks. Our work advances
the integration of sheaves in graph learning, paving the way for innovative GNN techniques
that draw inspiration from geometry and topology.

1. Introduction

Real-world datasets often possess inherent graph structures, with data entities connected
through intrinsic relationships. Graph Neural Networks (GNNs) (Kipf and Welling, 2016;
Gilmer et al., 2017; Veličković et al., 2018) have proven highly effective in leveraging this
relational information, showcasing their effectiveness in diverse applications. These appli-
cations span fields such as protein interface prediction (Fout et al., 2017), social networks
(Fan et al., 2019), and knowledge graphs (Xu et al., 2019).

However, GNNs are limited in expressive power (Xu et al., 2018). GNNs generally fol-
low a message-passing paradigm (Gilmer et al., 2017; Veličković, 2022), where each node
aggregates messages from its neighbours. While this approach benefits from scalability, it
also confines each node’s knowledge to its immediate local surroundings. This limited per-
spective presents a challenge for GNNs in distinguishing between nodes that share similar
local neighbourhoods. Additionally, when making predictions at the graph level, typically
through aggregating all node embeddings, GNNs can struggle to differentiate between struc-
turally distinct graphs.

∗ Work done while the author was at the University of Cambridge.

© 2023 Y. He, C. Bodnar & P. Liò.

He Bodnar Liò

To address this issue, positional encodings (PEs) offer a solution by providing nodes with
awareness of their global positions in the graph. PEs have previously found applications
in natural language processing, where they encode token positions in sequences for Trans-
formers (Vaswani et al., 2017). In the context of GNNs, we similarly employ PEs to encode
node positions within a graph. However, defining PEs for graph nodes poses a unique chal-
lenge, as nodes in a graph lack a natural order for sequential indexing. Furthermore, PEs
play a crucial role in Graph Transformers (Kreuzer et al., 2021; Dwivedi and Bresson, 2020;
Ying et al., 2021; Mialon et al., 2021; Rampášek et al., 2023; Müller et al., 2023). Graph
Transformers apply attention mechanisms across a fully connected graph, necessitating PEs
to compensate for the loss of structural information from the input graph.

The graph Laplacian has emerged as a prominent choice for crafting efficient graph PEs
(Dwivedi et al., 2020; Kreuzer et al., 2021). The eigendecomposition of the graph Lapla-
cian yields an embedding space that respects the underlying graph topology (Belkin and
Niyogi, 2003). This space can be precomputed and integrated as additional input. However,
challenges surface when dealing with intricate node relationships. For instance, while ho-
mophilic graphs exhibit nodes with similar representations positioned closer together (‘like
attracts like’), heterophilic graphs have dissimilar nodes connected. The graph Laplacian
solely encodes adjacency information and remains oblivious to relationships within node
data. Consequently, the PE space constructed from the graph Laplacian may prove inade-
quate for such complex graphs.

Our proposed solution involves leveraging the sheaf Laplacian to mitigate this limitation.
A cellular sheaf, a mathematical construct rooted in geometry and topology, possesses the
capability to encode algebraic and topological structures, parameterised by the node data.
This attribute empowers the sheaf Laplacian to generate a positional embedding space that
encompasses both the structural and semantic facets of the graph. Therefore, it can be
more suitable for more intricate domains, including scenarios involving heterophilic graphs,
where complex node relationships are prevalent.

2. Background

2.1. Graph Neural Networks

Graph Neural Networks (GNNs) (Kipf and Welling, 2016; Gilmer et al., 2017; Veličković
et al., 2018) are designed to operate directly on graph-structured data, capitalising on the
relational information among nodes. In a given graph G = (V,E), with V representing the
node set and E the edge set, each node is associated with a feature vector hv ∈ Rdh , where dh
denotes the dimension. GNNs generally follow a message-passing paradigm (Gilmer et al.,
2017; Veličković, 2022), where nodes exchange messages with their connected neighbours to
update their representations hv via:

hl+1
v = ϕl

(
hl
v,

⊕
u∈N (v)

ψl(hl
v,h

l
u)
)

(1)

where l is the layer number, N (v) = {u ∈ V |(u, v) ∈ E} is the one-hop neighbourhood of
node v, and ϕl, ψl are commonly implemented as MLPs. At each layer l, a node computes
a message from its connected neighbours using a message function ψl, then aggregates the

2

Sheaf-based Positional Encodings for Graph Neural Networks

message with a permutation-invariant aggregation operator
⊕

. Finally, the node uses the
message to update its node representation with a readout function ϕl.

The message-passing paradigm, which centres on pairwise communication within local
neighbourhoods, provides scalability. However, this locality also introduces a challenge in
expressivity. GNNs are proven to be at most as powerful as the 1-WL (Weisfeiler-Lehman)
test (Xu et al., 2018; Morris et al., 2018), a heuristic for graph isomorphism test based
on passing random hashes of node colours along the edges. In fact, GNNs may produce
identical embeddings for nonisomorphic graphs, such as regular graphs (Cai et al., 1989;
Douglas, 2011; Evdokimov and Ponomarenko, 1999), and may even fail to recognise simple
substructures. This limitation poses a significant challenge in real-world scenarios, such as
molecules, where nonisomorphic graphs often carry different labels.

Positional Encodings To address the challenge posed by the locality constraint, we can
employ positional encodings (PEs) (You et al., 2019; Dwivedi et al., 2020; Li et al., 2020;
Dwivedi and Bresson, 2020). PEs serve the purpose of explicitly informing nodes about their
global positions within the graph. This global awareness, facilitated by PEs, empowers
GNNs to differentiate between nonisomorphic graphs and identify various substructures
effectively. Typically, PEs are concatenated with node or edge features and introduced
as inputs to GNNs. One effective method for computing PEs in graphs involves utilising
the graph Laplacian (Dwivedi et al., 2020; Kreuzer et al., 2021; Lim et al., 2022). Its
eigendecomposition is a spectral technique that embeds the graph into an Euclidean space,
deriving a unique PE for each node.

