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Abstract

Animals’ internal states reflect variables like their position in space, orientation, decisions,
and motor actions—but how should these internal states be arranged? Internal states
which frequently transition between one another should be close enough that transitions
can happen quickly, but not so close that neural noise significantly impacts the stability of
those states, and how reliably they can be encoded and decoded. In this paper, we study
the problem of striking a balance between these two concerns, which we call an ‘optimal
packing’ problem since it resembles mathematical problems like sphere packing. While
this problem is generally extremely difficult, we show that symmetries in environmental
transition statistics imply certain symmetries of the optimal neural representations, which
allows us in some cases to exactly solve for the optimal state arrangement. We focus on two
toy cases: uniform transition statistics, and cyclic transition statistics. Code is available
at https://github.com/john-vastola/optimal-packing-neurreps23.

Keywords: optimization, Markov chain, neural representation, neural dynamics, sphere
packing, symmetry

1. Introduction

Animals’ internal states appear to reflect environmental variables, like their position in space
and orientation relative to some reference (Barry and Burgess, 2014; Hulse and Jayaraman,
2020), as well as their interactions with the environment, like decisions (Gold and Shadlen,
2007) and motor actions (Cisek, 2005). As an animal acts in its environment, it must
constantly update these internal states to reflect environmental changes and the results of
internal computations; however, these updates cannot be instantaneous, since biophysical
limitations force internal quantities to change in a somewhat continuous fashion. They are
also not error-free due to noise in encoding, decoding, and neural dynamics (Faisal et al.,
2008; van Vreeswijk and Sompolinsky, 1996).

How should internal states be arranged? On the one hand, an animal can act more
quickly if the next relevant internal state is ‘near’ the current one, since it can be reached
more quickly. This suggests that the structure of neural representations should reflect the
structure of environmental transitions; this is consistent with what is known about circuits
like the head direction system, whose latent geometry mirrors the circular nature of the
variable it tracks (Ajabi et al., 2023), and theoretical ideas about smoothness as a constraint
on neural codes (Stringer et al., 2019). On the other hand, the closer all internal states are
to one another, the easier it is for neural noise to cause problems, either via noise-induced
transitions (Burak and Fiete, 2012) or by increasing the likelihood of encoding and decoding
errors. In principle, a ‘good’ arrangement of internal states strikes a balance between these
two concerns: internal states must be packed closely enough that desired transitions can
happen quickly, but not so closely that errors are likely.
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Given that noise sets an effective length scale for separating internal states, this issue
in some ways mathematically resembles an optimal packing problem. While often quite
difficult, problems like optimal sphere packing (Zong, 2008) are made substantially easier
to solve and understand by exploiting symmetry-related considerations. For example, Via-
zovska et al.’s solution of the sphere packing problem in dimensions 8 and 24 (Viazovska,
2017; Cohn et al., 2017) crucially uses symmetry properties of the E8 and Leech lattices.
In this paper, we attempt to formulate a toy version of the problem of constructing an
‘optimal packing’ of neural representations, and similarly turn to symmetry-related tools
in order to say something meaningful about it. The particular symmetry-related claim we
will motivate, and then use, is that an attractor-based neural representation of a Markov
chain that exhibits a symmetry may also exhibit that symmetry.

2. Mathematical formulation of optimal packing problem

To formalize our optimal packing problem, we need five things: a model of environment
state statistics, a model of internal state transition dynamics, an encoding model, a decod-
ing model, and a cost function.

Environment dynamics. We will model the environment as a Markov chain on M states.
In particular, we will assume that it can be characterized by a set of states X = {1, ...,M},
a base probability of state occupancy p0(x) for all x ∈ X , and a probability p(y|x) of tran-
sitioning from any state x ∈ X to any state y ∈ X on some characteristic time scale. Since
we are interested in finding representations that respect environmental transition structure
when a transition occurs, we assume without loss of generality that p(x|x) = 0 for all x ∈ X .

