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Abstract

The symmetry and geometry of input data are considered to be encoded in the internal
data representation inside the neural network, but the specific encoding rule has been less
investigated. In this study, we present a systematic method to induce a generalized neural
network and its right inverse operator, called the ridgelet transform, from a joint group in-
variant function on the data-parameter domain. Since the ridgelet transform is an inverse,
(1) it can describe the arrangement of parameters for the network to represent a target
function, which is understood as the encoding rule, and (2) it implies the universality of
the network. Based on the group representation theory, we present a new simple proof
of the universality by using Schur’s lemma in a unified manner covering a wide class of
networks, for example, the original ridgelet transform, formal deep networks, and the dual
voice transform. Since traditional universality theorems were demonstrated based on func-
tional analysis, this study sheds light on the group theoretic aspect of the approximation
theory, connecting geometric deep learning to abstract harmonic analysis.
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1. Introduction

The internal data representation of neural networks is expected to reflect the symmetry and
geometry of the data domain. In geometric deep learning (Bronstein et al., 2021), several
authors have developed novel network architectures that are compatible with the geometric
structure of the data (e.g. group equivariant networks). However, these methods typically
require handcrafting the network architecture for each specific symmetry and geometry. In
this study, we present a systematic method to induce a generalized neural network and its
right inverse operator, called the ridgelet transform, from a joint group invariant function
on the data-parameter domain. Since the ridgelet transform is an inverse, (1) it explicitly
describes the arrangement of parameters for the network to represent a target function, and
(2) it implies the universality of the network.

Remark 1 Our reviewers have kindly let us know that Cohen et al. (2019), Finzi et al.
(2021), and Aslan et al. (2023) have proposed versatile group equivariant network architec-
tures that cover a wide class of groups in a unified manner, and Ravanbakhsh et al. (2017)
have investigated the symmetry in the parameters. Since our results are applicable to any
network architectures, it would be interesting to find the ridgelet transform for each network.
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The proof of a universality theorem contains hints for understanding the internal data
processing mechanisms inside neural networks. The year 1989 was the beginning of the
universality theorem and a great year, as four different proofs were presented by Cybenko
(1989), Hornik et al. (1989), Funahashi (1989), and Carroll and Dickinson (1989). Among
them, Cybenko’s proof using Hahn-Banach and Hornik et al.’s proof using Stone-Weierstrass
are existential proofs, meaning that it is not clear how to assign the parameters. On the
other hand, Funahashi’s proof reducing to the Fourier transform and Carroll and Dickinson’s
proof reducing to the Radon transform are constructive proofs, meaning that it is clear
how to assign the parameters. The latter constructive methods, which reduce to integral
transforms, were refined as the so-called integral representation by Barron (1993) and further
culminated as the ridgelet transform discovered by Murata (1996) and Candès (1998).

The ridgelet transform, the main topic of this study, is a pseudo-inverse operator of
the integral representation neural network and is a detailed analysis tool that can describe
the relationship between data and parameters due to its analytical representation. In the
2000s, thanks to the efforts of Donoho and others, research on ridgelet transforms evolved
into geometric multiscale analysis (GMA, see e.g. Donoho, 2002), leading to the development
of various x-lets such as curvelets (Candès and Donoho, 2004), contourlet (Do and Vetterli,
2005), shearlet (Labate et al., 2005), bandelet (Pennec and Mallat, 2005), and grouplet
(Mallat, 2009b). These lines of studies mainly focused on developing multidimensional
wavelet transforms for image processing (i.e., 2D signals) (Starck et al., 2010; Mallat, 2009a)
and gradually moved apart from neural networks.

In the 2020s, the concept of integral representations has re-emerged as tools for analyzing
deep learning theories, bringing renewed attention to ridgelet transforms. Precisely, they
are often referred to by different names such as overparametrization, continuous/infinite
width, mean field theory (Nitanda and Suzuki, 2017; Mei et al., 2018; Rotskoff and Vanden-
Eijnden, 2018; Chizat and Bach, 2018; Sirignano and Spiliopoulos, 2020), and Langevin
dynamics (Suzuki, 2020). Sonoda et al. (2022b,a) have developed ridgelet transforms for
various networks, such as group convolutional networks and networks on manifolds, and
have shown constructive universality theorems. In these proofs, reducing the network to
Fourier transforms was an essential step to find the ridgelet transforms. In this study, we
can find the ridgelet transforms even when there is no clear path to reducing them to Fourier
transforms, as long as we can find a group invariant function.