Graph Transformers Graph Transformers (GTs) (Kreuzer et al., 2021; Dwivedi and
Bresson, 2020; Ying et al., 2021; Mialon et al., 2021; Rampášek et al., 2023; Müller et al.,
2023) generalise the Transformer architecture (Vaswani et al., 2017) to graphs. GTs apply
attention over a fully-connected graph to capture global and long-range interactions, ad-
dressing the over-smoothing (Li et al., 2018) and over-squashing (Alon and Yahav, 2020)
issues from sparse graphs. However, not using the input graph also means that Graph Trans-
formers lose the structural information, only retaining the number of nodes. Therefore, the
expressive power of using a fully-connected graph is equivalent to DeepSets, (Zaheer et al.,
2018) where no edge presents. To restore the topological awareness on the input graph, it
is critical for GTs to equip with PEs to improve their expressivity while maintaining the
advantages from the Transformer layers.

2.2. Sheaf Theory

In algebraic topology, a cellular sheaf (Curry, 2014; Singer and Wu, 2011) is a mathematical
object associated with a graph by attaching vector spaces to nodes and edges as shown in
Figure 1. It also defines a map between these vector spaces for each incident node-edge
pair, specifying the consistency constraints of the data.

Definition 1 (Cellular sheaf) A cellular sheaf (G,F) on an undirected graph G = (V,E)
consists of:

• A vector space F(v) for each vertex v ∈ V .

• A vector space F(e) for each edge e ∈ E.

3

He Bodnar Liò

• A linear map Fv⊴e : F(v) → F(e) for each incident node-edge pair v ⊴ e.

Figure 1: (a) A sheaf (G,F) for an edge e connecting two nodes v and u. (b) The sheaf
Laplacian. Figures adapted from Bodnar et al. (2022).

We call the vector spaces of the nodes and edges as stalks, and the linear maps as
restriction maps. The space of 0-cochains C0(G;F) :=

⊕
v∈V F(v) is the space formed

by all the stalks associated with the nodes of the graph, where
⊕

denotes the direct sum
of vector spaces. The sheaf Laplacian operator for a given cellular sheaf measures the
aggregated “disagreement of opinions” at each node.

Definition 2 (Sheaf Laplacian) Given a cellular sheaf (G;F), the sheaf Laplacian is a
linear map LF : C0(G,F) → C0(G,F), which can be defined node-wise as LF (x)v =∑

v,u⊴e(Fv⊴exv−Fu⊴exu). Here, x ∈ C0(G;F) is a 0-cochain, and xv is the vector in F(v)
of node v.

Given a graph G with n nodes, assuming all stalks have a fixed dimension d, the sheaf
Laplacian is an nd × nd positive semi-definite block matrix. As illustrated in Figure 1,
the sheaf Laplacian has diagonal blocks LFvv =

∑
v⊴eF⊤

v⊴eFv⊴e, and non-diagonal blocks

LFvu = −F⊤
v⊴eFu⊴e. The normalised sheaf Laplacian is ∆F := D−1/2LFD

−1/2, where D is
the block-diagonal of LF .

Sheaf Laplacian generalises graph Laplacian The graph Laplacian is defined as L =
D−A, where D is the degree matrix and A is the adjacency matrix of the graph. The graph
Laplacian is a trivial sheaf, by setting all the stalks to scalars (d = 1, where d is the stalk
dimension) and the restriction maps to identity functions. In contrast, the sheaf Laplacian
extends the capabilities of the graph Laplacian by allowing for a higher dimension (d ≥ 1).
This extension empowers the sheaf to encode richer information, including the semantic
knowledge embedded by the node data. GNNs have been extended to operate over a
sheaf structure in prior works (Hansen and Gebhart, 2020; Bodnar et al., 2022; Barbero
et al., 2022; Battiloro et al., 2023), offering solutions to challenges like heterophily and
oversmoothing often encountered in conventional GNNs.

4

Sheaf-based Positional Encodings for Graph Neural Networks

3. Sheaf-based Positional Encodings

Figure 2: Framework of sheaf-based PEs, where the sheaf can be constructed via precom-
puted and learnt methods.

3.1. Precomputed sheaf Laplacian (ConnLap)

PEs that rely on the graph Laplacian are typically computed during the pre-processing
phase using the adjacency matrix of the graph. Following a similar approach, we suggest
constructing PEs using the sheaf Laplacian through a precomputed method. When we
enforce the restriction maps to take the form of an orthogonal matrix, we arrive at a
specialised variant of the sheaf Laplacian, known as the connection Laplacian (Singer and
Wu, 2011). The connection Laplacian can be thought of as a discretised representation
of the vector bundle, which draws an analogy to the concept of parallel transport on a
manifold.

The concept of “transport” for a sheaf can be denoted as Pγ
v→u : F(v) → F(u). This

transport operation involves composing restriction maps along the edges, facilitating the
flow of information from the stalk F(v) to the stalk F(u):

Pγ
v→u = (F⊤

u⊴el
Fvl⊴el)...(F

⊤
v1⊴e1Fv⊴e1) (2)

where v, u ∈ V are two nodes in the graph, and γv→u = (v, v1, ..., vl, u) denotes the sequence
of nodes on the path from v to u. We can then compute a connection Laplacian by an
analogy to the parallel transport on a manifold. Given a manifold M, each point in the
manifold x ∈ M is associated with a tangent space TxM. For two nodes v and u, its
transport maps Pγ

v→u from F(v) to F(u) correspond to the parallel transport from TxvM
to TxuM, where xv and xu are the associated node data. Through such an analogy, when
v and u are connected by an edge e in the graph, there is a canonical path to perform the
transport on the manifold. Therefore, we can derive from Equation 2 for the transport as
P = Pγ

v→u = F⊤
u⊴eFv⊴e.