Internal state transition dynamics. Let Z = RD (for some D ≥ M) denote the set of
all possible internal states, and assume that each environment state x ∈ X is in one-to-one
correspondence with an internal attractor state zx ∈ Z. Assume also that the positive
definite matrix Σ−1 can be used to compute the distance

D(z1, z2) := (z1 − z2)
TΣ−1(z1 − z2) (1)

between any two internal states. The matrix Σ is intended to model how noisy different
directions in Z are; different states are ‘closer’, in the sense of being easier to reach from
one another, if the line connecting them corresponds to a particularly noisy direction.

Although it is possible to write down an extremely explicit model of internal state transi-
tion dynamics, we will consider a somewhat coarse description in order to keep our problem
mathematically tractable. We will assume three things: first, that transitions are essentially
between attractor basins, so that the relevant quantity is the discrete distribution q(zy|zx);
second, that there is a mechanism for destabilizing attractor states when a transition is
desired, so that q(zx|zx) = 0 for all attractor states zx; and third, that transitions to good
approximation only depend on the distances between states. The last assumption makes
sense within a landscape picture of internal dynamics (involving M attractors of similar
width and depth), and can be formally justified via appealing to, e.g., Kramers’ theory
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(Kramers, 1940; Hänggi et al., 1990). Explicitly, we will assume that

q(zy|zx) = (1− δxy)
e−D(zy ,zx)2/2

Z(zx)

Z(zx) =
∑
a̸=x

e−D(za,zx)2/2 .
(2)

Encoding/decoding models. We will assume that the encoding of an environment state
x ∈ X is noisy, and that when a mistake is made, x is more likely to be encoded as a state
za near zx. Explicitly, we will assume

pe(za|x) =
δaxe

b + (1− δax)e
−D(za,zx)2/2

eb + Z(zx)
(3)

where increasing the bias b ≥ 0 makes errors less likely. In the b → ∞ limit, encoding is
perfect. Assuming a uniform prior, we obtain a decoding model through Bayes’ rule:

pd(x|za) =
pe(za|x)∑
x pe(za|x)

. (4)

In the b → ∞ limit, since p(za|x) = δax, we also have perfect decoding.

Cost function. We want to penalize different possible arrangements of internal attractor
states according to some objective function, so that optimizing that objective corresponds to
identifying an optimal packing. ‘Optimality’ here means an arrangement which, as much as
possible, produces internal dynamics (i.e., movement between attractors) whose transition
statistics mirror the statistics of environmental transitions (Figure 1a). The interpretation
of this is that, in the absence of any external input, the internal state is poised to change
in the same way that the environment is likely to change.

Consider the way ring-attractor-like networks reckon with uncertainty as a concrete
example of this feature: in the absence of external input, the bump representing heading
direction diffuses (Kutschireiter et al., 2023), a purely internal state change that reflects
the fact that moment-to-moment changes in heading direction will usually be small, and
are equally likely to be clockwise or counterclockwise.

One way to formalize this desire mathematically is to ask that

pint(y|x) :=
∑
a,b

pd(y|zb)q(zb|za)pe(za|x) . (5)

on average matches p(y|x), the function that determines the statistics of environmental
transitions. (Equivalently: we can ask that the diagram in Figure 1a commutes.) More
precisely, we want the Kullback-Leibler divergence between p(y|x) and pint(y|x) to be small.

We also want to include a regularization term which enforces the fact that, all else being
equal, we prefer configurations with low activity, i.e., configurations for which the norm

∥zx∥2 := zT
xΣ

−1zx (6)
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is small for all attractor states zx. (This can be viewed as a kind of firing rate penalty.)
Hence, we will define

J [{zx}] := Ex

{
KL(p∥pint) +

α

2
∥zx∥2

}
=

∑
x,y

p0(x)p(y|x) { log p(y|x)− log pint(y|x)}+
α

2

∑
x

p0(x)∥zx∥2
(7)

as an objective over possible attractor state assignments {zx}. Heuristically, we can think
of the objective as representing a contest between three competing interests: low firing rate,
high encoding/decoding accuracy, and internal dynamics mirroring environmental transition
structure (for example, in the sense depicted in Figure 1b). The firing rate penalty pushes
all attractor states towards the origin; increasing encoding and decoding accuracy pushes
all attractor states infinitely far apart; and having internal dynamics mirror environment
dynamics incentivizes particular relationships between attractor states.