The theory of function expansion based on group representations is well investigated in
abstract harmonic analysis (Folland, 2015). There are two main streams: one is the gener-
alization of Fourier transform, which expands functions on group G as a sum/integration
of multiple irreducible unitary representations (Sugiura, 1990), and the other is the gener-
alization of wavelet transform called the voice transform, which expands functions in repre-
sentation space H as a sum/integration of functions generated by a single square-integrable
unitary representation (Holschneider, 1998; Berge, 2021). For example, recent studies by
Miyato et al. (2022) and Koyama et al. (2023) belong to the Fourier stream, while this study
belongs to the wavelet/voice stream. Yet, it is precisely a new integral transform that differs
from the conventional voice transform. The generalized ridgelet transform discovered in this
study was motivated by the research objective of geometrically analyzing the parameters of
neural networks, and we believe it is a missing link for connecting geometric deep learning
to abstract harmonic analysis.
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2. Preliminaries

We showcase the original integral representation and the ridgelet transform, a mathematical
model of depth-2 fully-connected network and its right inverse, then list a few facts in the
group representation theory.

Notation. For any topological space X, Cc(X) denotes the Banach space of all compactly
supported functions f on X. S(Rd) and S ′(Rd) denote the classes of rapidly decreasing
functions (or Schwartz test functions) and tempered distributions on Rd, respectively.

2.1. Quick Introduction to Integral Representation and Ridgelet Transform

Definition 2 For any measurable function σ : R → C and Borel measure γ on Rm × R,
put

Sσ[γ](x) :=

∫
Rm×R

γ(a, b)σ(a · x− b)dadb, x ∈ Rm. (1)

We call Sσ[γ] an (integral representation of) neural network, and γ a parameter distribution.

The integration over all the hidden parameters (a, b) ∈ Rm × R means all the neurons
{x 7→ σ(a·x−b) | (a, b) ∈ Rm×R} are summed (or integrated, to be precise) with weight γ,
hence formally Sσ[γ] is understood as a continuous neural network with a single hidden layer.
We note, however, when γ is a finite sum of point measures such as γp =

∑p
i=1 ciδ(ai,bi),

then it can also reproduce a finite width network

Sσ[γp](x) =

p∑
i=1

ciσ(ai · x− bi). (2)

In other words, the integral representation is a mathmatical model of depth-2 network with
any width (ranging from finite to continuous).

Definition 3 For any measurable functions ρ : R → C and f : Rm → C, put

Rρ[f ](a, b) :=

∫
Rm

f(x)ρ(a · x− b)dx, (a, b) ∈ Rm × R. (3)

We call Rρ a ridgelet transform.

The ridgelet transform is known to be a right-inverse operator to Sσ. To be precise, the
following reconstruction formula holds.

Theorem 4 (Reconstruction Formula) Suppose σ and ρ are a tempered distribution
(S ′) and a rapid decreasing function (S) respectively. There exists a bilinear form ((σ, ρ))
such that

Sσ ◦Rρ[f ] = ((σ, ρ))f, (4)

for any square integrable function f ∈ L2(Rm). Further, the bilinear form is given by

((σ, ρ)) =

∫
R
σ♯(ω)ρ♯(ω)|ω|−mdω (5)

where ♯ denotes the 1-dimensional Fourier transform.

131



Sonoda Ishi Ishikawa Ikeda

See Sonoda et al. (2021, Theorem 6) for the proof. In particular, according to Sonoda et al.
(2021, Lemma 9), for any activation function σ, there always exists ρ satisfying ((σ, ρ)) = 1.
Here, σ being a tempered distribution means that typical activation functions are covered
such as ReLU, step function, tanh, gaussian, etc... We can interpret the reconstruction
formula as a universality theorem of continuous neural networks, since for any given data
generating function f , a network with output weight γf = Rρ[f ] reproduces f (up to factor
((σ, ρ))), i.e. S[γf ] = f . In other words, the ridgelet transform indicates how the network
parameters should be organized so that the network represents an individual function f .

In this study, we showcase a new proof of the reconstruction formula based on the group
theoretic arguments, and present a systematic scheme to find the ridgelet transform for a
variety of given network architecture based on the symmetry in the data-parameter domain.