The last question is how to compute the parallel transport from TxvM to TxuM on
the manifold M in the context of graph data. In Barbero et al. (2022), they propose a
method to precompute this transport for Sheaf Neural Networks (Hansen and Gebhart,
2020). Here, we explore its application to construct sheaf-based PEs. Detailed description
of the algorithm can be found in Appendix B. In summary, the method comprises two key

5

He Bodnar Liò

steps. First, we compute the orthonormal bases of TxvM and TxuM using local PCA,
defined by the 1-hop neighbourhood of the nodes. Secondly, we compute the orthogonal
mapping Ovu by optimal aligning the two bases, which approximates the parallel transport
operator (Singer and Wu, 2011). It is worth noting that this method relies on the manifold
assumption, which posits that although data points exist in a high-dimensional ambient
space Rp, they can be effectively embedded onto a lower-dimensional Riemannian manifold
Mq, where q ≪ p. This assumption underpins the successful application of the approach.

Learnable precomputed PEs (LSPE) In some cases, the manifold assumption does
not hold, especially when the node features are not sufficiently informative. To tackle the
problem, we optionally allow the PEs to evolve after initialising them with the precomputed
sheaf. We adopt the framework proposed in Dwivedi et al. (2021) which updates PEs
with message-passing. At initialisation, for each node v ∈ V , the precomputed sheaf-
based PEs are embedded to the same dimension as the node features: h0

v = xv and p0
v =

MLP(pConnLap
v). Here, hv is the node representation, xv is the input node feature, pv

is the node PE, and pConnLap
v is its initialisation with the connection Laplacian. During

training, both node and positional representations are updated at each layer through hl+1
v =

fh([h
l
v||pl

v], {[hl
u||pl

u]}u∈N (v)) and pl+1
v = fp(p

l
v, {pl

u}u∈N (v)). Here, l is the layer number,
|| denotes concatenation, fh is the update function for node representations depending on
the GNN layer used, and fp swaps the activation function in fh to tanh to accommodate
both positive and negative values in positional coordinates.

3.2. Learnt sheaf Laplacian (SheafLap)

We also explore the construction of PEs derived from a learnt sheaf, following the method
proposed in Bodnar et al. (2022). In this approach, given a restriction map Fv⊴e : F(v) →
F(e), where v and e represent an incident node-edge pair, we approximate the restriction
map using a learnable parametric function Φ : Rd×2 → Rd×d. That is, Fv⊴e:=(v,u) =
Φ(xv,xu), where xv and xu are node features for v and u. In practice, this parametric
function is implemented as an MLP that takes the concatenation of the two node features
as input. The output is then reshaped to match the dimensions of the restriction maps.
The formulation can be expressed as Φ(xv,xu) = σ(W[xv||xu]+b), where || denotes matrix
concatenation, W represents the weight matrix, and an optional bias term b is included.
The activation function σ introduces non-linearity. In Bodnar et al. (2022), they show
that if Φ possesses adequate capacity and the features are diverse enough, this approach
enables the learning of any type of sheaves over a graph. We restrict Φ to learn a sheaf
Laplacian with an orthogonal matrix to strike a balance between efficiency and generality.
It also corresponds to the connection Laplacian discussed earlier in Section 3.1 with the
precomputed method.

3.3. Sheaf-based Positional Encodings

We construct PEs using the sheaf Laplacian with the following steps. Given an nd × nd
sheaf Laplacian matrix L, where n is the number of nodes and d is a chosen stalk dimension,
we first perform eigendecomposition L = UTΛU. Here, Λ denotes the n×d eigenvalues and
U denotes the nd×nd eigenvector matrix. Given dx as the dimension of each node feature,

6

Sheaf-based Positional Encodings for Graph Neural Networks

the node feature matrix becomes X ∈ Rn×dx . We take the eigenvectors corresponding to
the smallest k eigenvalues from U, reshape them to n× kd, and concatenate them with X.
This results in a new feature matrix X′ ∈ Rn×(dx+kd), which are then fed into the GNN
as inputs. We note that the eigendecomposition poses a sign ambiguity problem (Dwivedi
et al., 2020), which can be solved by SignNet (Lim et al., 2022). We leave such possible
improvements for future exploration.

4. Evaluation

4.1. Node-level tasks

To evaluate the effectiveness of our PEs in assisting GNNs to differentiate nodes and handle
the complex relationships between node data, we test our sheaf-based PEs on a set of node-
level tasks following previous works (Pei et al., 2020; Bodnar et al., 2022; Barbero et al.,
2022). This covers citation networks (Sen et al., 2008; Namata et al., 2012) (Cora, Citeseer,
Pubmed), webpages (WebKB) (Cornell, Texas, Wisconsin), actor co-occurrence networks
(Tang et al., 2009) (Film), and Wikipedia networks (Rozemberczki et al., 2021) (Chameleon,
Squirrel). Detailed description for each dataset can be found in Appendix C. This set of
datasets contains graphs with varying sizes, densities, and homophily levels. A higher
homophily level indicates that connected nodes are more likely to have similar features.