As usual, we can drop terms which do not depend on the zx, so we can redefine J as

J [{zx}] := −
∑
x,y

p0(x)p(y|x) log pint(y|x) +
α

2

∑
x

p0(x)∥zx∥2 . (8)

Our central concern in the following is: under what conditions can we find optimal attractor
state assignments {zx}?

rx

ry

x

y

� � � �
internal
dynamics

desired
dynamics

encode

decode

rare frequent

commutes?

Figure 1: Schematic of optimal packing problem. a. We want environment transition statis-
tics p(y|x) to typically match the combination of encoding, internal dynamics, and
decoding, or equivalently for this diagram to commute. b. Intuitively, the ge-
ometric structure of the attractor landscape should match the structure of the
Markov chain; for example, states with frequent transitions ought to be closer
together than states between which transitions are rare.

3. Initial observations: simplifications and symmetry

Eq. 8 defines a high-dimensional, nonlinear, and (as we will see) non-convex optimization
problem which is in general difficult to solve. In this section, we will make several useful
preliminary observations about it.
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Simplifying the objective. The objective can be reparameterized in a way that makes
various features of the problem clearer (see Appendix A). First, we can change variables
from z to r with

D(z1, z2) = D(r1, r2) = ∥r1 − r2∥22 zTΣ−1z = rTr (9)

by using scaled eigenvectors of Σ as a basis for RD. By doing so, we can disentangle the
impact of noise anisotropy from other aspects of the problem. Let {rx} denote attractor
assignments in the new coordinate system; in what follows, we will work exclusively with
rx instead of zx. Second, we can write J in terms of

⟨r⟩ :=
∑
x

p0(x)rx dxy := ∥rx − ry∥22 = dyx , (10)

i.e., the average attractor state location (D scalars) and the pairwise distances between
each attractor state (M(M − 1)/2 scalars), each of which is independent of the others.
There are typically less than DM degrees of freedom since the problem is both rotation-
and reflection-invariant, and since the objective is defined in terms of averages.1 In terms
of these variables, we have

J [{dxy}, ⟨r⟩] = −
∑
x,y

p0(x)p(y|x) log pint(y|x) + α
∥⟨r⟩∥22

2
+ α

∑
a̸=b

p0(a)p0(b)
d2ab
4

. (11)

Furthermore, the optimal choice of ⟨r⟩ is obvious, since it only appears in the quadratic
regularization term: all optimal configurations have ⟨r⟩ = 0. This means that we only need
to optimize the M(M − 1)/2 pairwise distances dxy.

Symmetry. Let π : {1, ...,M} → {1, ...,M} be a permutation of X . Suppose that π is a
symmetry of the Markov chain, i.e., that

p0(π(x)) = p0(x) p(π(y)|π(x)) = p(y|x) . (12)

We will show that the objective function shares this symmetry. Consider the map that
takes dxy 7→ dπ(x)π(y). Because pint only depends on pairwise distances, we have pint(y|x) 7→
pint(π(y)|π(x)). The relevant part of the objective becomes

−
∑
x,y

p0(x)p(y|x) log pint(π(y)|π(x)) + α
∑
a̸=b

p0(a)p0(b)
d2π(a)π(b)

4

= −
∑
x,y

p0(π(x))p(π(y)|π(x)) log pint(π(y)|π(x)) + α
∑
a̸=b

p0(π(a))p0(π(b))
d2π(a)π(b)

4

(13)

where we have used the definition of the symmetry. But since we are summing over x, y, a,
and b, it does not matter how we permute them; hence, the map we have introduced does
not change the objective.

1. Note that DM = (M − 1)D +D ≥ M(M−1)
2

+D. At worst, we have as many degrees of freedom as we
started with, but we usually have fewer. This only works since we assumed D ≥ M .
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For convex optimization problems, one can show that the unique global minimum of the
objective must share its symmetries. But our problem is probably not convex, so we must
settle for something weaker: in the spirit of the Purkiss principle (Waterhouse, 1983), we
can look for solutions that share the objective’s symmetries. A more rigorous analysis of
Eq. 11 may be able to show that Waterhouse’s precise formulation of the Purkiss principle
applies, although we do not pursue such an analysis here.

