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Abstract

Large language models have complicated internal dynamics, but induce representations
of words and phrases whose geometry we can study. Human language processing is also
opaque, but neural response measurements can provide (noisy) recordings of activations
during listening or reading, from which we can extract similar representations of words
and phrases. Here we study the extent to which the geometries induced by these rep-
resentations, share similarities in the context of brain decoding. We find that the larger
neural language models get, the more their representations are structurally similar to neural
response measurements from brain imaging.

Keywords: Neural Representations, Language Representations, Brain Decoding

1. Introduction

Understanding how the brain works has intrigued researchers for many years. This challenge
has given rise to the field of brain decoding, where the goal is to interpret the information
encoded in the brain while a person is engaged in a specific cognitive task, such as reading or
listening to language. By analyzing representations of neural activity across different brain
regions, researchers can develop computational models that link specific patterns of brain
activity to linguistic elements, such as words or sentences. This direction of research opens
avenues for advancing our understanding of neurological disorders, developing innovative
treatments, and enhancing the quality of life for individuals with disorders.
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LLMs and Neural Representations

Figure 1: Experimental flow and main results. We run experiments with three families
of LLMs (comparing LLMs of different sizes within families), two fMRI datasets,
and three projection algorithms, and results are the same across all combina-
tions: LLMs converge toward human-like representations, enabling (P@10) re-
trieval rates of up to 25%, i.e., a quarter of all concepts can be decoded from the
fMRI signals. The datasets, our Gaussian smoothing technique, and the projec-
tion methods are described in §3. Right side: Convergence results for three
families of LLMs across two datasets, using Procrustes analysis. Con-
vergence is consistent, and some retrieval rates are remarkably high, decoding
almost half of the words correctly to a neighborhood of 30 word forms, which
surpasses the random retrieval baselines represented by the dotted red lines.

In this paper, we investigate the alignment between the representations of words in
LLMs and the neural response patterns observed in the human brain during language pro-
cessing. What emerges is a striking structural similarity between these two sets of repre-
sentations, manifesting as a geometric congruence in high-dimensional vector spaces. To
quantify this alignment, we employ rigorous evaluation methods, including ridge regression,
representational similarity analysis (RSA) (Kriegeskorte et al., 2008), and Procrustes anal-
ysis (Kementchedjhieva et al., 2018) (if d = d′). These methodologies enable us to quantify
the extent of isomorphism between LLMs and neural responses, e.g., functional magnetic
resonance imaging (fMRI). Figure 1 illustrates the experimental flow and main results.

It is a common practice to evaluate LLMs by measuring their performance on benchmark
data and protocols (Lewkowycz et al., 2022; Mitchell and Krakauer, 2023). Doing so is aimed
to infer what LLMs have learned, from how they behave. The methodology is behaviorist
and has obvious limitations. We instead suggest exploring the inside of LLMs and our
brains – or, to be precise, their representational geometries. Our investigations span various
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LLM families, word embeddings, and diverse datasets, consistently revealing high degrees
of structural congruence. Our main contributions are as follows:

• We find a remarkable structural similarity between how words are represented in
LLMs, and the neural response measurements of humans reading the same words.
The LLM representations of a vocabulary form a geometry in a d-dimensional vector
space; and the neural response measurements from one or more participants reading
these words in a brain scanner, form in a similar way a geometry in a d′-dimensional
space.

• We present experiments for three families of LLMs (as well as one static embedding
method), with two different fMRI datasets, and three evaluation methods (ridge re-
gression, RSA, and Procrustes analysis) to compute the structural similarity (degree
of isomorphism) between these two modal geometries.

• Across the board, we see high degrees of isomorphism, enabling decoding or retrieval
performance (precision-at-k, a.k.a P@k) of up to P@10≈25% (with random perfor-
mance being P@10<1%). Word-level brain decoding thus seems feasible particularly
as language models increase in size.