2.2. Irreducible Unitary Representation and Schur’s Lemma

Let G be a locally compact group, H be a nonzero Hilbert space, and U(H) be the group of
unitary operators on H. For example, any finite group, discrete group, compact group, and
finite-dimensional Lie group are locally compact, while an infinite-dimensional Lie group is
not locally compact. A unitary representation π of G on H is a group homomorphism that
is continuous with respect to the strong operator topology—that is, a map π : G → U(H)
satisfying π(gh) = π(g)π(h) and π(g−1) = π(g)−1 = π(g)∗, and for any ψ ∈ H map
G ∋ g 7→ π(g)[ψ] ∈ H is continuous. Suppose M is a closed subspace of H. M is called
an invariant subspace when π(g)M ⊂ M for all g ∈ G. Particularly, π is called irreducible
when it does not admit any nontrivial invariant subspace M ≠ {0} nor H.

Let C(π) be the set of all bounded linear operators T on Hilbert space H that commutes
with π, namely C(π) := {T ∈ B(H) | Tπ(g) = π(g)T for all g ∈ G}.

Lemma 5 (Schur’s lemma) A unitary representation π of G is irreducible iff C(π) only
contains scalar multiples of the identity, i.e., C(π) = {c Id | c ∈ C} or {0}.

See Folland (2015, Theorem 3.5(a)) for the proof.

2.3. Calculus on Locally Compact Group

By Haar’s theorem, if G is a locally compact group, then there uniquely exist left and right
invariant measures dlg and drg, satisfying for any s ∈ G and f ∈ Cc(G),∫

G
f(sg)dlg =

∫
G
f(g)dlg, and

∫
G
f(gs)drg =

∫
G
f(g)drg.

Let X be a G-space with transitive left (resp. right) G-action g · x (resp. x · g) for any
(g, x) ∈ G × X. Then, we can further induce the left (resp. right) invariant measure dlx
(resp. drx) so that for any f ∈ Cc(G),∫

X
f(x)dlx :=

∫
G
f(g · o)dlg, resp.

∫
X
f(x)drx :=

∫
G
f(o · g)drg,

where o ∈ G is a fixed point called the origin.
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φ(x,ξ)

φ(g･x,g･ξ)
Ξ

X

Figure 1: A joint G-invariant function ϕ is a function on the data-parameter domain X×Ξ
that is constant along each G-orbit G(x, ξ) := {(g · x, g · ξ) | g ∈ G}.

3. Main Results

We introduce generalized neural networks and generalized ridgelet transforms induced from
joint group invariant functions on data-parameter domain, and present a simple group
theoretic proof of the reconstruction formula.

Let G be a locally compact group equipped with a left invariant measure dg. Let X
and Ξ be G-spaces equipped with G-invariant measures dx and dξ, called the data domain
and the parameter domain, respectively. Particularly, we call the product space X × Ξ
the data-parameter domain (like time-frequency domain). By abusing notation, we use the
same symbol · for the G-actions on X and Ξ (e.g., g · x and g · ξ).

Let π and π̂ be left-regular actions of G on L2(X) and L2(Ξ), respectively. Namely, for
any g ∈ G, f ∈ L2(X) and γ ∈ L2(Ξ),

πg[f ](x) := f(g−1 · x), and π̂g[γ](ξ) := γ(g−1 · ξ). (6)

Definition 6 (Joint G-Invariant Function) We say a function ϕ on X × Ξ is joint G-
invariant when it satisfies for all g ∈ G and (x, ξ) ∈ X × Ξ,

ϕ(g · x, g · ξ) = ϕ(x, ξ). (7)

By A, we symbolize the algebra of all joint G-invariant functions.

Here, A is indeed an algebra because if ϕ and ψ are joint G-invariant, then so are ϕ + ψ
and ϕψ. Namely, ϕ, ψ ∈ A =⇒ ϕ + ψ, ϕψ ∈ A. As visualized in Figure 1, a joint G-
invariant function is constant along each G-orbit {(g · x, g · ξ) | g ∈ G}. Hence finding a
joint G-invariant function is not difficult.

Definition 7 (Generalized Neural Network Induced from Invariant ϕ) For any joint
invariant function ϕ ∈ A and Borel measure γ on Ξ, put

NN[γ;ϕ](x) :=

∫
Ξ
γ(ξ)ϕ(x, ξ)dξ, x ∈ X. (8)

We call the integral transform NN[•;ϕ] a ϕ-transform, and each individual image NN[γ;ϕ] a
ϕ-network for short.
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The ϕ-network is an extension of the original neural network because when X = Rm,Ξ =
Rm×R and ϕ(x, (a, b)) := σ(a ·x− b) with some activation function σ : R → R, it reduces
to a fully-connected network

∫
Rm×R γ(a, b)σ(a · x− b)dadb.