4. Results: optimal packing for uniform and cyclic topologies

In this section, we study the symmetric solutions of two classes of highly symmetric packing
problems: the first assumes environment statistics are uniform (each state is equally likely
to be next), and the second assumes statistics are cyclic (transitions occur on a ring).

J d

b

dij = d

� � � � � � � �� � � � �� � � e.g.

M=3 M=4

(M-1)-simplex

� �
� � � �cost vs distance optimal distance vs bias

Solution:

d

Figure 2: Solution of packing problem for a Markov chain with a uniform topology (see
top right graphs). a. The optimal solution has the distance between all states
equal, which means the geometry is that of a (M − 1)-simplex. b. The objective
function versus the distance d. Note the bifurcation as the bias decreases. c. The
optimal distance as a function of the bias. It is zero for very small or large biases.

4.1. Optimal packing for uniform topology

If environmental transitions are completely uniform, then the corresponding Markov chain
can be visualized as a complete graph (each vertex is connected to all others) on M vertices
(Figure 2). Every possible permutation of X is a symmetry of this Markov chain, so our
symmetric solution has dij = d for all pairs. Hence, the geometry of this representation
is completely determined: it is an (M − 1)-simplex, an (M − 1)-dimensional object (see
Figure 2a for two examples).
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After some algebra (see Appendix B), we find that the objective function can be written

J = 2 log
[
eb + (M − 1)e−d2/2

]
−log

[
e2b + 2(M − 2)eb−d2/2 + (M2 − 3M + 5)e−d2

]
+α

M − 1

M

d2

4

up to unimportant additive constants. The cost J as a function of the distance d between
attractor states is plotted in Figure 2b for different values of the bias b. We observe fairly
interesting qualitative behavior: when the bias is small, encoding and decoding are highly
noisy, and the optimal solution places all states at the origin; when the bias is large, per-
formance is good even if all states are placed arbitrarily close together; finally, when the
bias is moderate, a nontrivial solution exists. In the region with a nontrivial solution, the
optimal distance decreases monotonically as the bias increases (Figure 2c).

4.2. Optimally packing four attractor states

The simplest possible cyclic Markov chain that is not uniform has M = 4 states. The
relevant graph is a square, and the relevant symmetry group is D4, the dihedral group of
order 4. Symmetry constraints (in particular, rotation symmetry) tell us that d12 = d23 =
d34 = d41 = d, and that d13 = d24 = L; the precise values of d and L must be determined
by optimizing the objective.

Naively, we might expect that the answer should be a square in neural activity space;
however, this is not necessarily true, even after our correction for noise anisotropy. First off,
non-square arrangements of four points exist with equal edge lengths and diagonals. For
example, a square folded along one diagonal, with its angles slightly distorted, satisfies the
distance constraints (Figure 3a).

After some algebra (see Appendix C), we find that the objective function can be written

J = logZ + 2 log(eb + Z) +
d2

2
− log

[
e2b + 4ebe−L2/2 + 3e−L2

+ 4e−d2
]
+

α

4

(
d2

2
+

L2

4

)
,

which we plot in Figure 3b for different values of the bias b. We see a similar phase transition
as the one we saw in the uniform case: for small bias, the optimal solution places all states
at the origin because it is too noisy; for a moderate bias, there is a nontrivial solution.
Unlike before, in the case of a large bias, not all states are placed at the origin: the meaning
of d = 0 and L ̸= 0 is essentially that states are ‘glued’ together so that the quadrilateral
becomes a line.

Perhaps unexpectedly, the optimal d and L do not produce a square representation in
general, since L/d ̸=

√
2 except at a special bias value (Figure 3c). The actual arrangement

produced (effectively three-dimensional, since only four points are involved) is depicted for
a few bias values in Figure 3d. Note that if the bias is just large enough for a nontrivial
solution to exist, the arrangement is approximately square.