2. Related Work

Over the past decade, researchers have explored the relationship between neural and lan-
guage representations by predicting text from brain activity (Søgaard, 2016; Ramakrishnan
and Deniz, 2021; Fereidooni et al., 2020).Pereira et al. (2018) were the first to build re-
gression models to predict sentence representations from brain scans. Extending this work,
Minnema and Herbelot (2019) investigate several metrics to evaluate the decoder perfor-
mance. Apart from regression, Sun et al. (2019) also use similarity-based decoders where
the decoder is trained to map brain images to distinct sentence representations in both
structured and unstructured settings. Affolter et al. (2020) use a neural network model
to facilitate the brain-to-word regression decoder, and evaluate on unseen subjects for a
more realistic approach. Oota et al. (2022) propose two novel setups using multi-view and
cross-view regression decoders that predict semantic concepts and vector representations
respectively. Zou et al. (2022) suggest a neural decoder in a cross-modal cloze setting
predicting the target word given a contextual prompt. Finally, Tang et al. (2022) build a
decoder that reconstructs continuous language instead of individual words or sentences. Our
focus is not on building a better decoding system, but rather on exploring the alignment
between neural and language representational spaces within such systems.

3. Methodology

We begin with a description of the tools and methods we used to align language model rep-
resentations with fMRI recordings. We experiment with three families of LLMs, comparing
the word representations they induce to human representations obtained from two different
neural response measurement datasets. We use three different comparison methods, lead-
ing to a total of 18 experiments, which all confirm the same trend. For further information
regarding our models and their configuration, refer to the Appendix.
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3.1. Data description and pre-processing

3.1.1. fMRI datasets

fMRI is a non-invasive neural response measurement technique that records on a spatial
resolution in the region of 1 to 6 millimeters, higher than any other technique. fMRI
records activity (blood flow) in the entire network of brain areas engaged when subjects
undertake particular tasks. On the downside, fMRI is somewhat susceptible to influences of
non-neural changes, and the temporal response is poor relative to the electrical signals that
define neuronal communication. To compensate for low temporal resolution, we introduce
Gaussian smoothing below. The datasets are: Harry Potter Dataset (Wehbe et al., 2014)
(8 subjects), and Natural Stories Audio Dataset (Zhang et al., 2020) (19 subjects). Both
datasets are publicly available.

3.1.2. Gaussian smoothing

We use Gaussian smoothing to extract word-level neural response measurements in our two
datasets. Gaussian smoothing has been used before to study speech-aligned fMRI data
(Bingel et al., 2016; Brodoehl et al., 2020). In cases where fMRI data is not collected at
the granularity of individual words, we can use Gaussian smoothing to generate word-level
fMRI information. For instance, to obtain the fMRI vector for a specific word like ”Harry”
at a given time point t (Harryt), we can extract the fMRI vectors for a certain timeframe T
around t, such as t± T seconds. We then apply Gaussian smoothing to this set of vectors,
resulting in a final vector that represents the fMRI information for the word ”Harryt”. This
approach has potential benefits for fMRI analysis in various applications, such as studies of
language processing and cognitive neuroscience. By generating word-level fMRI information
using Gaussian smoothing, we can potentially extend the scope from sequence-level to word-
level, and improve the interpretability and accuracy of the results. Extracting word-level
signals differentiates our work from most of the previous, and is shown to be crucial in
recent work on brain decoding (Tang et al., 2022).

3.2. Models

3.2.1. Non-auto-regressive models

Non-auto-regressive models are a type of machine learning models that take in an input
sequence of text and generate a single output vector representation for the entire sequence.
During training, some words are masked and the model learns to predict the masked words
based on context. We use the BERT (Devlin et al., 2019) family of language models as an
example of non-auto-regressive models.