We use the 10 fixed splits in Pei et al. (2020) with 48%/32%/20% of nodes per class for
training, validation, and testing, respectively. We follow the same hyperparameter settings
in Bodnar et al. (2022) for each dataset. For our model-specific parameters, we use the 8
smallest eigenvectors as PEs, and a dimension d = 3 for the stalks in the sheaf. We use
GCN as the base model, due to its well-known inability to deal with heterophilic graphs.
We compare GCN with no PEs (No PE), with eigenvectors of the graph Laplacian as PEs
(GraphLap), with eigenvectors of the precomputed sheaf Laplacian (ConnLap) and of
the learnt sheaf Laplacian (SheafLap) as PEs. The reported results are the mean and
standard deviation of accuracy (%) across the 10 folds.

Texas Wisconsin Film Squirrel Chameleon Cornell Citeseer Pubmed Cora

Hom level 0.11 0.21 0.22 0.22 0.23 0.30 0.74 0.80 0.81

#Nodes 183 251 7,600 5,201 2,277 183 3,327 18,717 2,708

#Edges 295 466 26,752 198,493 31,421 280 4,676 44,327 5,278

#Classes 5 5 5 5 5 5 7 3 6

No PE 57.30±5.51 49.80±6.80 25.20±0.69 46.62±3.62 63.97±3.10 45.95±6.84 72.34±1.41 86.43±0.35 84.71±1.23

GraphLap 58.22±7.03 55.49±12.46 25.13±0.99 47.56±3.03 64.28±3.00 51.35±7.15 73.83±2.07 86.43±0.36 85.05±1.47

ConnLap 58.38±7.76 57.65±6.63 26.53±0.86 47.92±3.53 65.57±2.52 52.97±7.37 73.88±1.84 86.49±0.42 85.13±1.34

SheafLap 61.08±6.19 54.51±7.22 23.80±1.10 51.11±2.95 65.2±3.10 48.38±5.05 74.35±1.64 85.84±0.65 85.88±1.26

Table 1: Mean±std accuracy for node-level tasks with increasing homophily levels across
10 folds using different types of PEs. The best and the second best results are highlighted
in red and blue, respectively.

Sheaf-based PEs outperform GraphLap Table 1 demonstrates that incorporating
PEs, including GraphLap, ConnLap, and SheafLap, consistently improves performance over
the baseline GCN (No PE) across all three datasets. While prior research (Dwivedi et al.,
2020, 2021) primarily focused on graph-level tasks, we extend this evaluation to node-

7

He Bodnar Liò

level tasks. Notably, our sheaf-based PEs (ConnLap and SheafLap) outperform the graph
Laplacian-based PE (GraphLap) in most scenarios. ConnLap excels across all tasks, and
SheafLap obtains significant gains in most cases. This improvement aligns with our initial
motivation, suggesting that the sheaf Laplacian can generate more expressive embeddings
by incorporating node data, unlike the graph Laplacian, which relies solely on adjacency
information. We provide additional ablation studies on the effect of normalisation, number
of eigenvectors, qualitative visualisation, and complexity analysis in Appendix A.

Precomputed ConnLap vs. learnt SheafLap In Table 1, ConnLap consistently ex-
hibits greater stability across datasets compared to the learnt sheaf Laplacian (SheafLap).
This stability can be attributed to several factors. Firstly, the presence of a high feature
dimension in these datasets provides rich information within the node features, which may
support the underlying manifold assumption necessary for constructing ConnLap. Secondly,
precomputed ConnLap avoids the numerical issues that can arise during backpropagation,
a problem occasionally encountered by the learnt SheafLap. This contributes significantly
to the improved stability of ConnLap. Lastly, it is worth noting that the datasets used in
these experiments are relatively small. In such cases, the amount of available data may not
be sufficient to effectively train a learnt sheaf.

4.2. Graph-level tasks

Graph-level tasks require mapping graphs to proper graph embeddings, which should be
different for nonisomorphic graphs and identical for isomorphic ones. We use two sets of
real-world molecular graphs, ZINC (Irwin et al., 2012) and OGBG-MOLTOX21 (Hu et al.,
2020), for graph-level predictions. For the ZINC dataset, we use the predefined 10K/1K/1K
splits for training, validation, and testing, respectively. For the OGBG-MOLTOX21 dataset,
we adopt the default splits by OGB (Hu et al., 2020) based on scaffolding splitting (Wu
et al., 2017). The hyperparameter setup follows Dwivedi et al. (2021), where GatedGCN,
PNA, and SAN are used as base models. We select the 8 smallest eigenvectors as PEs,
and a dimension d = 3 for the stalks in the sheaf. The reported results are the mean and
standard deviation of metrics across 4 runs using different random seeds.

GatedGCN
ZINC ZINC+LSPEMOLTOX21

TestMAE (↓) TestMAE (↓) TestAUC (↑)

No PE 0.251±0.009 N.A. 77.2±0.6
GraphLap 0.202±0.006 0.196±0.008 77.4±0.7
ConnLap 0.249±0.005 0.193±0.014 77.9±0.2

Table 2: Mean±std MAE (↓) for ZINC and
mean±std AUC (↑) for MOLTOX21 across 4
random seeds using different types of PEs. The
best result is highlighted in red.

GatedGCN PNA SAN
TestAUC (↑)

No PE 77.2±0.6 75.5±0.8 74.4±0.7
GraphLap 77.4±0.7 75.2±1.3 73.6±0.3
ConnLap 77.9±0.2 75.3±0.4 74.5±0.4

Table 3: Mean±std AUC (↑) for
MOLTOX21 across 4 random seeds us-
ing different base models. The best re-
sult is highlighted in red.