4.3. Optimal packing for cyclic topology

If environmental transitions are cyclic, then the corresponding Markov chain can be visual-
ized as a cycle graph CM . By rotational symmetry, we have as many distances to determine
as there are distinct vertex-vertex distances in a regular polygon (and this number differs
depending on whether M is even or odd). The relevant symmetry group is DM , the dihedral
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d13 = d24 = L
d12 = d23 = d34 = d41 = d
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Figure 3: Solution of packing problem for a Markov chain with a square topology. a. The
optimal solution has two undetermined distances d and L; depending on their
ratio, non-square solutions are possible. b. The objective function versus d and
L for different bias values. Note the phase transitions for small and large biases.
c. The optimal d and L values generally do not have L/d =

√
2 when a nontrivial

solution exists. d. The optimal arrangement is generally not square.
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group of order M . In principle, this problem could be analyzed using the same approach we
used to analyze the M = 4 case; however, this is extremely tedious. An interesting special
case that may be tractable is where the bias b is large, in which case pint is nearly (see
Appendix D)

pint ≈
e−d21/2

Z

1 + 2e−b

2M/2−1∑
k=1

e−d2k/2−d2k+1/2+d21/2 − Z

 Z = e−d2N/2 +

M/2−1∑
k=1

2e−d2k/2 ,

where d1, d2, and so on are the various state-state distances. Our intuition from the
M = 4 case should suggest the following: the optimal configuration should have all state-
state distances (approximately) equal to those of a regular polygon near the minimal bias
sufficient to support a nontrivial configuration. We conjecture that a result like this formally
holds when M and α are both large.

5. Discussion

We have attempted to formulate the problem of packing attractor states in a neural repre-
sentation so that internal transition statistics match environmental transition statistics as
much as possible. Here, we will make comments mainly about two things: other potentially
tractable Markov chain topologies, and possible generalizations of our formulation.

Other classes that may be tractable include straightforward generalizations of the cyclic
topology (e.g., spherical or toroidal) and a translation-invariant lattice topology. It may be
somewhat surprising that the optimization problem proved somewhat difficult even in the
case of a cyclic topology. This suggests that exact solutions may be hard to obtain, even for
models with a high degree of symmetry, unless an approximation (e.g., high bias, large M)
or special trick is used. Simulation may be a more effective route towards understanding
the behavior of this problem. For example: is the global minimum generally unique? It was
in the cases we examined, but this does not imply much about the general case.

At least superficially, our packing problem somewhat resembles the problem of finding
Euclidean graph embeddings (Cai et al., 2018). (There are important qualitative differences
in the functional form of the objective, however.) It may be possible to adapt some results
from that setting to provide insight here.

A variety of generalizations are possible, both to make the problem more mathematically
interesting and to make it more relevant to neuroscience. If we return to our definition of
pint(y|x) (Eq. 5), a few become obvious: we can use more realistic encoding/decoding
models, like Poisson spiking models or probabilistic population codes (Ma et al., 2006;
Vastola et al., 2023); we can use a more realistic dynamics model, like a recurrent neural
network; and we can define distances or dynamics on a non-Euclidean space. It is unclear
which more complex choices would still yield a somewhat tractable mathematical problem.

An interesting phenomenon potentially related to the problem we consider here is the
fact that neural representations tend to drift (Driscoll et al., 2022; Masset et al., 2022). If
representational drift happens on a longer time scale than representation optimization, our
formulation suggests that drift may be a consequence of changing environmental transition
statistics (or a changing internal model of environmental statistics). This is somewhat
compatible with other ideas about possible advantages of representational drift, e.g., for
multi-task learning.
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Appendix A. Simplifying the objective

In this appendix, we will simplify the objective. Assuming a diagonalizable covariance
matrix, we have

Σ−1 = QTΛ−1Q (14)

and can make a change of variables to

r = Λ−1/2Qz . (15)

In terms of this variable, the objective reads

J [{rx}] = −
∑
x,y

p0(x)p(y|x) log pint(y|x) + α
∑
x

p0(x)
∥rx∥22
2 (16)

where pint is now exclusively a function of the pairwise distances between the ra.
We can reparameterize this objective in terms of a center ⟨r⟩ and pairwise distances dij

between the ra. This is obvious for the Kullback-Leibler divergence term, so we only need
to write the regularization term in terms of them. Note,

∥rx∥22 = ∥rx − ⟨r⟩+ ⟨r⟩∥22 = ∥rx − ⟨r⟩∥22 + ∥⟨r⟩∥22 + 2(rx − ⟨r⟩) · ⟨r⟩ . (17)