3.2.2. Auto-regressive models

Auto-regressive models generate output sequences by predicting each element in the se-
quence based on the previously generated elements. In other words, the output is generated
one element at a time, with the model conditioned on the previous output elements. These
language models are used to generate text but typically provide slightly worse similarity es-
timates. We use two auto-regressive language model families: GPT2 (Radford et al., 2019)
and OPT (Zhang et al., 2022).
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3.3. Comparison and projection methods

3.3.1. Representational Similarity Analysis

Relational Similarity Analysis (RSA) is a multivariate analysis technique commonly used
in cognitive neuroscience and computational linguistics to compare the similarity between
two sets of representations (Kriegeskorte et al., 2008). RSA can be used to measure the
similarity between the neural activity patterns observed in the fMRI data and the repre-
sentations learned by LLMs. RSA operates by first representing the neural activity and
language model features as vectors in a high-dimensional space. The similarity between
these vectors is then quantified using a rank-based correlation metric. We perform RSA
following (Lepori and McCoy, 2020). Let X and Y be two sets of representations. We calcu-
late their representational dissimilarity matrices (RDMs) as DX and DY , respectively

1. We
then compare the representational geometries using Spearman’s rank correlation coefficient,
denoted as ρ(DX ,DY ).

3.3.2. Ridge regression

Ridge regression is a widely used method in statistics and machine learning to address
the issue of multicollinearity, which can arise when there are highly correlated predictor
variables in a linear regression model. In contrast to Toneva and Wehbe (2019), who utilized
ridge regression for encoding fMRI data, our approach focuses on decoding, i.e. predicting
language from fMRI. We achieve this by establishing a model that captures the connection
between brain signals and individual dimensions within the language model representations.
The models are trained to predict the signal of word w in layer l, denoted as ylw , using
the vector of fMRI voxels for that word, xw. For each subject and layer l, we employ
cross-validation to estimate the predictiveness of the fMRI representation of the word in
each dimension i. In each fold, the fMRI data matrix with total n dimension denoted
as X = xw1 , xw2 , ..., xwn , and the semantic vector matrix with m dimension, denoted as
Z = zw1 , zw2 , ..., zwm , are split into corresponding training and validation matrices which
are individually normalized to have a mean of 0 and a standard deviation of 1 for each
dimension across words, ending with training matrices XR and ZR,l, as well as validation
matrices XV and ZV,l. Using the training fold, we estimate a model θi,l as follows:

argmin
θi,l

||zR,i −XRθi,l||22 + λi||θi,l||22

To identify the best λi for each dimension i that minimizes the nested cross-validation error,
we employ a ten-fold nested cross-validation. Subsequently, we estimate θi,l using λi on the
entire training fold. Thus, the predictions for each dimension in the validation fold are
obtained as pl = XV θi,l.

3.3.3. Procrustes Analysis

We use Procrustes Analysis, a form of statistical shape analysis, to align brain fMRI repre-
sentations with those of language models, using a bimodal dictionary. Procrustes Analysis

1. The code we used was taken from: https://github.com/mlepori1/Picking_BERTs_Brain
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Datasets U.W. P@1 P@5 P@10 P@30 P@50 P@100

Harry PotterRandom 1291
0.08% 0.39% 0.77% 2.32% 3.87% 7.74%

Harry PotterFastText 0.36% 3.66% 6.43% 12.76% 17.22% 26.52%

Natural StoriesRandom 381
0.26% 1.31% 2.62% 7.87% 13.12% 26.25%

Natural StoriesFastText 0.00% 1.88% 5.62% 17.27% 24.24% 39.89%

Table 1: Two different P@k baselines with k ∈ {1, 5, 10, 30, 50, 100} of two datasets. The
random retrieval baselines are calculated by the U.W. in stimulus content, respec-
tively. U.W. = the number of unique words.

is a method for matching corresponding points in two shapes and finding the transforma-
tion (translation, rotation, and scaling) that best aligns them. Specifically, we seek to find
the orthogonal matrix Ω that optimally maps the brain fMRI matrix A representing brain
responses to the words onto the language model matrix B, i.e. the language model repre-
sentations of the words, using the minR |R−M |F problem subject to RTR = I, which can
be solved using singular value decomposition with R = UV T .

4. Experimental Setup

4.1. fMRI-text Dictionary Complementation

We build a bimodal dictionary that associates fMRI data with corresponding textual in-
formation. Considering the context in which words are presented, it becomes evident that
the brain’s response to a particular word may vary significantly across different sentences.
This dynamic response suggests that, within our constructed dictionary, the relationship
between fMRI recordings and textual entries exhibits a many-to-one correspondence. We
employ a four-fold cross-validation approach that takes into account unique words, thereby
preventing any potential train-test leakage. Due to individual differences among subjects,
our experiments are conducted based on each subject’s responses. We report the averaged
results across all subjects.