Definition 8 (Generalized Ridgelet Transform Induced from Invariant ϕ) For any
joint invariant map ϕ ∈ A and measurable function f on X, put

R[f ;ϕ](ξ) :=

∫
X
f(x)ϕ(x, ξ)dx, ξ ∈ Ξ. (9)

We call the integral transform R[•;ϕ] a ϕ-ridgelet transform for short.

As long as the integrals are convergent, it is the dual operator of ϕ-transform, since

⟨γ, R[f ;ϕ]⟩L2(Ξ) =

∫
X×Ξ

γ(ξ)ϕ(x, ξ)f(x)dxdξ = ⟨NN[γ;ϕ], f⟩L2(X). (10)

Theorem 9 Let G be a locally compact group. For any joint invariant functions ϕ, ψ ∈ A,
suppose that composite NNϕ◦Rψ : L2(X) → L2(X) is bounded, and that regular representation
(π, L2(X)) is irreducible. Then, there exists a bilinear form ((ϕ, ψ)) ∈ C such that for any
function f ∈ L2(X),

NNϕ ◦ Rψ[f ] = ((ϕ, ψ))f. (11)

In other words, the ψ-ridgelet transform Rψ is understood as a group theoretic generalization
of the original ridgelet transform, as it is a right inverse operator of ϕ-transform NNϕ.
Proof We write NN[•;ϕ] as NNϕ and R[•;ϕ] as Rϕ for short. By the left-invariances of dx
and ψ, for all g ∈ G, we have

Rψ[πg[f ]](ξ) =

∫
X
f(g−1 · x)ψ(x, ξ)dx = ⟨πg[f ], ψ(•, ξ)⟩L2(X)

=

∫
X
f(x)ψ(g · x, ξ)dx = ⟨f, π∗g [ψ](•, ξ)⟩L2(X)

=

∫
X
f(x)ψ(x, g−1 · ξ)dx = ⟨f, π̂g[ψ](•, ξ)⟩L2(X)

= π̂g[Rψ[f ]](ξ). (12)

Here, π∗ denotes the dual representation of π with respect to L2(X)-product. Similarly,

NNϕ[π̂g[γ]](x) =

∫
Ξ
γ(g−1 · ξ)ϕ(x, ξ)dξ = ⟨π̂g[γ], ϕ(x, •)⟩L2(Ξ)

=

∫
Ξ
γ(ξ)ϕ(x, g · ξ)dξ = ⟨γ, π̂∗g [ϕ](x, •)⟩L2(Ξ)

=

∫
Ξ
γ(ξ)ϕ(g−1 · x, ξ)dξ = ⟨γ, πg[ϕ](x, •)⟩L2(Ξ)

= πg[NNϕ[γ]](x). (13)

Here, π̂∗ denotes the dual representation of π̂ with respect to L2(Ξ)-product.
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As a consequence, NNϕ ◦ Rψ : L2(X) → L2(X) commutes with π as below

NNϕ ◦ Rψ ◦ πg = NNϕ ◦ π̂g ◦ Rψ = πg ◦ NNϕ ◦ Rψ (14)

for all g ∈ G. Hence by Schur’s lemma (Lemma 5), there exist a constant Cϕ,ψ ∈ C such
that NNϕ ◦ Rψ = Cϕ,ψ IdL2(X). By the construction of left-hand side, Cϕ,ψ is bilinear in ϕ
and ψ.

4. Examples

4.1. Original Ridgelet Transform

This study started from a group theoretic proof of the original reconstruction formula
(Theorem 4). The proof is in fact new, thought-provoking and valuable, so we leave it in
Appendix A. Below is a sketch of the full proof.

Example 1 Let G be the affine group Aff(m) = GL(m)⋉Rm, X = Rm be the data domain
with G-action

g · x := Lx+ t, g = (L, t) ∈ G, x ∈ Rm = X

and Ξ = Rm × R be the parameter domain with dual G-action

g · (a, b) = (L−⊤a, b+ t⊤L−⊤a), g = (L, t) ∈ G, (a, b) ∈ Rm × R = Ξ. (15)

We can see ϕ(x, (a, b)) := σ(a · x− b) is joint G-invariant. In fact,

ϕ(g · x, g · (a, b)) = σ
(
L−⊤a · (Lx+ t)− (b+ t⊤L−⊤a)

)
= σ(a · x− b) = ϕ(x, (a, b)).