Next, ∑
x

p0(x)
∥rx∥22
2

=
∑
x

p0(x)
1

2

[
∥rx − ⟨r⟩∥22 + ∥⟨r⟩∥22

]
. (18)

After some algebra, we can show

∥rx − ⟨r⟩∥22 =
∑
a,b

p0(a)p0(b)
1

2

[
∥rx − ra∥22 + ∥rx − rb∥22 − ∥ra − rb∥22

]
. (19)

Finally,

∑
x

p0(x)
∥rx∥22
2

=
∑
x

p0(x)

 ∑
a,b

p0(a)p0(b)

(
d2xa
4

+
d2xb
4

−
d2ab
4

)
+

∥⟨r⟩∥22
2


=

∥⟨r⟩∥22
2

+
∑
a,b

p0(a)p0(b)
d2ab
4

.

(20)

Using this result, we get the reparameterized objective that appears in the main text.
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Appendix B. Details of uniform calculation

Consider a Markov chain for which p0(x) = 1/M for all x, and p(y|x) = 1−δxy
M−1 . This Markov

chain is maximally symmetric, so our symmetric solution should have dij = d for all i, j ∈ X .
This means

q(ry|rx) =
1− δxy
M − 1

pe(ra|x) =
δaxe

b + (1− δax)e
−d2/2

eb + (M − 1)e−d2/2

pd(x|ra) = pe(ra|x) .

(21)

Note that Z(x) = Z is state-independent, and has value

Z = (M − 1)e−d2/2 . (22)

Multiplying out the encoding and decoding models, we have

pint(y|x) =
1

M − 1

∑
a,b

pe(rb|y)(1− δab)pe(ra|x)

=
1

(M − 1)(eb + Z)2

∑
a̸=b

[
δaxe

b + (1− δax)e
−d2/2

] [
δbye

b + (1− δby)e
−d2/2

]
=

1

(M − 1)(eb + Z)2

{
e2b + 2(M − 2)eb−d2/2 + [M(M − 1)− 2(M − 2) + 1] e−d2

}
=

1

(M − 1)(eb + Z)2

{
e2b + 2(M − 2)eb−d2/2 + (M2 − 3M + 5)e−d2

}
.

Taking a logarithm,

− log pint = log(M−1)+2 log(eb+Z)−log
[
e2b + 2(M − 2)eb−d2/2 + (M2 − 3M + 5)e−d2

]
.

The objective becomes

J = − 1

M(M − 1)

∑
x ̸=y

log pint + α
M(M − 1)

M2

d2

4

= − log pint + α
M(M − 1)

M2

d2

4

= log(M − 1) + 2 log(eb + Z)− log
[
e2b + 2(M − 2)eb−d2/2 + (M2 − 3M + 5)e−d2

]
+ α

M(M − 1)

M2

d2

4
.

Up to unimportant additive constants,

J = 2 log
[
eb + (M − 1)e−d2/2

]
−log

[
e2b + 2(M − 2)eb−d2/2 + (M2 − 3M + 5)e−d2

]
+α

M − 1

M

d2

4
.
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Appendix C. Details of four state calculation

Consider a Markov chain for which p0(x) = 1/M for all x, and p(y|x) = (δy,x+1 + δy,x−1)/2
(where addition is done modulo M , although note that our state labels begin at 1 rather
than 0). Here, we consider the case M = 4. The relevant symmetry group is D4, the
dihedral group of order 4. Symmetry constraints tell us that d12 = d23 = d34 = d41 = d,
and that d13 = d24 = L.

Relevant quantities include

Z = 2e−d2/2 + e−L2/2

q(rb|ra) =
(δb,a+1 + δb,a−1)e

−d2/2 + δb,a+2e
−L2/2

Z

pe(ra|x) =
δaxe

b + Zq(ra|rx)
eb + Z

pd(y|rb) = pe(rb|y) .