Precomputed ConnLap Due to the complexity of “unbatching” graphs during training,
we focus on ConnLap for graph-level tasks in this study. We leave the efficient treatment
of multi-graphs in sheaf learning for future work. Table 2 consistently shows that not using

8

Sheaf-based Positional Encodings for Graph Neural Networks

positional encodings (No PE) yields the worst performance in both datasets, highlighting
the effectiveness of Laplacian-based PEs. In MOLTOX21, ConnLap outperforms GraphLap
(77.9 vs. 77.4), indicating that the sheaf Laplacian, considering both node data and graph
structure, can provide more informative PEs at a global level. We also qualitatively show
ConnLap captures the complex relationships between node data by visualising the con-
structed PEs for two random graphs from ZINC in Appendix A.4. We note that in the
ZINC dataset, ConnLap only marginally improves (0.249 vs. 0.251) over No PE, while
GraphLap excels (0.202). This discrepancy may stem from the sparse nature of node fea-
tures in ZINC, where we use one-hot encodings to convert scalar values into feature vectors.
The sparse information may not sufficiently satisfy the manifold assumption, unlike the
richer 9-dimensional node features in MOLTOX21.

Learnable PEs To mitigate the problem, we allow the precomputed ConnLap to evolve
during training using LSPE as explained in Section 3.1. The same LSPE mechanism is
applied on GraphLap to ensure a fair comparison. In Table 2, under “ZINC+LSPE,”
GraphLap shows a slight improvement (0.202 to 0.196), while ConnLap benefits significantly
from learning (0.249 to 0.193). This supports our hypothesis that the sheaf structure
provides a solid foundation for ConnLap’s evolution, and as node representations improve
across layers, the connection Laplacian can better capture global positions from enhanced
node features.

Different architectures PEs are also essential for enhancing Graph Transformers with
graph structure input. Table 3 compares GraphLap and ConnLap across two GNN models
(GatedGCN and PNA) and one Graph Transformer model (SAN), in line with previous
research on graph Laplacian PEs (Dwivedi et al., 2021; Lim et al., 2022). ConnLap out-
performs GraphLap and No PE with GatedGCN (77.9 vs. 77.4 and 77.2, respectively).
However, for both PEs (75.2 and 75.3), they don’t match the vanilla PNA architecture,
indicating that Laplacian-based PEs may not be ideal for PNA’s unique aggregator combi-
nation approach. We show in Appendix A.3 that PEs that capture the relative relationships
between two nodes, such as random walks (Dwivedi et al., 2021), are better suited for PNA.
Moving to SAN, a Graph Transformer, we see GraphLap underperforming (73.6) compared
to No PE (74.4), while ConnLap offers a slight improvement (74.5) and higher stability (0.4).
Overall, ConnLap consistently outperforms GraphLap in terms of accuracy and stability.

5. Conclusion

We introduce novel positional encodings (PEs) using sheaves, enhancing GNNs and Graph
Transformers with both structural information and semantic knowledge from node data.
Our experiments show that sheaf-based PEs outperform graph Laplacian-based methods,
particularly in node differentiation. We explore precomputed and learnt sheaf PEs, striking
a balance between computational complexity and expressive power. This work underscores
the utility of sheaf theory in GNNs, emphasizing the value of geometric and topological
concepts in advancing geometric deep learning.

9

He Bodnar Liò

References

Uri Alon and Eran Yahav. On the bottleneck of graph neural networks and its practical
implications, 2020. URL https://arxiv.org/abs/2006.05205.

Federico Barbero, Cristian Bodnar, Haitz Sáez de Ocáriz Borde, Michael Bronstein, Petar
Veličković, and Pietro Liò. Sheaf neural networks with connection laplacians, 2022.

Claudio Battiloro, Zhiyang Wang, Hans Riess, Paolo Di Lorenzo, and Alejandro Ribeiro.
Tangent bundle convolutional learning: from manifolds to cellular sheaves and back, 2023.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction
and data representation. Neural Computation, 15(6):1373–1396, 2003. doi: 10.1162/
089976603321780317.

Cristian Bodnar, Francesco Di Giovanni, Benjamin Paul Chamberlain, Pietro Liò, and
Michael M. Bronstein. Neural sheaf diffusion: A topological perspective on heterophily
and oversmoothing in gnns, 2022. URL https://arxiv.org/abs/2202.04579.

J.-Y. Cai, M. Furer, and N. Immerman. An optimal lower bound on the number of variables
for graph identification. In 30th Annual Symposium on Foundations of Computer Science,
pages 612–617, 1989. doi: 10.1109/SFCS.1989.63543.

Justin Curry. Sheaves, cosheaves and applications, 2014.

B. L. Douglas. The weisfeiler-lehman method and graph isomorphism testing, 2011.

Vijay Prakash Dwivedi and Xavier Bresson. A generalization of transformer networks to
graphs. CoRR, abs/2012.09699, 2020. URL https://arxiv.org/abs/2012.09699.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua
Bengio, and Xavier Bresson. Benchmarking graph neural networks, 2020. URL https:

//arxiv.org/abs/2003.00982.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bres-
son. Graph neural networks with learnable structural and positional representations.
2021. doi: 10.48550/ARXIV.2110.07875. URL https://arxiv.org/abs/2110.07875.

Sergei Evdokimov and Ilia Ponomarenko. Isomorphism of coloured graphs with slowly
increasing multiplicity of jordan blocks. Combinatorica, 19:321–333, 03 1999. doi: 10.
1007/s004930050059.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph
neural networks for social recommendation, 2019.

Alex Fout, Jonathon Byrd, Basir Shariat, and Asa Ben-Hur. Protein interface
prediction using graph convolutional networks. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, edi-
tors, Advances in Neural Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/

f507783927f2ec2737ba40afbd17efb5-Paper.pdf.