Further, by Lemma 12, the regular representation πg of G = Aff(m) is known to be irre-
ducible. Hence we can retain the original neural network and ridgelet transform:

NN[γ](x) =

∫
Rm×R

γ(a, b)σ(a · x− b)dadb, and R[f ](a, b) =

∫
Rm

f(x)ρ(a · x− b)dx,

satisfying NN ◦ R = ((σ, ρ)) IdL2(Rm).

Additionally, a geometric interpretation of dual G-action (15) is discussed in Appendix B.

4.2. Deep Ridgelet Transform

Sonoda et al. (2023) presented the ridgelet transform for deep neural networks. We noticed
their network can also be induced from an invariant function. In other words, from the
group representation theory perspective, function approximation with any depth is unified.

Example 2 Let G be any locally compact group, data domain X be any G-space, rewriting
its G-action g ·x as g(x) so as to formally identify g with a hidden layer map, and parameter
domain Ξ be the group G itself with dual G-action

g · ξ = ξg−1. (16)
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We can see ϕ(x, ξ) := ψ ◦ ξ(x) is joint G-invariant. In fact,

ϕ(g · x, g · ξ) = ψ ◦ (g · ξ)(g · x) = ψ ◦ (ξ ◦ g−1)(g(x)) = ψ ◦ ξ(x) = ϕ(x, ξ)

Therefore, assuming that the regular representation πg = ψ◦g is irreducible on an invariant
subspace H of L2(X), we can retain the formal deep network and deep ridgelet transform:

NN[γ](x) :=

∫
Ξ
γ(ξ)ψ ◦ ξ(x)dξ, and R[f ](ξ) =

∫
X
f(x)ψ ◦ ξ(x)dx,

satisfying NN ◦ R = ((σ, ρ)) IdH.

4.3. Voice Transform, or Generalized Wavelet Transform

The voice transform is also known as the Gilmore–Perelomov coherent states and the gen-
eralized wavelet transform (Perelomov, 1986; Ali et al., 2014). It is well investigated in
the research field of coorbit theory (Feichtinger and Gröchenig, 1988, 1989a,b). We refer to
Berge (2021) for a quick review of voice transform and coorbit theory.

Definition 10 Given a unitary representation (π,H) of group G on a Hilbert space H, the
voice transform is defined as

Vϕ[f ](g) := ⟨f, πg[ϕ]⟩H, g ∈ G, f, ϕ ∈ H. (17)

This unifies several integral transforms from the perspective of group theory such as short-
time Fourier transform (STFT), wavelet transform (Grossmann et al., 1985, 1986; Holschnei-
der, 1998; Laugesen et al., 2002; Gressman et al., 2003), and continuous shearlet transform
(Labate et al., 2005; Guo and Labate, 2007; Kutyniok and Labate, 2012).

Example 3 Let G be any group, data domain X be any G-space, and parameter domain
Ξ be the group G itself with dual G-action g · ξ = gξ. We can see θ(x, ξ) := ψ(ξ−1 · x) is
joint G-invariant. In fact,

θ(g · x, g · ξ) = ψ((g · ξ)−1 · (g · x)) = ψ(ξ−1 · x) = θ(x, ξ).

Therefore, assuming that the regular representation πg is irreducible, we can retain a dual
voice transform and voice transform:

NN[γ](x) :=

∫
Ξ
γ(ξ)ϕ(ξ−1 · x)dξ, and R[f ](ξ) =

∫
X
f(x)ψ(ξ−1 · x)dx,

satisfying NN ◦ R = ((σ, ρ)) IdL2(X). This is a special case of the voice transform when
H = L2(X), and πg[ψ] = ψ(g−1 · •).