(23)

Note also that all functions are symmetric, e.g., q(rb|ra) = q(ra|rb). We can compute pint:

pint =
∑
a,b

pe(rb|y)q(rb|ra)pe(ra|x)

=
1

(eb + Z)2

∑
a,b

[
δaxe

b + Zq(ra|rx)
] [

δbye
b + Zq(rb|ry)

]
q(rb|ra)

=
1

(eb + Z)2

e2bq(ry|rx) + 2Zeb
∑
a̸=x,y

q(ry|ra)q(ra|rx) + Z2
∑
a,b

q(ry|rb)q(rb|ra)q(ra|rx)

 .

The above expression involves two- and three-step probabilities. These can be computed
exactly in this case, although it is tedious. They technically only need to be computed
(by symmetry) for one of the adjacent transitions (e.g., 1 → 2), since those are the only
transitions that contribute to the objective function.

Let 1 label the starting state, 2 and 3 be adjacent vertices, and 4 be the farther vertex.
The two-step probabilities are (9 relevant paths, quantified using Z):

q(2)(1 → 1) = q12q21 + q13q31 + q14q41 =
2e−d2 + e−L2

Z2

q(2)(1 → 2) = q13q32 + q14q42 =
2e−d2/2−L2/2

Z2

q(2)(1 → 4) = q12q24 + q13q34 =
2e−d2

Z2
.

(24)

The relevant three-step probability is a sum of the probabilities of several paths:

2e−
3
2
d2 + e−d2/2−L2

Z3
= q12 [q21q12 + q23q32 + q24q42]

2e−
3
2
d2

Z3
= q13 [q34q42 + q31q12]

2e−d2/2−L2

Z3
= q14 [q43q32 + q41q12] .

(25)
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Overall, the relevant three-step probability is

q(3)(1 → 2) =
4e−

3
2
d2 + 3e−d2/2−L2

Z3
. (26)

Finally, we can write that the relevant part of pint is

pint =
1

(eb + Z)2Z

{
e2be−d2/2 + 2eb(2e−d2/2−L2/2) + (4e−

3
2
d2 + 3e−d2/2−L2

)
}

=
e−d2/2

(eb + Z)2Z

{
e2b + 4ebe−L2/2 + (4e−d2 + 3e−L2

)
}

.

(27)

Taking a logarithm,

− log pint = logZ + 2 log(eb + Z) +
d2

2
− log

[
e2b + 4ebe−L2/2 + 3e−L2

+ 4e−d2
]
. (28)

The objective becomes

J = logZ + 2 log(eb + Z) +
d2

2
− log

[
e2b + 4ebe−L2/2 + 3e−L2

+ 4e−d2
]
+

α

4

2

M2
(4d2 + 2L2)

= logZ + 2 log(eb + Z) +
d2

2
− log

[
e2b + 4ebe−L2/2 + 3e−L2

+ 4e−d2
]
+

α

4

(
d2

2
+

L2

4

)
where the regularization term comes from counting the number of pairings of each kind.
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Appendix D. Details of general cyclic topology calculation

As in the previous appendix, consider a Markov chain for which p0(x) = 1/M for all x, and
p(y|x) = (δy,x+1 + δy,x−1)/2 (where addition is done modulo M). For simplicity, assume
that M is even, i.e., that M = 2N for some integer N ≥ 1. Symmetry constraints tell us
that distances should only depend on two vertices’ relative positions along the ‘ring’. For
example,

d12 = d23 = · · · = dx,x+1 (29)

for any x ∈ X . For M even, there are M/2 unique distances that we must optimize (i.e.,
one hop away, two hops away, and so on); two vertices can only be at most M/2 edges
apart. We will label these distances as d1, d2, ..., dM/2.

Relevant quantities include

Z = e−d2N/2 +
N−1∑
k=1

2e−d2k/2

q(rb|ra) =
δb,a+Ne−d2N/2 +

∑N−1
k=1 (δb,a+k + δb,a−k)e

−d2k/2

Z

pe(ra|x) =
δaxe

b + Zq(ra|rx)
eb + Z

pd(y|rb) = pe(rb|y) .

(30)

As in the previous appendix, we can write pint in terms of two- and three-step transition
probabilities:

pint(y|x) =
e2bq(ry|rx) + 2Zeb

∑
a̸=x,y q(ry|ra)q(ra|rx) + Z2

∑
a,b q(ry|rb)q(rb|ra)q(ra|rx)

(eb + Z)2
.

