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Abstract
In real-world scenarios, although data entities may possess inherent relationships, the spe-
cific graph illustrating their connections might not be directly accessible. Latent graph
inference addresses this issue by enabling Graph Neural Networks (GNNs) to operate on
point cloud data, dynamically learning the necessary graph structure. These graphs are
often derived from a latent embedding space, which can be modeled using Euclidean, hyper-
bolic, spherical, or product spaces. However, currently, there is no principled differentiable
method for determining the optimal embedding space. In this work, we introduce the
Attentional Multi-Embedding Selection (AMES) framework, a differentiable method for
selecting the best embedding space for latent graph inference through backpropagation,
considering a downstream task. Our framework consistently achieves comparable or supe-
rior results compared to previous methods for latent graph inference across five benchmark
datasets. Importantly, our approach eliminates the need for conducting multiple experi-
ments to identify the optimal embedding space. Furthermore, we explore interpretability
techniques that track the gradient contributions of different latent graphs, shedding light
on how our attention-based, fully differentiable approach learns to choose the appropriate
latent space. In line with previous works, our experiments emphasize the advantages of
hyperbolic spaces in enhancing performance. More importantly, our interpretability frame-
work provides a general approach for quantitatively comparing embedding spaces across
different tasks based on their contributions, a dimension that has been overlooked in pre-
vious literature on latent graph inference.
Keywords: Metric Learning, Latent Graph Inference, Neural Latent Geometry Search,
Graph Neural Networks.

1. Introduction

Graph Neural Networks (GNNs) efficiently leverage the geometric prior provided by the edge
connections of graph-structured data through the utilization of an adjacency matrix. How-
ever, in many real-world applications, the graph connectivity structure may be incomplete,
noisy, or even completely unknown. Utilizing latent graph inference enables the application
of GNNs to point cloud data without requiring an input adjacency matrix, and it facilitates
on-the-fly inference of the optimal graph structure for computation. Numerous studies have
employed the Differentiable Graph Module (DGM) (Kazi et al., 2022) framework to infer
latent graphs. This technique hinges on an embedding space, which is employed to deduce
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distances between nodes within the point cloud. Subsequently, connections are established
based on these distances, ultimately shaping a graph. However, the task of selecting the most
suitable embedding space is far from straightforward. Various approaches have explored the
use of Euclidean space, hyperbolic spaces, spherical spaces, and stereographic projections
of these spaces (Sáez de Ocáriz Borde et al., 2023b), as well as product spaces (Sáez de
Ocáriz Borde et al., 2023c). Nevertheless, a principled approach for systematically selecting
an optimal embedding space is lacking, particularly in a differentiable fashion. The latent ge-
ometry search procedure often relies on random search, which is computationally inefficient,
particularly for product manifolds due to the multitude of possible manifold constructions.

In this study, we present an attention-based mechanism for latent graph inference: the
Attentional Multi Embedding Selection (AMES) framework. Our approach effectively har-
nesses multiple latent candidate graphs derived from various latent spaces simultaneously.
By employing an attention mechanism, it selects the most optimal latent representations
while remaining differentiable. Consequently, this results in an end-to-end framework for
the automated selection of latent embedding spaces in the context of latent graph inference.
Importantly, we can achieve the same level of performance as existing latent graph inference
methods with a single model, eliminating the need for experimental searches to find the
optimal latent geometry. Furthermore, we put forward methods for interpretability that
enable us to monitor the learning process of the selection mechanism and provide insights
into its internal behavior.