4.2. Evaluation - Linear Projection

To assess the effectiveness of regression and alignment techniques, we employ the P@k
metric, which quantifies the ratio of accurate predictions within the top k predictions. This
evaluation metric offers a more cautious and robust assessment (Karamolegkou et al., 2023).
For Procrustes analysis, we induce it from a small set of point pairs and test it on held-out
data measuring the P@k (Lample et al., 2018), whereas for Regression we use all point
pairs. Ensuring consistent dimensionality between the source and target spaces is a crucial
prerequisite for successful alignment. In instances where a dimensionality mismatch arises,
we employ principal component analysis to reduce the dimensionality of the larger space.
To find the top k predictions we use Cross-domain similarity local scaling (CSLS). This
method is often used to evaluate the similarity between mapped source and target words
and is an improvement of the traditional Nearest Neighbor (NN) methods Lample et al.
(2018). See more details for this metric in the Appendix.
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Random retrieval baseline. P@k is a metric that quantifies the proportion of words for
which the LLM’s representation serves as one of the k-nearest neighbors to the corresponding
fMRI encoding. In essence, word-level decoding involves a straightforward nearest-neighbor
retrieval process within the projected space. It’s crucial to note that our target vector
space, which represents the language model, contains hundreds of vectors. This feature sets
our random baseline P@1 < 0.1%. Our target space of the text material in fMRI datasets
makes the random retrieval baseline: P@1 = 1

N

∑N
i=1

1
U × 100%, where N represents the

total number of unique words; i iterates over all words in the material; U refers to the total
number of unique words.

FastText baseline. Surpassing the random baseline does not necessarily establish that
LLMs are inherently more aligned with fMRI measurements. To address this concern,
we conduct a secondary baseline alignment experiment by aligning fMRI recordings with
word representations from fastText Bojanowski et al. (2017). Further details can be found
in Table 1. In practical applications, our mappings exhibit significantly higher precision,
reflecting the structural similarities between the language model and human brains.

5. Results & Discussion

5.1. Main Results.

Our main results are presented in Figure 2 which illustrates the averaged results across all
subjects, and the convergence of three families of LLMs on representations that are remark-
ably similar to those seen in neural response measurements. These results are consistent
across two fMRI datasets and three mapping methods. See Appendix D (Figure 5) for
similar results with RSA. The scores are plotted by model size, showing the convergence
toward brain-like representations as LLMs increase in size. The best scores indicate that
LLMs up to 1.5B parameters can achieve alignments such that a bit more than 1 in 5 words
are decoded correctly,2 and a bit more than 2 in 5 almost correctly (within neighborhoods
of 20-30 word forms). To gain a qualitative sense of the alignment between brain signal and
LLMs representations, see Figure 3. The results are obtained with limited supervision for
learning the mapping. In fact, we only rely on 950 data points to induce this linear projec-
tion, a small number given the high dimensionality of the derived word representations; see
§3 for details.

5.2. Discussion

Our findings reveal a strong similarity between language model word representations and
human brain responses to language stimuli. As these neural language models expand in size,
their representations become more akin to the patterns observed in neural responses from the
fMRI scans. This discovery points to the development of human-like representations within
these large-scale language models, offering valuable insights into the intricate relationship
between artificial intelligence and human cognitive processes.

2. The reason we count P@5 or P@10 as correct decoding is that a neighborhood of 5-10 words will tend
to consist of inflections of the same lemma or synonymous words (Kementchedjhieva et al., 2019). P@1
would amount to guessing the lemma, the exact inflection, and the correct spelling variant.
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Figure 2: Convergence Results for Three Families of Language Models on Two
Datasets. The task for the Harry Potter dataset here is: Given a neural response,
which word in a vocabulary of 1,291 words, was read at the time the response was
recorded? Random retrieval baseline P@10 is less than 1%, while the FastText
baseline P@10 is less than 7%. See more details of baselines in Table 1.