10

https://arxiv.org/abs/2006.05205
https://arxiv.org/abs/2202.04579
https://arxiv.org/abs/2012.09699
https://arxiv.org/abs/2003.00982
https://arxiv.org/abs/2003.00982
https://arxiv.org/abs/2110.07875
https://proceedings.neurips.cc/paper/2017/file/f507783927f2ec2737ba40afbd17efb5-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/f507783927f2ec2737ba40afbd17efb5-Paper.pdf

Sheaf-based Positional Encodings for Graph Neural Networks

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl.
Neural message passing for quantum chemistry. In ICML, 2017.

Jakob Hansen and Thomas Gebhart. Sheaf neural networks, 2020. URL https://arxiv.

org/abs/2012.06333.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning
on graphs. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 22118–22133. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/

fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf.

John J. Irwin, Teague Sterling, Michael M. Mysinger, Erin S. Bolstad, and Ryan G.
Coleman. Zinc: A free tool to discover chemistry for biology. Journal of Chemi-
cal Information and Modeling, 52(7):1757–1768, 2012. doi: 10.1021/ci3001277. URL
https://doi.org/10.1021/ci3001277. PMID: 22587354.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. CoRR, abs/1609.02907, 2016. URL http://arxiv.org/abs/1609.02907.

Devin Kreuzer, Dominique Beaini, William L. Hamilton, Vincent Létourneau, and Pruden-
cio Tossou. Rethinking graph transformers with spectral attention, 2021.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design
provably more powerful neural networks for graph representation learning, 2020. URL
https://arxiv.org/abs/2009.00142.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional
networks for semi-supervised learning. In Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence, pages 3538–3545. AAAI Press, 2018. URL https:

//www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098.

Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and
Stefanie Jegelka. Sign and basis invariant networks for spectral graph representation
learning, 2022. URL https://arxiv.org/abs/2202.13013.

Grégoire Mialon, Dexiong Chen, Margot Selosse, and Julien Mairal. Graphit: Encoding
graph structure in transformers, 2021.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph
neural networks, 2018. URL https://arxiv.org/abs/1810.02244.

Luis Müller, Mikhail Galkin, Christopher Morris, and Ladislav Rampášek. Attending to
graph transformers, 2023.

Galileo Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven active surveying
for collective classification. 2012.

11

https://arxiv.org/abs/2012.06333
https://arxiv.org/abs/2012.06333
https://proceedings.neurips.cc/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/fb60d411a5c5b72b2e7d3527cfc84fd0-Paper.pdf
https://doi.org/10.1021/ci3001277
http://arxiv.org/abs/1609.02907
https://arxiv.org/abs/2009.00142
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16098
https://arxiv.org/abs/2202.13013
https://arxiv.org/abs/1810.02244

He Bodnar Liò

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-
gcn: Geometric graph convolutional networks. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=S1e2agrFvS.

Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf,
and Dominique Beaini. Recipe for a general, powerful, scalable graph transformer, 2023.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding,
2021.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neu-
ral networks for combinatorial problems. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.

neurips.cc/paper/2019/file/635440afdfc39fe37995fed127d7df4f-Paper.pdf.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina
Eliassi-Rad. Collective classification in network data. AI Magazine, 29(3):93, Sep. 2008.
doi: 10.1609/aimag.v29i3.2157. URL https://ojs.aaai.org/aimagazine/index.php/

aimagazine/article/view/2157.

Amit Singer and Hautieng Wu. Vector diffusion maps and the connection laplacian, 2011.

Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale net-
works. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’09, page 807–816, New York, NY, USA, 2009. Asso-
ciation for Computing Machinery. ISBN 9781605584959. doi: 10.1145/1557019.1557108.
URL https://doi.org/10.1145/1557019.1557108.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NIPS, 2017.

Petar Veličković. Message passing all the way up. In ICLR 2022 Workshop on Geometrical
and Topological Representation Learning, 2022. URL https://openreview.net/forum?

id=Bc8GiEZkTe5.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. In International Conference on Learning
Representations, 2018.

WebKB. Cmu world wide knowledge base (web-¿kb) project. http://www.cs.cmu.edu/

afs/cs.cmu.edu/project/theo-11/www/wwkb/.

Zhenqin Wu, Bharath Ramsundar, Evan Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: A benchmark for molecular machine
learning. Chemical Science, 9, 03 2017. doi: 10.1039/C7SC02664A.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph
neural networks?, 2018. URL https://arxiv.org/abs/1810.00826.

12

https://openreview.net/forum?id=S1e2agrFvS
https://proceedings.neurips.cc/paper/2019/file/635440afdfc39fe37995fed127d7df4f-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/635440afdfc39fe37995fed127d7df4f-Paper.pdf
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2157
https://doi.org/10.1145/1557019.1557108
https://openreview.net/forum?id=Bc8GiEZkTe5
https://openreview.net/forum?id=Bc8GiEZkTe5
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
https://arxiv.org/abs/1810.00826

Sheaf-based Positional Encodings for Graph Neural Networks

Kun Xu, Liwei Wang, Mo Yu, Yansong Feng, Yan Song, Zhiguo Wang, and Dong Yu. Cross-
lingual knowledge graph alignment via graph matching neural network. In Proceedings of
the 57th Annual Meeting of the Association for Computational Linguistics, pages 3156–
3161, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.
18653/v1/P19-1304. URL https://aclanthology.org/P19-1304.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming
Shen, and Tie-Yan Liu. Do transformers really perform bad for graph representation?,
2021.