2. Background

Geometric Deep Learning and Neural Latent Geometry Search. Geometric Deep
Learning (GDL) recognizes that certain real-world problems involve data that cannot be
adequately represented using simple grids or Euclidean vectors, and aims to generalize tra-
ditional machine learning models to a more diverse set of data types, such as point clouds,
graphs, and manifolds, to name a few (Bronstein et al., 2021). Within the realm of GDL
many concepts from differential geometry and topology have been imported into the machine
learning community to enhance the performance of learning algorithms (De Bortoli et al.,
2022; Hensel et al., 2021; Chamberlain et al., 2021; Huang et al., 2022). This includes using
manifolds such as the Poincaré ball model (Mathieu et al., 2019), the hyperboloid (Chami
et al., 2019), or the hypersphere (Mettes et al., 2019) to encode latent representations of data
instead of the Euclidean hyperplane. These manifolds provide a means to represent diverse
geometries in a reasonably straightforward and computationally manageable manner. This
is possible due to their well-defined mathematical expressions for notions like exponential
maps and geodesic distance functions. Despite the promising results obtained from these
approaches, a principled method for selecting the appropriate latent embedding manifold
construction is still lacking. This has led to the formulation of Neural Latent Geometry
Search (NLGS) (Sáez de Ocáriz Borde et al., 2023a), which can be formalized as follows:
given a search space G denoting the set of all possible latent geometries, and the objective
function LT,A(g) which evaluates the performance of a given geometry g on a downstream
task T for a machine learning model architecture A, the objective is to find an optimal
latent geometry g∗: g∗ = argming∈GLT,A(g), where in the domain of latent graph inference,
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G represents the set encompassing conceivable geometric similarity measures employed for
generating latent graphs.

Latent Graph Inference. Utilizing latent graph inference allows for the integration of
GNNs with point cloud data, potentially enhancing performance by harnessing the induc-
tive bias of input graphs or acquiring an entirely new graph from scratch. Some previous
contributions have focused on improving existing graph topology by pre-processing the ex-
isting adjacency matrices (Alon and Yahav, 2021; Gasteiger et al., 2019; Deac et al., 2022).
The emphasis of this study lies in techniques that dynamically learn and adapt the graph
topology without necessitating a rewiring of the initial graph structure. Numerous methods
have been put forth to achieve this dynamic learning of the underlying graph topology, in
conjunction with the optimization of GNN model parameters: from the original Dynamic
Graph Convolutional Neural Network (DGCNN) (Wang et al., 2019) which generates graphs
dynamically based on the latent feature activations of the network, to the discrete Differen-
tiable Graph Module (dDGM) (Cosmo et al., 2020; Kazi et al., 2022) which performs latent
graph inference and message passing in parallel rather than sharing the same embedding
space. A comprehensive overview of comparable methods is available in Zhu et al. (2021),
with classical approaches encompassing LDS-GNN (Franceschi et al., 2019), IDGL (Chen
et al., 2020), and Pro-GNN (Jin et al., 2020).

The Differentiable Graph Module (DGM) is a general end-to-end approach for learn-
ing latent graphs based on similarity measures between latent node features. Similarity is
computed using a distance function that depends on the geometry of the embedding space.
Then, based on the distance, the probability of there existing an edge between two nodes
is computed, assuming a higher likelihood the closer latent representations of nodes are.
Lastly, edge sampling is performed using the Gumbel Top-k trick. Note that in this work,
we focus on the discrete form of the DGM module, the discrete Differentiable Graph Module
(dDGM), as dDGM produces sparse graphs which are computationally more efficient and
it was also originally recommended over other continuous versions of DGM by Kazi et al.
(2022). Sáez de Ocáriz Borde et al. (2023c) generalized the dDGM module to incorporate
non-Euclidean constant curvature hyperbolic and spherical spaces as potential latent graph
embedding spaces, as well as Cartesian products of these. This led to a combinatorial space
of candidate manifolds to model the dDGM embedding. In this work, we will introduce a
differentiable framework to select between potential embeddings.

3. Method: Attentional Multi Embedding Selection for Latent Graph
Inference

Framework Overview. As mentioned earlier, the primary limitation of existing latent
graph inference models is the requirement to predefine the embedding space used to gener-
ate the latent graph. This constraint is restrictive because we often lack prior knowledge of
which manifold is most suitable for the specific problem we are tackling. Consequently, we
aim to introduce a novel framework for differentiable embedding space selection, which we
coin Attentional Multi Embedding Selection (AMES). This framework will have the capac-
ity to autonomously learn and select an appropriate embedding space during the training
process, providing greater flexibility and adaptability. To do so, we start from a set of
candidate latent geometries, as illustrated in Figure 1. These candidate latent geometries
give rise to distinct latent graphs. These are then input into GNN diffusion layers, which
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facilitate the propagation of the original node features based on the neighborhoods defined
by the suggested latent graphs. Subsequently, we employ self-attention (Bahdanau et al.,
2014; Vaswani et al., 2017) to aggregate the new node features, which are then utilized for
downstream tasks. Finally, we apply backpropagation based on downstream performance
criteria to dynamically determine the optimal embedding space. More precisely, our model
learns to assign varying degrees of importance to different candidate latent graphs. Next, we
will provide a more detailed explanation of how the feature aggregation and backpropagation
processes are executed.