The only difference is that these probabilities are now slightly more annoying to compute.
Fortunately, only a single transition—the nearest neighbor transition, from any x to x+ 1
(or equivalently, to x− 1)—contributes to the objective, which by symmetry is equal to

J = − log pint(2|1) +
2α

4M2

M−1∑
k=1

(M − k)d2k

= − log pint(2|1) +
2α

4M

[
1

2
d2N +

N−1∑
k=1

d2k

] (31)

where x = 1 has been chosen arbitrarily, and where the details of the regularization term
come from counting the pairwise distances of each kind.

The second term in pint := pint(2|1) involves M − 2 nonzero terms, and evaluates to

2Zeb
∑
a̸=x,y

q(ry|ra)q(ra|rx) =
4eb

Z

N−1∑
k=1

e−d2k/2−d2k+1/2 . (32)
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As mentioned in the main text, we will simplify this calculation by considering the b → ∞
limit. In this limit, the three-step transition probability term can be ignored since it is of
order e−2b. We have

pint =
q(ry|rx) + 2Ze−b

∑
a̸=x,y q(ry|ra)q(ra|rx) + Z2e−2b

∑
a,b q(ry|rb)q(rb|ra)q(ra|rx)

(1 + Ze−b)2

≈

q(ry|rx) + 2Ze−b
∑
a̸=x,y

q(ry|ra)q(ra|rx)

[
1− 2Ze−b

]

≈ q(ry|rx) + 2Ze−b

 ∑
a̸=x,y

q(ry|ra)q(ra|rx)− q(ry|rx)


to first order in e−b. Explicitly, since only the y = x+ 1 term matters,

pint ≈
e−d21/2 + 2e−b

[
2
∑N−1

k=1 e−d2k/2−d2k+1/2 − Ze−d21/2
]

Z

=
e−d21/2

Z

{
1 + 2e−b

[
2
N−1∑
k=1

e−d2k/2−d2k+1/2+d21/2 − Z

]}
.

We can now write

J =
d21
2

+ logZ − log

{
1 + 2e−b

[
2

N−1∑
k=1

e−d2k/2−d2k+1/2+d21/2 − Z

]}
+

2α

4M

[
1

2
d2N +

N−1∑
k=1

d2k

]

≈ d21
2

+ log

[
e−d2N/2 +

N−1∑
k=1

2e−d2k/2

]
− 2e−b

[
2
N−1∑
k=1

e−d2k/2−d2k+1/2+d21/2 − Z

]
+

2α

4M

[
1

2
d2N +

N−1∑
k=1

d2k

]
.

We would like to minimize this with respect to d1, ..., dN . The d1 derivative is

∂J

∂d1
= d1 −

2d1e
−d21/2

Z
− 4e−bd1

[
N−1∑
k=2

e
−d2k−d2k+1+d21

2 + e−d21/2

]
+

α

M
d1 . (33)

The derivative with respect to dk (for 2 ≤ k < N) is

∂J

∂dk
= −2dke

−d2k/2

Z
+ 4e−bdk

[
e

−d2k−1−d2k+d21
2 + e

−d2k−d2k+1+d21
2 − e−d2k/2

]
+

α

M
dk . (34)

The derivative with respect to dN is

∂J

∂dN
= −dNe−d2N/2

Z
+ 2e−bdN

[
2e

−d2N−1−d2N+d21
2 − e−d2N/2

]
+

α

2M
dN . (35)
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Setting all of these equal to zero, but assuming all distances are nonzero, we have the
following constraints:

0 = 1− 2e−d21/2

Z
− 4e−b

[
N−1∑
k=2

e
−d2k−d2k+1+d21

2 + e−d21/2

]
+

α

M

0 = −2e−d2k/2

Z
+ 4e−b

[
e

−d2k−1−d2k+d21
2 + e

−d2k−d2k+1+d21
2 − e−d2k/2

]
+

α

M

0 = −e−d2N/2

Z
+ 2e−b

[
2e

−d2N−1−d2N+d21
2 − e−d2N/2

]
+

α

2M
.

(36)
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