Jiaxuan You, Rex Ying, and Jure Leskovec. Position-aware graph neural networks, 2019.
URL https://arxiv.org/abs/1906.04817.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan Salakhut-
dinov, and Alexander Smola. Deep sets, 2018.

Appendix A. Ablation Studies

A.1. Number of eigenvectors

Figure 3: Accuracy (%) against number of eigenvectors used as PEs for ConnLap and
SheafLap with an orthogonal matrix.

As shown in Table 3, using more eigenvectors improves the performance until a turning
point is reached, beyond which the accuracy deteriorates. While more eigenvectors may
exacerbate the sign ambiguity problem in eigendecompsition (Lim et al., 2022), an adequate
number of eigenvectors is also needed to obtain sufficient positional information. We also
note that this phenomenon is not observed in the Cornell dataset, suggesting that Laplacian-
based PEs may not be well suited for this graph. This may explain the poor performance
of SheafLap in Table 1.

A.2. Effect of normalisation

We compare the normalised and unnormalised sheaf Laplacian for constructing PEs us-
ing the learnt method (SheafLap). In Table 4, we observe that, except for one case, the
unnormalised sheaf Laplacian proves to be a better candidate. The normalisation Lapla-
cian matrix can reduce the number of sign possibilities (Dwivedi et al., 2020; Lim et al.,

13

https://aclanthology.org/P19-1304
https://arxiv.org/abs/1906.04817

He Bodnar Liò

SheafLap
Texas Wisconsin Cornell

norm unnorm norm unnorm norm unnorm

Diagonal 60.54±6.53 61.35±6.63 54.14±7.62 54.90±9.80 44.86±4.55 44.32±7.17
Orthogonal 59.19±6.89 61.08±6.19 54.49±7.44 54.51±7.22 46.49±5.90 48.38±5.05
General 59.02±7.34 60.81±7.07 55.89±6.81 57.65±5.24 45.26±4.31 45.68±6.56

Table 4: Mean±std accuracy (%) for node-level tasks comparing learnt sheaf PEs with
normalised and unnormalised sheaf Laplacian. The winning case in each setup is highlighted
in bold.

2022). Our results suggest that, in the case of the sheaf Laplacian, the benefit of normal-
isation to alleviate the sign ambiguity problem may not outweigh the expressive power of
the unnormalised Laplacian in effectively differentiating nodes.

A.3. Comparison with relative PEs

GatedGCN PNA SAN

No PE 77.2±0.6 75.5±0.8 74.4±0.7
RWPE 77.5±0.3 76.1±0.7 74.4±0.8
ConnLap 77.9±0.2 75.3±0.4 74.5±0.4

Table 5: Mean±std AUC for MOLTOX21 dataset across 4 random seeds comparing
ConnLap with a relative positional encoding based on random walks (RWPE). The best
result is highlighted in red.

In Table 5, we compare ConnLap, being a global PE, with a relative PE based on
random walks (RWPE) (Dwivedi et al., 2021). We can see ConnLap maintains the best
performance with GatedGCN (77.9 vs 77.5) and SAN (74.5 vs 74.4), except in the case of
PNA (75.3 vs 76.1), in comparison with RWPE. We discussed previously that both global
PEs using the Laplacian matrix tend to perform poorly with PNA. Here, we notice RWPE,
as a relative PE, is more appropriate for this architecture. This supports our claim that
PNA may not benefit from global structural knowledge, but relative distance information
can facilitate its multiple aggregator scheme. Finally, we note that sheaf-based PEs can
be transformed into relative PEs by taking the gradients of eigenvectors. We believe this
leaves ample future avenues to explore.

A.4. Qualitative Analysis

We visualise the PEs generated from GraphLap and ConnLap by creating two synthetic
graphs representing the chemical compounds decalin and bicyclopentyl, a well-known pair
of nonisomorphic graphs that are hard to distinguish by GNNs (Sato et al., 2019). Node
features are populated with alternating vectors of 0s and 1s to be heterophilic. PEs from
GraphLap and ConnLap are visualised in Figure 4, where similar colours indicate similar
PEs. We observe that GraphLap tends to generate a smoothly transiting colour scheme
among neighbouring nodes, while ConnLap can generate dissimilar PEs when node features

14

Sheaf-based Positional Encodings for Graph Neural Networks

differ. For example, in decalin, GraphLap assigns either warm (red) or cold (blue) colours
in each ring, while ConnLap assigns mixed colours. We show that ConnLap can effectively
account for both structural and semantic information from the graph, generating a more
expressive positional embedding space to facilitate node differentiation. Similar observation
is found in Figure 5, where we take two real-world graphs randomly from the OGBG-
MOLTOX21 dataset (index 295 and 399).

Figure 4: Visualisation of PEs created from GraphLap and ConnLap on two 10-node graphs
with decalin and bicyclopentyl structures (Sato et al., 2019). These graphs are heterophilic,
where nodes connected may have different node features.

A.5. Complexity Analysis

Texas Citeseer Squirrel
precompute per epoch precompute per epoch precompute per epoch

GraphLap 49.67 6.71 1886.58 4.47 9654.07 41.87
ConnLap 608.32 7.79 8562.46 3.48 72148.34 33.98
SheafLap 0 19.03 0 3139.45 0 31503.36

Table 6: Mean execution time in seconds (s) with different types of PEs on node-level tasks,
sorted in increasing size of graph. In each dataset, “precompute” displays the total time
cost to construct GraphLap/ConnLap during preprocessing time, and “per epoch” is the
averaged time cost per epoch.

15

He Bodnar Liò

Figure 5: Visualisation of PEs created from GraphLap and ConnLap on 2 random graphs
from OGBG-MOLTOX21 dataset.