Figure 1: AMES model depiction. AMES employs multiple dDGM modules running in paral-
lel, each functioning within its distinct embedding space. Consequently, every dDGM
generates a unique unweighted adjacency matrix representing its inferred latent graph.
Adjacency matrices AE ,AH ,AS correspond to the Euclidean hyperplane, hyperboloid,
and hypersphere models, respectively. These adjacency matrices are then passed to their
respective diffusion layers denoted as gΦMi

. In parallel, new node features are computed
based on the different latent graphs. Finally, attention is utilized to combine the features
XMi ∈ [XE ,XH ,XS ] into a unified representation, X′. This is subsequently fed into
the downstream layers. To update the diffusion layers gΦMi

for each dDGM, a shared
gradient denoted as ∇̂WLT is employed.

Combining Feature Representations from Candidate Latent Graphs using At-
tention. The optimal embedding space for latent graph inference is unknown and varies
from task to task. Different embedding spaces come with distinct metrics, resulting in vary-
ing latent graphs. Instead of choosing an embedding space in advance, we aim to empower
our model to select the best embedding space in a differentiable manner. To achieve this,
we will not work with a single dDGM module for latent graph inference but rather employ
multiple of them simultaneously. Each dDGM will utilize a different embedding space, sug-
gesting a distinct candidate latent graph. Consequently, this approach will generate different
downstream features as information from the upstream layer diffuses through each unique
latent graph. Let us denote by XMi ∈ RN×d the node feature representations obtained
based on different embedding space manifolds Mi, where N is the number of nodes in the
graph and d the dimensionality of the node features. Next, we define W as the collection
of potential embedding space manifolds for each dDGM with cardinality M . Additionally,
consider xkMi

to represent the kth row (or node) of the matrix XMi . We calculate attention
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in the following manner:

αk
MiMj

=

exp

((
WQxkMi

)T
WKxkMj√

d

)
∑

Mj′∈W
exp

((
WQxkMi

)T
WKxkMj′√

d

) . (1)

In this equation, WQ and WK represent the query and key weight matrices. Essentially,
this equation enables the comparison of node feature representations for a specific node k
in the graph across various embedding spaces. The weight for the representation of the kth

node within latent space Mi, denoted as αk
Mi

, is determined by averaging over all latent
spaces:

αk
Mi

=

∑
Mj∈W αk

MjMi

M
(2)

The coefficient αk
Mi

can be interpreted as the mean importance of manifold Mi relative
to other manifolds for the kth node representation. Finally, the overall combined node
representation for the kth node, x′

k can be calculated via the weighted sum:

x′
k =

∑
Mi∈W

αk
Mi

xkMi
. (3)

Once this is calculated, the resultant combined node feature matrix X′ can be fed into the
subsequent downstream GNN layers.

Attention-based Gradient Descent for Automatic Latent Space Selection. Al-
though the attentional combination of feature representations discussed earlier provides
valuable insights into selecting latent spaces, relying solely on these weights as straightfor-
ward indicators can be problematic if the GNN diffusion layers are not initialized carefully.
Several factors, including variations in the initialization and training states of the GNN dif-
fusion layers gΦMi

for each latent space Mi, can serve as confounding variables that impact
the allocation of attention weights to these spaces. To ensure an equitable assessment of
different latent spaces throughout the training process, it is crucial to maintain consistent
parameters for all the GNN diffusion layers that operate downstream of the parallel dDGM
modules. In mathematical terms, our objective is to retain ΦM1 = ΦM2 = · · · = ΦMi = . . .
for all latent spaces Mi ∈ W in each training step. This effectively means we assess multiple
candidate latent graphs simultaneously during the training of a single GNN, avoiding the
need for an ensemble approach. As a result, we can identify the optimal candidate geometry
for our model.