We note that the voice transform Vϕ[f ](g) := ⟨f, πg[ϕ]⟩H and the ϕ-ridgelet transform
Rϕ[f ](ξ) := ⟨f, ϕ(•, ξ)⟩L2(X) have common parts, but are different in general. While the
example above and the original wavelet transformWψ[f ](b, a) :=

∫
R f(x)ψ((x−b)/a)dx/

√
a

are simultaneously the voice and ridgelet transforms, a ridgelet transform can be a voice
transform only when the representation (π,H) is the regular representation on L2(X), and
a voice transform can be a ridgelet transform only when the parameter domain Ξ is the
group G itself and the feature map ϕ is generated by G-action on a single function ψ. Hence
pursuing parallel results for the coorbit theory would be an interesting future work.
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5. Discussion

We presented a systematic method to induce a generalized neural network and its ridgelet
transform, from a joint group invariant function on the data-parameter domain. Namely,
given a joint group invariant function, the marginalization of parameter ξ (resp. data x)
induces the network (resp. the ridgelet transform). Based on the group theoretic arguments,
we demonstrated a simple proof of the reconstruction formula by using Schur’s lemma,
which implies the universality of the network. Since conventional universality theorems were
shown using functional analytic tools, the group theoretic proof is a new contribution to the
approximation theory, connecting geometric deep learning to abstract harmonic analysis.
Further, since the proposed network covers both shallow and deep networks, the group
representation theory can offer a unified perspective on function approximation with any
depth.

In the past, Sonoda et al. (2022a,b) have developed the ridgelet transforms for neural
networks on manifolds and function spaces using the Fourier transforms on manifolds and
function spaces, and proposed a systematic scheme to derive a ridgelet transform for neural
networks on a given domain based on the Fourier transform on there. Compared to our
group theoretic method, the Fourier transform method is indirect and requires additional
knowledge (not only on the symmetry on the data domain but also) on the Fourier transform
on there. We conjecture that those Fourier-based ridgelet transforms can also be derived in
our group-theoretic method.
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H. G. Feichtinger and K. Gröchenig. A unified approach to atomic decompositions via
integrable group representations. In Function Spaces and Applications, pages 52–73,
Berlin, Heidelberg, 1988. Springer Berlin Heidelberg.
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H. G. Feichtinger and K. H. Gröchenig. Banach spaces related to integrable group repre-
sentations and their atomic decompositions. Part II. Monatshefte für Mathematik, 108
(2):129–148, 1989b.

M. Finzi, M. Welling, and A. G. G. Wilson. A Practical Method for Constructing Equiv-
ariant Multilayer Perceptrons for Arbitrary Matrix Groups. In Proceedings of the 38th
International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 3318–3328. PMLR, 2021.

G. B. Folland. A Course in Abstract Harmonic Analysis. Chapman and Hall/CRC, New
York, second edition, 2015.

K.-I. Funahashi. On the approximate realization of continuous mappings by neural networks.
Neural Networks, 2(3):183–192, 1989.

138

https://searchworks.stanford.edu/view/9949708
https://doi.org/10.1002/cpa.10116
https://doi.org/10.1002/cpa.10116
http://doi.org/10.1109/IJCNN.1989.118639
https://papers.nips.cc/paper/7567-on-the-global-convergence-of-gradient-descent-for-over-parameterized-models-using-optimal-transport/
https://papers.nips.cc/paper/7567-on-the-global-convergence-of-gradient-descent-for-over-parameterized-models-using-optimal-transport/
https://proceedings.neurips.cc/paper/2019/file/b9cfe8b6042cf759dc4c0cccb27a6737-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/b9cfe8b6042cf759dc4c0cccb27a6737-Paper.pdf
http://doi.org/10.1007/BF02551274
https://ieeexplore.ieee.org/abstract/document/1532309
https://ieeexplore.ieee.org/abstract/document/1532309
http://arxiv.org/abs/math/0212395
https://link.springer.com/chapter/10.1007/BFb0078863
https://link.springer.com/chapter/10.1007/BFb0078863
https://www.sciencedirect.com/science/article/pii/0022123689900554
https://www.sciencedirect.com/science/article/pii/0022123689900554
https://doi.org/10.1007/BF01308667
https://doi.org/10.1007/BF01308667
https://proceedings.mlr.press/v139/finzi21a.html
https://proceedings.mlr.press/v139/finzi21a.html
https://doi.org/10.1201/b19172
http://doi.org/10.1016/0893-6080(89)90003-8


Joint Invariants on Data-Parameter Domain Induce Universal Neural Networks

P. Gressman, D. Labate, G. Weiss, and N. W. Edward. 8 - Affine, Quasi-Affine and Co-
Affine Wavelets. In Beyond Wavelets, volume 10, pages 215–223. Elsevier, 2003.

A. Grossmann, J. Morlet, and T. Paul. Transforms associated to square integrable group
representations. I. General results. Journal of Mathematical Physics, 26(10):2473–2479,
oct 1985.