Newman’s objection? Philosophers argue whether structural similarities (isomorphisms,
homomorphisms, etc.) between representations and what is represented, are sufficient for
content (Shea, 2007; Mollo and Millière, 2023). Their concerns have their origin in New-
man’s objection to Russellian structural realism (Newman, 1928). Briefly put, Newman
showed that structuralist descriptions that abstract away from all but the logical structure,
and simply assert the existence of a relation that induces a graph isomorphism between the
representation, and what is represented, are indeed trivial. Any LLM will, in other words,
induce word representations such that the nearest neighbor graph over the word vocabulary
V such that there exists a relation that is isomorphic to that graph. Mollo and Millière
(2023), for example, bring up Newman’s objection and write:

philosophical work on theories of representational content has long established
[. . . that m]orphisms between two sets of objects or properties are trivial to find,
and rely solely on the existence of morphisms between internal representations
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Figure 3: t-SNE plot of fMRI and LLM representations using OPT-30B (large, un-
cased) over selected target words from the Harry Potter dataset. Here we visualize
the P@5, i.e. the top 5 predictions for the fMRI representation. The fMRI rep-
resentation ‘Potter2183’ has the LLM representation Potter among its 5-nearest
neighbors. The fMRI representation associated with ‘never313’ is not as close as
the LLM representation never – but still with never as the top-5 guess. That
said, the words Potter and would are decoded correctly by our alignment (top-1
guess or P@1).

and structured domains in the world could lead to a trivialization of the notions
of representation and meaning . . .

However, Newman’s objection only holds if all there is posited is the existence of some
relation. If the relations are properly restricted, isomorphism is far from trivial. One
observation that goes all the way back to Carnap’s Aufbau (Carnap, 1967)3 is: Struc-
tural similarities are generally trivial to obtain, but if the relations (distances in the vector
space) serve a purpose (do work for the system), structural similarities can ground content.
Structural similarity is evidently sufficient to solve semantic problems, such as bilingual
dictionary induction (Søgaard et al., 2019) or multi-modal alignment (Li et al., 2023). The
fact that fMRI vectors exhibit structural similarities to LLMs (and by transitivity, across
languages and to computer vision models), is suggestive of such similarities playing a role
in grounding.

In our case, we are not simply positing an isomorphic relation in neural responses. We
are positing an isomorphism between two very specific relations: the nearest neighbor graph
in the LLM representations, and the nearest neighbor graph in the fMRI data. In fact, these
two relations are the same relation, something which Newman himself proposed as a remedy
to his own objection. It should thus be clear that the result presented here is far from trivial.

3. Russell arguably had a similar response (Pashby, 2015).
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Figure 4: Alignment precision results across layers with Harry Potter dataset.
The plot shows alignment with fMRI improves with model depth, for BERT
and Procrustes Analysis; see Appendix D for similar plots for other LLMs and
projection methods.

Where are LLMs most brain-like? We also consider at what layers the different lan-
guage models align best with the representations extracted from the fMRI data. The results
presented in Figure 4 and the Appendix D are unambiguous and show that deeper represen-
tations align better with neural response measurements. This holds across all architectures
and model sizes. Interestingly, the alignment improvements at deeper layers do not wear off
to reach a plateau. Our results, in fact, suggest that better alignment results can be achieved
by training even deeper models. This may also explain the strong correlation between depth
and generalization often observed in the literature (Goodfellow et al., 2014). It has generally
been found that the inner-most layers in LLMs encode for syntax, whereas the outer layers
encode for semantics and pragmatics. One way to understand our results is therefore that
similarities between representations in human brains and LLMs are predominantly driven
by semantics and pragmatics.