The initial step involves ensuring identical parameter initialization for each diffusion
layer downstream of every dDGM module. It is important to note that multiple diffusion
layers need to be initialized to maintain the integrity of the computational graph. However,
in essence, we are evaluating the performance of various candidate latent graphs in parallel
on a single model. During each training step, we substitute the initial gradients of the GNN
parameters for each latent space, which are obtained through backpropagation, with an
attention-based weighted gradient formed by combining individual gradients. We can define
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WMi as the set of model parameters responsible for processing the latent graph generated
from the embedding space Mi. Let ∇WMi

LT represent the gradient of the loss concerning
these parameters for the downstream task. The attention weights for each Mi, utilized to
combine ∇WMi

LT , are calculated by averaging the node attention weights αk
Mi

, which are

computed during the forward pass in line with Equation 2: αMi =

∑N
k=1 α

k
Mi

N , where N is the
number of nodes. Finally, the attention-weighted gradient shared across all latent spaces is
computed as follows:

∇̂WLT =
∑

Mi∈W
αMi

(
∇WMi

LT

)
. (4)

This gradient can be employed to update all the parallel diffusion layers using any Stochastic
Gradient Descent (SGD)-based optimization method, while ensuring uniform downstream
GNN parameters across all latent spaces throughout the training process. The attention-
based feature combination and gradient descent scheme together form our AMES latent
space selection framework for embedding space selection.

Further Details on dDGM training. When training GNN models that incor-
porate dDGM latent graph inference modules, there are two distinct losses to consider.
The first one, denoted as LT , assesses the model’s performance on downstream tasks,
employing cross-entropy loss for classification and mean squared error (MSE) for regres-
sion, among other possibilities. Given that the GNN diffuses information using the latent
graphs generated by the latent graph inference module, it is important to note that this
loss exclusively updates the GNN parameters and does not propagate gradients through
the dDGM. Hence, an additional loss term to update the internal learnable parameters
of the dDGM is required, which is known as the graph loss, LGL. This loss is based
on the negative log likelihood of the probability that an edge exists between two nodes:
LGL =

∑N
i=1

(
δ(yi, ŷi)

∑L
l=1

∑
j:(i,j)∈ε(l) log(p

(l)
ij )
)
. The term δ(yi, ŷi) = E(ai)−ai is charac-

terized as the disparity between two aspects: the average accuracy observed for the ith node
and the correctness of the current prediction for that node’s label, represented as ai. Here,
ai equals 1 if yi = ŷi and 0 otherwise, where yi is the label prediction and ŷi the ground
truth label. For regression tasks, the R2 score could be used in place of accuracy. In turn,
the probability of an edge existing between two given nodes can be expressed as follows,

p
(l)
ij (Θ

(l)) = exp

(
−TdM

(
f
(l)
Θ (x

(l)
i ), f

(l)
Θ (x

(l)
j )

))
, where T is a temperature parameter, dM

is the geodesic distance function for a given embedding space manifold M, x(l)
i and x

(l)
j are

the node feature representations of nodes i and j in layer l, and f
(l)
Θ (x

(l)
i ) signifies that the

node features are passed through a parametrized function fΘ and later projected (·) using
the exponential map onto the corresponding manifold M. For our attention-based model,
the overall graph loss can be computed by simply adding up individual graph losses from
each dDGM module:

L′
GL =

∑
Mi∈W

L(Mi)
GL . (5)

It is worth noting that while latent graph inference could theoretically be applied to all
layers of the GNN, practical experiments, as demonstrated in Kazi et al. (2022) and Sáez de
Ocáriz Borde et al. (2023c), reveal that stacking multiple dDGM modules does not yield
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performance improvements, especially when considering the computational cost involved.
Consequently, in our work, we will exclusively employ a single dDGM module for all ex-
periments. During the training of AMES, we optimize both LT and L′

GL using the Adam
optimizer (Kingma and Ba, 2014). To ensure a fair comparison with prior work, we adopt
the same number of training epochs and GNN parameterizations as in Sáez de Ocáriz Borde
et al. (2023c). Specific details regarding the learning rate and weight decay can be found in
Appendix A.1. For additional model architecture details refer to Appendix A.2, A.3 and A.4.