ZINC ZINC+LSPE MOLTOX21
precompute per epoch per epoch precompute per epoch

GraphLap 30.63 15.53 22.81 23.45 4.98
ConnLap 372.72 15.47 23.24 196.52 5.01

Table 7: Execution time in seconds (s) with different types of PEs on graph-level tasks,
where ZINC+LSPE indicates allowing PEs to evolve during training.

We compare the mean execution time for each type of PE on different datasets, trained
on NVIDIA Tesla T4 GPU. In Table 6 and Table 7, we observe that the pre-computation
time costs for ConnLap exceed those of GraphLap (around ×10), due to the higher com-
plexity for constructing the sheaf Laplacian than the graph Laplacian. However, this is a
one-off cost per dataset, and the time per epoch remains similar for both PEs. In Table
6, SheafLap induces a much higher cost per epoch (around ×1000), which is significantly
costlier considering that each training procedure typically requires hundreds of epochs. Al-
though SheafLap does not require pre-computation, its high computational cost per epoch
makes it less scalable than GraphLap and ConnLap.

Appendix B. Precomputed connection Laplacian

We provide the details to compute the parallel transport from TxvM to TxuM on the
manifold M in the context of graph data as proposed in (Barbero et al., 2022).

16

Sheaf-based Positional Encodings for Graph Neural Networks

Figure 6: Step 1: We construct the orthonormal bases of TxvM and TxuM using local PCA,
defined by the 1-hop neighbourhood of the nodes. Step 2: We compute the orthogonal
mapping Ovu by optimal aligning the two bases, which approximates the parallel transport
operator (Singer and Wu, 2011).

The two-step procedure is summarised in Figure 6. Here, we elaborate the steps in
more details. First, we construct the orthonormal bases of the tangent spaces TxvM for
each data point xv via local Principle Component Analysis (PCA). The local neighbourhood
is defined by the 1-hop neighbourhood N (v) of the node v, giving us a p × |N (v)| matrix
X̂v = [xv−xv, ...,xv|N (v)| −xv]. We perform PCA via Singular Value Decomposition (SVD)

on the matrix X̂v = Uv
∑

iV
⊤
v . The stalk dimension d is set as a hyperparameter, which

is also the dimension of the orthonormal bases. Therefore, we take the first d left singular
vectors of Uv. This forms a d-dimensional subspace of Rp, calling it Ov. We take Ov as an
approximation for the basis of the tangent space TxvM.

Next, we compute the parallel transport via optimal alignment between the tangent
spaces TxvM and TxuM. Intuitively, an optimal alignment is a mapping from one tangent
space to another. Formally, we compute Ovu = UV⊤, where U and V comes from the SVD
of O⊤

v Ou = U
∑

V⊤. If xv and xu are close enough, then Oij approximates the parallel
transport between their tangent spaces as proved in (Singer and Wu, 2011). This condition
is ensured by taking the 1-hop neighbourhood as explained in the last paragraph. Note
when there are fewer than d neighbours for node v, we take the nearest nodes according to
the Euclidean distances of their node data.

Appendix C. Description of datasets

C.1. Node-level tasks

Citation networks (Cora, Citeseer, Pubmed) In these citation networks (Sen et al.,
2008; Namata et al., 2012), nodes are academic papers with edges showing their citation
relationships. The node features are the bag-of-words representation of the papers. The
goal is to predict the academic topic of each paper.

WebKB (Cornell, Texas, Wisconsin) These are webpage datasets (WebKB) collected
from computer science departments in various universities. The nodes are webpages, while
the edges are hyperlinks between them. Similarly, the node features are the bag-of-words
representation, with the goal to classify the category of the webpage.

17

He Bodnar Liò

Actor co-occurrence network (Film) This dataset (Tang et al., 2009) is a subgraph of
the film-director-actor-writer network, with nodes representing actors and edges denoting
co-occurrence on the same Wikipedia page. The node features consist of keywords in the
Wikipedia page, while the node label corresponds to the actor’s Wikipedia category.

Wikipedia network (Chameleon, Squirrel) The two Wikipedia networks (Rozem-
berczki et al., 2021) consist of pages related with chameleon or squirrel. The nodes are
Wikipedia pages, and the edges are mutual inks between them. Node features contain in-
formation nouns from the page. The task requires to classify the pages into five categories
based on their average monthly traffic.

C.2. Graph-level tasks

ZINC The ZINC dataset contains 12K molecular graphs representing commercially avail-
able chemical compounds. The molecular graphs vary in size, from 9 to 37 nodes. Each
node or edge is given a number as the feature, representing its atom or bond type. In total,
there are 28 atom types and 3 bond types. This graph regression task requires the model
to predict a constrained solubility (logP) value of the compound.

OGBG-MOLTOX21 This dataset is a smaller dataset taken from MoleculeNet (Wu
et al., 2017). The nodes are atoms with 9-dimensional vector features, encoding information
such as atomic number, chirality, and formal charge. The edges represent chemical bonds.
It is a graph-level classification task with binary labels.

18

	Introduction
	Background
	Graph Neural Networks
	Sheaf Theory

	Sheaf-based Positional Encodings
	Precomputed sheaf Laplacian (ConnLap)
	Learnt sheaf Laplacian (SheafLap)
	Sheaf-based Positional Encodings

	Evaluation
	Node-level tasks
	Graph-level tasks

	Conclusion
	Ablation Studies
	Number of eigenvectors
	Effect of normalisation
	Comparison with relative PEs
	Qualitative Analysis
	Complexity Analysis

	Precomputed connection Laplacian
	Description of datasets
	Node-level tasks
	Graph-level tasks