6. Conclusion

We presented a series of experiments showing that across three families of language models,
word representations converge toward being structurally similar to human neural responses.
The larger and better the language models get, the more their representations align with
human representations. This result holds across datasets and three evaluation methods.
We have discussed the philosophical significance of this result, including why Newman’s
objection does not apply. We include a discussion of the limitations of our work and provide
an ethical statement in the Appendix.
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Appendix A. Limitations

Our study demonstrates the precise mapping of neural response measurements to language
model representation spaces through supervised learning. However, our findings are subject
to certain constraints. The utilization of fMRI signals with limited temporal resolution,
albeit partially mitigated through Gaussian smoothing, may introduce potential confounds.
Additionally, our primary focus on the English language narrows the generalization ability of
our results to languages with different linguistic structures. Furthermore, relying on a single
participant for each alignment may introduce individual variability that could influence
our conclusions. Moreover, our paper emphasizes the philosophical interpretation of the
linear mapping results, leaving the technical aspects of this alignment largely unexplored.
To ensure the robustness and broader applicability of our findings, future research should
encompass diverse languages, and participant groups, and delve deeper into the technical
underpinnings of the observed alignment between neural responses and language model
representations.

Appendix B. Ethics

In our research, we analyze two publicly available fMRI datasets (Harry Potter Dataset and
Natural Stories Dataset). We did not collect any new dataset for our study. We encourage
readers to refer to the terms of use provided by the respective dataset sources for a more
comprehensive understanding of their ethical guidelines and data usage policies. We do not
foresee any harmful uses of this line of research that compares representational spaces.

Appendix C. Implementation

Our implementation is based on PyTorch v.1.13.1 (Paszke et al., 2019) and Transformer
v4.25.1 (Wolf et al., 2020) for Python 3.9.13 and builds on code from the repositories in
Table 2. You can find details for our models in Table 3. We took the pretrained models
without fine-tuning them.

Cross-domain Similarity Local Scaling (CSLS). A method used often to evaluate
different word representations is Nearest Neighbors (NN). Nearest neighbors are naturally
asymmetric, which means if y is a K-NN of x, it does not follow that x is also a K-NN
of y. In high-dimensional spaces (Radovanović et al., 2010), the nearest neighbor rule can
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LMs Links

BERT TINY https://huggingface.co/google/bert_uncased_L-2_H-128_A-2

BERT MINI https://huggingface.co/google/bert_uncased_L-4_H-256_A-4

BERT SMALL https://huggingface.co/google/bert_uncased_L-4_H-512_A-8

BERT MEDIUM https://huggingface.co/google/bert_uncased_L-8_H-512_A-8

BERT BASE https://huggingface.co/bert-base-uncased

BERT LARGE https://huggingface.co/bert-large-uncased

GPT2 BASE https://huggingface.co/gpt2

GPT2 MEDIUM https://huggingface.co/gpt2-medium

GPT2 LARGE https://huggingface.co/gpt2-large

GPT2 XL https://huggingface.co/gpt2-xl

OPT 125M https://huggingface.co/facebook/opt-125m

OPT 1.3B https://huggingface.co/facebook/opt-1.3b

OPT 6.7B https://huggingface.co/facebook/opt-6.7b

OPT 30B https://huggingface.co/facebook/opt-30b

Table 2: Links of 14 Transformer-based language models used in our experiments.

LMs Hidden Layers Hidden Size Attention Heads Total # of Params Datasets

BERT

2 128 2 4.4M

BooksCorpus (Zhu et al.,
2015), English Wikipedia
(Devlin et al., 2019)

4 256 4 11.3M
4 512 8 29.1M
8 512 8 41.7M
12 768 12 110.1M
24 1,024 16 336M

GPT2

12 768 12 117M
WebText (Radford et al.,
2019)

24 1,024 16 345M
36 1,280 20 762M
48 1,600 25 1,542M

OPT

12 768 12 125M BooksCorpus, CC-Stories(Trinh and Le, 2018),
CCNewsV2(Zhang et al., 2022), The Pile(Gao
et al., 2021), Pushshift.io Reddit dataset
(Baumgartner et al., 2020)

24 1,024 32 1.3B
32 4,096 32 6.7B
48 7,168 56 30B

Table 3: The 14 language models used in our experiments. Table 2 lists the links of LMs.