4. Training Interpretability Framework

In addition to numerical outcomes, we employ a gradient-based attribution approach, draw-
ing inspiration from Simonyan et al. (2013), to assess the significance of each latent space’s
influence on the downstream tasks. This serves as an interpretability analysis. The saliency
maps suggested in Simonyan et al. (2013) are generated by calculating the gradient of the
score function of the label class of an input image with respect to the pixels of the input
image itself. In an intuitive sense, the gradient of a predicted label in relation to an input
image measures how the model’s prediction changes when individual image pixels undergo
slight modifications. Therefore, a larger gradient signifies a greater influence on the predic-
tions. In our context, the score function is the cross-entropy loss for all the nodes in the
graph. Hence, we take the gradient of the loss LT with respect to XMi ∈ RN×d, the feature
activations produced from individual latent graphs originating in distinct latent spaces, de-
noted as Mi. This returns a gradient matrix ∇XMi

LT ∈ RN×d since the loss is a scalar.
Given that ∇XMi

LT is high-dimensional and hard to visualize, we calculate its Frobenius
norm: ∥∥∥∇XMi

LT

∥∥∥
F
=

√√√√ N∑
i=1

d∑
j=1

(
∇XMi

LT

)2
ij

(6)

which gives a scalar indicator of each latent space’s attribution to the node classification
prediction and it is easier to track and visualize during training. During training initial-
ization, all representations stemming from diverse latent embedding spaces are set to exert
equal influence on the downstream representations, resulting in identical Frobenius norms.
As training progresses, the attention coefficients begin to learn which latent graphs are more
suitable for computation. By monitoring the Frobenius norm of the loss gradient, we can
gauge the pace at which this adaptation occurs and identify which embedding spaces as-
sume a dominant role in the learning process. We do notice the existence of other GNN
interpretability approaches (Ying et al., 2019; Luo et al., 2020; Wang et al., 2021), how-
ever, these approaches mainly focusing on determining subgraphs that are important for
individual predictions and hence are not suitable for our task.

5. Results

Experimental Setup and Numerical Evaluation. In this work, we focus on trans-
ductive node classification. We test AMES on five homophilic, heterophilic and real-world
datasets. For each dataset, we perform 10-fold cross-validation where 90% of the nodes are
used for training and 10% for testing in each split in line with Kazi et al. (2022). In this
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case, the task-specific loss is the cross-entropy loss. In our approach, we exclusively employ
model spaces as candidate embedding spaces, which suffices to match the performance of
prior methods that utilize product manifolds. It is worth noting that for homophilic graph
benchmarks, we leverage the original dataset graph as an inductive bias. However, when
dealing with heterophilic datasets, we have observed that starting from a point cloud yields
more significant benefits. This preference arises from the fact that we perform diffusion with
GCN layers. In the instance of TadPole, a real-world baseline dataset, we encounter a unique
scenario where no initial input graph is available. Consequently, our latent graph inference
system operates directly on the point cloud in this case. Table 1 displays the numerical
results. AMES consistently demonstrates improved or comparable test set accuracy across
various datasets compared to earlier models, even when those models employ more intricate
embedding structures, such as product spaces. Notably, the H+S combination consistently
surpasses all other models on nearly all five datasets. The key takeaway is that using our
proposed model eliminates the need for random exploration among latent spaces.

Table 1: Accuracy (%) ± stdev. First, Second and Third are highlighted. k is the number of
edges sampled per node when using Gumbel Top-k trick. The homophilic graphs (Cora
and CiteSeer) use the dataset graph as inductive bias, the rest do not. E, H, S denote
Euclidean, hyperbolic and spherical spaces respectively. Note that, for example, EH
denotes that the embedding space is a product, whereas E +H denotes that AMES uses
both model spaces simultaneously, not a product.