A. Grossmann, J. Morlet, and T. Paul. Transforms associated to square integrable group
representations. II : examples. Annales de l’I.H.P. Physique théorique, 45(3):293–309,
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Appendix A. Group Theoretic Proof for Original Ridgelet Transform

This study started from a group theoretic proof of the original reconstruction formula
(Theorem 4). The proof is in fact new, thought-provoking and valuable, so we present it
here in a self-consistent manner. A non group theoretic proof by reducing to a Fourier
expression is given in Sonoda et al. (2021, Theorem 6).

A.1. Preliminaries

We will use the following facts without proofs.

Lemma 11 Suppose σ and ρ are a tempered distribution (S ′) and a Schwartz test function,
respectively. Then, Sσ ◦Rρ : L2(Rm) → L2(Rm) is bounded.

See Sonoda et al. (2021, Lemmas 7 and 8) for the proof.

Lemma 12 The regular representation π of the affine group Aff(Rm) := GL(m) ⋉ Rm
on L2(Rm), namely π(g)[f ](x) := | detL|−1/2f(L−1(x − t)) for any f ∈ L2(Rm) and g =
(L, t) ∈ Aff(Rm), is irreducible.

See Folland (2015, Theorem 6.42) for the proof.

A.2. Proof

In the following, we identify the group G acting on data domain Rm with the affine group
Aff(Rm), and introduce the so-called twisted dual group action that leaves a function θ
invariant. Then, we see the regular action π of G on functions space L2(Rm) commutes
with composite Sσ ◦Rρ. Hence, by Schur’s lemma, Sσ ◦Rρ is a constant multiple of identity,
which concludes the assertion of Theorem 4.
Proof Let G be the affine group Aff(Rm) = GL(Rm)⋉Rm. For any g = (L, t) ∈ G, let

g · x := Lx+ t, x ∈ Rm (18)

be its action on Rm, and let

π(g)[f ](x) := |detL|−1/2f(g−1 · x)
= |detL|−1/2f(L−1(x− t)), f ∈ L2(Rm) (19)

be its left-regular action on L2(Rm).
Besides, putting

θ((a, b),x) := a · x− b, (a, b) ∈ Rm × R,x ∈ Rm (20)

we define the twisted dual action of G on Rm × R as

g · (a, b) := (L−⊤a, b+ a · (L−1t)), (a, b) ∈ Rm × R (21)

so that the following invariance hold:

θ(g · (a, b), g · x) = θ((a, b),x) = a · x− b. (22)
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To see this, use matrix expressions with extended variables

θ((a, b),x) =
(
a⊤ b

)(Im 0
0 −1

)(
x
1

)
=: ã⊤Ĩx̃, (23)

g̃ · x :=

(
g · x
1

)
=

(
L t
0 1

)(
x
1

)
=: L̃x̃ (24)

and calculate

ã⊤Ĩx̃ = (ã⊤ĨL̃−1Ĩ−1)Ĩ(L̃x̃) = (ĨL̃−⊤Ĩã)⊤Ĩ(L̃x̃), (25)

which suggests ˜g · (a, b) := ĨL̃−⊤Ĩã, and we have

ĨL̃−⊤Ĩ =

(
Im 0
0 −1

)(
L t
0 1

)−⊤(
Im 0
0 −1

)
=

(
Im 0
0 −1

)(
L−⊤ 0

−t⊤L−⊤ 1

)(
Im 0
0 −1

)
=

(
L−⊤ 0

t⊤L−⊤ 1

)
.

Further, we define its regular-action by

π̂(g)[γ](a, b) := |detL|1/2γ(g−1 · (a, b))
= | detL|1/2γ(L⊤a, b− a · t), (a, b) ∈ Rm × R. (26)

Then we can see that, for all g = (L, t) ∈ G,

Rρ ◦ π(g) = π̂(g) ◦Rρ, and Sσ ◦ π̂(g) = π(g) ◦ Sσ. (27)

In fact, at every g = (L, t) ∈ G and (a, b) ∈ Rm × R,

Rρ[π(g)[f ]](a, b) = |detL|−1/2

∫
Rm

f(g−1 · x)ρ(θ((a, b),x))dx

by putting x = g · y = Ly + t with dx = |detL|dy,

= | detL|1/2
∫
Rm

f(y)ρ(θ((a, b), g · y)))dy

= | detL|1/2
∫
Rm

f(y)ρ(θ(g−1 · (a, b),y)))dy

= π̂(g)[Rρ[f ]](a, b). (28)