lead to a phenomenon called hubness, where some vectors (hubs) are nearest neighbors
of many other points, while others (anti-hubs) are not nearest neighbors of any point.
This is detrimental to matching pairs based on the nearest neighbor rule. To address this
issue, Conneau et al. propose a bi-partite neighborhood graph (Conneau et al., 2018),
in which each word of a given dictionary is connected to its K nearest neighbors in the
other language. The neighborhood of a mapped source word embedding Wxs, denoted as
NT (Wxs), is represented on the bipartite graph. It consists of K elements, all of which are
words from the target language. Similarly, the neighborhood of a target word t, denoted as
NS(yt). The mean similarity between a source embedding xs and its corresponding target
neighborhood is considered as:

rT (Wxs) =
1

K

∑
yt∈NT (Wxs)

cos(Wxs, yt),

where cos(.,.) means cosine similarity. They use rS(yt) to represent the mean similarity
of a target word yt to its neighborhood. The definition of Cross-domain Similarity Local
Scaling (CSLS) between mapped source words and target words is
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CSLS(Wxs, yt) = 2cos(Wxs, yt)− rT (Wxs)− rS(yt).

Appendix D. More Results

We provide more experimental results to enhance our main discussions/findings described
in the main paper.
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Figure 5: Convergence results for three families of LLMs using Relational Sim-
ilarity Analysis. The correlation score ranges from 0 (no correlation) to 1
(perfect correlation). The plot shows that as the model sizes increase, the repre-
sentational similarities increase also.

362



LLMs and Neural Representations

0

10

20

30

40

50

CS
LS

 S
co

re
 (%

)
BE

RT
_T

IN
Y

BE
RT

_M
IN

I
BE

RT
_S

MA
LL

BE
RT

_M
ED

IU
M

BE
RT

_B
AS

E
BE

RT
_L

AR
GE

0

10

20

30

40

50

NN
 S

co
re

 (%
)

GP
T2

_B
AS

E

GP
T2

_M
ED

IU
M

GP
T2

_L
AR

GE

GP
T2

_X
L

OP
T_

12
5M

OP
T_

1.3
B

OP
T_

6.7
B

OP
T_

30
B

Precision@K Performance (Procrustes Analysis)

Harry Potter Dataset
P@5-CSLS-AVG.
P@5-CSLS-MAX.

P@10-CSLS-AVG.
P@10-CSLS-MAX.

P@30-CSLS-AVG.
P@30-CSLS-MAX.

P@50-CSLS-AVG.
P@50-CSLS-MAX.

P@100-CSLS-AVG.
P@100-CSLS-MAX.

0

20

40

60

80

CS
LS

 S
co

re
 (%

)
BE

RT
_T

IN
Y

BE
RT

_M
IN

I
BE

RT
_S

MA
LL

BE
RT

_M
ED

IU
M

BE
RT

_B
AS

E
BE

RT
_L

AR
GE

0

20

40

60

80

NN
 S

co
re

 (%
)

GP
T2

_B
AS

E

GP
T2

_M
ED

IU
M

GP
T2

_L
AR

GE

GP
T2

_X
L

OP
T_

12
5M

OP
T_

1.3
B

OP
T_

6.7
B

OP
T_

30
B

Precision@K Performance (Procrustes Analysis)

Natural stories Dataset
P@5-CSLS-AVG.
P@5-CSLS-MAX.

P@10-CSLS-AVG.
P@10-CSLS-MAX.

P@30-CSLS-AVG.
P@30-CSLS-MAX.

P@50-CSLS-AVG.
P@50-CSLS-MAX.

P@100-CSLS-AVG.
P@100-CSLS-MAX.

Figure 6: Convergence results for three families of LLMs across two datasets,
using Procrustes Analysis with Gaussian random projection. The task
here is: Given a neural response, which word (in a vocabulary of 1,291 words, was
read at the time the response was recorded? Chance P@10 is < 0.01. Convergence
is consistent, and some retrieval rates are remarkably high, decoding almost half
of the words correctly to a neighborhood of 10 word forms.
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Figure 7: Convergence results for three families of LLMs using Ridge Regression.
See main paper for results with Procrustes Analysis.
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Figure 8: Alignment precision results across layers. The plot shows alignment with
fMRI (Harry Potter dataset) improves with model depth for LLMs and Procrustes
Analysis with Gaussian Random Projection.
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