HOMOPHILIC DATASETS HETEROPHILIC DATASETS REAL-WORLD DATASETS

Cora CiteSeer Chameleon Squirrel TadPole
Connections k 7 5 2 3 3

Baseline Models

dDGM-E 81.89± 4.05 73.52± 2.23 44.93± 2.42 33.17± 2.11 83.21± 14.04
dDGM-H 82.41± 3.25 73.22± 1.50 48.33± 3.45 33.29± 1.90 86.96± 9.48
dDGM-S 78.59± 4.82 70.27± 5.05 43.88± 3.79 33.04± 1.71 81.07± 12.38
dDGM-ES 74.85± 16.53 71.08± 7.00 47.71± 2.11 33.56± 2.39 70.71± 17.22
dDGM-EH 84.74± 4.89 73.55± 2.35 46.78± 3.16 33.65± 1.60 86.96± 9.45
dDGM-HS 84.48± 4.55 67.68± 19.12 48.41± 2.86 32.87± 1.70 77.68± 15.72
dDGM-EHH 79.63± 18.23 68.70± 16.36 48.28± 3.33 33.23± 2.66 86.43± 10.01
dDGM-EHS 84.67± 6.36 68.83± 16.14 48.63± 2.30 33.31± 1.95 83.93± 14.15
MLP 59.52± 3.67 58.37± 3.29 42.86± 2.72 31.12± 1.99 83.57± 6.12
GCN 81.41± 10.45 70.84± 2.80 34.05± 4.03 24.88± 2.78 N/A

New Models (AMES)

AMES-H+S 83.33± 5.06 73.64± 2.45 49.30± 2.33 34.85± 2.02 90.18± 4.01
AMES-E+H+S 83.78± 3.08 73.43± 2.23 48.02± 3.82 33.00± 1.44 87.14± 6.81

Interpretability Results. We create visualizations to track the average norm evolution
across the 10 training folds. In the interest of conducting the interpretability analysis,
despite the superior performance of H+S in principle, Figure 2 presents plots illustrating
the average Frobenius norm of loss gradients for E+H+S. This allows us to monitor the
learning progress across all model spaces, as opposed to focusing solely on two of them. The
trends align with the data presented in Table 1 for all five datasets. In the case of Cora, it is
noteworthy that H appears to contribute the most, while S makes the smallest contribution.
For CiteSeer, although the gap between E and H is not as pronounced, both curves conform
to the baseline results for single model spaces found in Table 1. For the heterophilic datasets
we observe a similar trend, the models using hyperbolic space are superior and our framework
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learns to select the graph stemming from hyperbolic space as the main contributor, see
Figure 2(d) and 2(c). In summary, our model demonstrates its ability to autonomously
identify the embedding spaces that align most favorably with the baseline results. The
attention weights assigned to each latent space closely correspond to their counterparts
based on single model spaces in the baselines. As a result, our AMES effectively assesses
the relative importance of the involved latent spaces based on their impact on downstream
tasks. Furthermore, it becomes evident that the hyperbolic space H consistently emerges as
the preferred choice across the majority of the benchmark graph datasets we have employed.
This intriguing finding may merit further investigation beyond the scope of this study and
seems to align with the common belief that hyperbolic space is better suited for encoding
latent tree structures (Kratsios et al., 2023), such as those present in our graph benchmarks.

(a) Cora (b) CiteSeer

(c) Squirrel (d) Chameleon

(e) TadPole

Figure 2: Gradient contribution for each model space in AMES during training. We plot the
average Frobenius norm over 10 runs against the training epochs for Cora, CiteSeer,
Squirrel, Chameleon, and TadPole. We consistently observe that AMES gives the most
importance to the hyperbolic embedding space.

6. Conclusion

In this work we have introduced AMES, a fully-differentiable mechanism designed for em-
bedding space selection within the context of latent graph inference. In contrast to prior
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methods, our approach circumvents the need for conducting random searches across the
combinatorial spectrum of potential product manifold combinations. Instead, it possesses
the capacity to dynamically learn the optimal embedding space through a single model.
Moreover, we offer interpretability techniques to monitor this learning process. Notably, our
method maintains performance levels on par with other models in the existing literature, all
while alleviating the computational burden associated with conducting multiple experiments
in pursuit of the ideal embedding space.