Similarly, at every g = (L, t) ∈ G and x ∈ Rm,

Sσ[π̂(g)[γ]](x) = | detL|1/2
∫
Rm×R

γ(g−1 · (a, b))σ(θ((a, b),x))dadb
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by putting (a, b) := g · (ξ, η) = (L−⊤ξ, η + ξ · (L−1t)) with dadb = |detL|dξdη,

= | detL|−1/2

∫
Rm×R

γ(ξ, η)σ(θ(g · (ξ, η),x))dξdη

= | detL|−1/2

∫
Rm×R

γ(ξ, η)σ(θ((ξ, η), g−1 · x))dξdη

= π(g)[Sσ[γ]](x). (29)

Hence Sσ ◦Rρ commutes with π(g) because

Sσ ◦Rρ ◦ π(g) = Sσ ◦ π̂(g) ◦Rρ = π(g) ◦ Sσ ◦Rρ.

Since Sσ◦Rρ : L2(Rm) → L2(Rm) is bounded (Lemma 11), and (π, L2(Rm)) is an irreducible
unitary representation of G (Lemma 12), Schur’s lemma (Lemma 5) yields that there exist
a constant Cσ,ρ ∈ C such that

Sσ ◦Rρ[f ] = Cσ,ρf (30)

for all f ∈ L2(Rm).
Finally, by directly computing the left-hand-side, namely Sσ ◦Rρ[f ], we can verify that

the constant Cσ,ρ is given by

Cσ,ρ = ((σ, ρ)) := (2π)m−1

∫
R
σ♯(ω)ρ♯(ω)|ω|−mdω. (31)

Appendix B. Geometric Interpretation of Dual Action for Original
Ridgelet Transform

We explain a geometric interpretation of the dual action (21) in the previous section. We
note that in general θ does not require any geometric interpretation as long as it is joint
group invariant on data-parameter domain.

For each (a, b) ∈ Rm×R, put ξ(a, b) := {x ∈ Rm | a ·x−b = 0}. Then it is a hyperplane
in Rm through point x0 = ba/|a|2 with normal vector u := a/|a|.

For any point y in the hyperplane ξ(a, b), by definition a · y = b, thus

a · x− b = a · (x− y). (32)

But this means a · x− b is a scaled distance between point x and hyperplane ξ(a, b),

= |a|dE(x, ξ(a, b)), (33)

and further a scaled distance between hyperplanes ξ(a,a ·x) through x with normal a/|a|
and ξ(a, b),

= |a|dE(ξ(a,a · x), ξ(a, b)). (34)
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Figure 2: The invariant ϕ((a, b),x) = σ(a · x − b) is the euclidean distance between point
x and hyperplane ξ(a, b) followed by scaling and nonlinearity σ

Now, we can interpret the invariant θ((a, b),x) := a·x−b in a geometric manner, that is,
it is the distance between point and hyperplane, or between hyperplanes. We note that we
can regard entire σ(a ·x−b)—the distance modulated by both scaling and nonlinearity—as
the invariant, say ϕ.

Furthermore, the dual action g·(a, b) is understood as a parallel translation of hyperplane
ξ(a, b) to ξ(g · (a, b)) so as to leave the scaled distance θ invariant, namely

dE(g · x, g · ξ(a, b)) = dE(x, ξ(a, b)). (35)

Indeed, for any g = (L, t) ∈ G,

g · ξ(a, b) = {g · x | a · x− b = 0}
= {y | a · (g−1 · y)− b = 0} (by letting y = g · x)
= {y | (L−⊤) · y − (b+ a · (L−1t)) = 0}
= ξ(g · (a, b)),

meaning that the hyperplane with parameter (a, b) translated by g is identical to the hy-
perplane with parameter g · (a, b).

To summarize, in the case of fully-connected neural network (and its corresponding
ridgelet transform), the invariant is a modulated distance σ(a · x− b), and the dual action
is the parallel translation of hyperplane so as to keep the distance invariant. Further, from
this geometric perspective, we can rewrite the fully-connected neural network in a geometric
manner as

S[γ](x) :=

∫
R×Ξ

γ(ξ)σ(adE(x, ξ))dadξ, (36)

where a ∈ R denotes signed scale and Ξ denotes the space of all hyperplanes (not always
through the origin). Since each hyperplane is parametrized by normal vectors u ∈ Sm−1

and distance p ≥ 0 from the origin, we can induce the product of spherical measure du and
Lebesgue measure dp as a measure dξ on the space Ξ of hyperplanes.
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