Future Work. Our model selection remains grounded in constant curvature model
spaces, implying that local curvature control remains a challenge. While the application of
attention could potentially yield more flexible representations than what constant curvature
model spaces can offer on their own, additional research is required to gain a deeper un-
derstanding of how this approach influences the curvature of the embedding space. Note
that since the method does not distinctly select a candidate embedding space but rather
combines model spaces using attention, the model is effectively learning a new metric.
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Appendix A. Training Statistics and Model Architecture

This section provides the training statistics and model architectures for both the dDGM
and the downstream GNN diffusion layer applied to homophilic, heterophilic, and real-
world datasets. In general, we closely follow the model architecture and training statistics
outlined in Sáez de Ocáriz Borde et al. (2023c), with only minor differences.

A.1. Training Statistics
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Table 2: The Training statistics of the 5 homophilic, heterophilic and real-world benchmark
datasets used in this work for the baseline dDGM, MLP and GCN models.

Training Epochs Learning Rate Weight Decay
Cora 1,500 1× 10−2 1× 10−4

CiteSeer 1,500 1× 10−2 1× 10−4

Squirrel 1,000 1× 10−2 1× 10−3

Chameleon 1,000 1× 10−2 1× 10−3

TadPole 800 1× 10−3 2× 10−4

Table 3: The Training statistics of the 5 homophilic, heterophilic and real-world benchmark
datasets used in this work for AMES in this work.

Training Epochs Learning Rate Weight Decay
Cora 1,500 5× 10−3 1× 10−5

CiteSeer 1,500 4× 10−3 1× 10−5

Squirrel 1,000 1× 10−2 1× 10−5

Chameleon 1,000 1× 10−2 1× 10−5

TadPole 800 1× 10−3 2× 10−4

A.2. Model Architecture for Homophilic Datasets

Table 4: Model architecture of dDGM for homophilic datasets Cora and CiteSeer.

Layer size dDGM

(No. features, 32) Linear
N/A ELU
(32, 16 per model space) GCN Conv
N/A ELU
(16 per model space, 4 per model space) GCN Conv
N/A Sigmoid
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Table 5: Model architecture of downstream GNN layers as well as MLP baseline for ho-
mophilic datasets Cora and CiteSeer.

Layer size MLP GCN GCN-dDGM

N/A N/A dDGM
(No. features, 32) Linear GCN Conv GCN Conv
N/A ELU ELU ELU
(32, 16) Linear GCN Conv GCN Conv
N/A ELU ELU ELU
(16, 8) Linear GCN Conv GCN Conv
N/A ELU ELU ELU
(8, 8) Linear Linear Linear
N/A ELU ELU ELU
(8, 8) Linear Linear Linear
N/A ELU ELU ELU
(8, No.classes) Linear Linear Linear

A.3. Model Architecture for Heterophilic Datasets

Table 6: Model architecture of dDGM for heterophilic datasets Squirrel and Chameleon.

Layer size dDGM

(No. features, 32) Linear
N/A BatchNorm
N/A ELU
(32, 4 per model space) Linear
N/A BatchNorm
N/A ELU
(4 per model space, 4 per model space) Linear
N/A BatchNorm
N/A Sigmoid
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Table 7: Model architecture of downstream GNN layers as well as MLP baseline for het-
erophilic datasets Squirrel and Chameleon.

Layer size MLP GCN-dDGM

N/A dDGM
(No. features, 16) Linear GCN Conv
N/A ELU ELU
(16, 8) Linear GCN Conv
N/A ELU ELU
(8, 8) Linear Linear
N/A BatchNorm BatchNorm
N/A ELU ELU
(8, No.classes) Linear Linear

A.4. Model Architecture for TadPole

Table 8: Model architecture of dDGM for TadPole.

Layer size dDGM

(No. features, 16 per model space) Linear
N/A BatchNorm
N/A ELU
(16 per model space, 4 per model space) Linear
N/A BatchNorm
N/A Sigmoid
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Table 9: Model architecture of downstream GNN layers as well as MLP baseline for TadPole.

Layer size MLP GCN-dDGM

N/A dDGM
(No. features, 32) Linear GCN Conv
N/A ELU ELU
(32, 16) Linear GCN Conv
N/A ELU ELU
(16, 8) Linear GCN Conv
N/A ELU ELU
(8, 8) Linear Linear
N/A BatchNorm BatchNorm
N/A ELU ELU
(8, 8) Linear Linear
N/A BatchNorm BatchNorm
N/A ELU ELU
(8, No.classes) Linear Linear
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