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Abstract

Quantifying predictive uncertainty regarding future electricity demand is the main goal of
probabilistic load forecasting. A good probabilistic model is often identified with forecasted
densities that are as concentrated (“sharp”) as possible. However, this goal is frequently
achieved by sacrificing forecast reliability, i.e. the statistical compatibility between fore-
casted densities and observed frequencies. In real-world applications, reliability is the
crucial measure of model quality, especially when predicting distribution tails. We propose
a new methodology for probabilistic load forecasting, introducing a novel loss function
which allows an excellent balance between forecast sharpness and reliability. We apply the
proposed modelling approach for predicting the electricity load on a benchmark dataset.
Experimental results show that the obtained density forecasts are extremely reliable and
also close to optimal in terms of sharpness and point accuracy.
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1. Introduction

Load forecasting is an essential task in modern power systems. Being able to generate
accurate forecasts for future load is extremely important for several reasons, such as meeting
technical constraints, achieving operational excellence and increasing financial opportunities
both for system operators and end-users (see, e.g., Hong and Fan, 2016). In the last decade,
probabilistic load forecasting has gained an ever-increasing interest among researchers and
practitioners, by allowing management of the intrinsic uncertainty that characterises the
dynamics of electricity demand.

In recent years, the explosion of Machine Learning (ML) techniques has significantly
impacted probabilistic load forecasting. ML models have proven to be highly effective
forecasting tools, achieving excellent predictive performance (see, e.g., Yang et al., 2018;
Smyl and Hua, 2019; Baviera and Messuti, 2023). In particular, Artificial Neural Networks
(ANNs) have been largely employed in probabilistic load forecasting because of their ability
to capture and model the nonlinear dependencies observed in the electricity load behaviour
(see, e.g., Vossen et al., 2018; Azzone and Baviera, 2021). However, it is known that ML
models tend to be overconfident, meaning they frequently overestimate the likelihood of
probable events, and underestimate the true predictive uncertainty (see, e.g., Guo et al.,
2017). This behaviour is particularly risky in safety-critical disciplines such as load fore-
casting. Nowadays, utilities and system operators prioritise probabilistic forecasts being
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reliable rather than merely accurate, due to the rapid evolution of power systems (see, e.g.,
Hong and Fan, 2016).

In this study, we focus on the issue of overconfidence in probabilistic load forecasting
using Artificial Neural Networks. To our knowledge, overconfidence mitigation has only
been explored in ANN literature within the domain of classification problems (see, e.g.,
Guo et al., 2017; Kristiadi et al., 2020; Wang et al., 2021). It has been proven that some
ANNs used for classification tasks are always overconfident “far away from the data” (Kris-
tiadi et al., 2020). Moreover, as pointed out by Wei et al. (2022), ANN-based classifiers
often struggle with out-of-distribution (OOD) inputs, i.e. inputs sampled from a distribu-
tion different from that encountered during training. It is important to note that unlike
image and document classification datasets, where data can be extensive, the time series
data used in probabilistic load forecasting typically consists of a single realisation from the
past. This characteristic makes forecasting models more vulnerable to OOD examples and,
consequently, to overconfidence.

In point forecasting, accuracy is the most relevant objective for practical applications:
the goal is to generate a point forecast ŷt as close as possible to the realised value yt. In
probabilistic forecasting of time series, reliability – the frequency with which the realised
value lies in the forecasted α-Prediction Interval (PI) – is the target quantity, and it is
measured via the Empirical Coverage (see, e.g., Pinson et al., 2007). In particular, a pre-
diction is considered overconfident if the forecasted distribution is too sharp around the
point forecast. In this paper, we indicate a simple criterion for detecting overconfidence:
a forecasting model is overconfident if the Empirical Coverage is smaller than α for every
relevant confidence level α.

Mitigating the overconfidence that arises using ANN-based forecasters requires addi-
tional design thinking that is often overlooked in the ML literature. In many cases, over-
confidence appears even to be incentivised, as maximising the sharpness of predictions is
often perceived as the primary goal for a forecaster. In this paper, we design a new “ro-
bustified” loss function that, on the one hand, preserves accuracy, and on the other hand,
increases reliability: mitigating overconfidence corresponds to enhancing reliability without
affecting accuracy. We propose a quantitative approach, modifying a standard loss function
by introducing an additional parameter responsible for controlling overconfidence.

Three are the main contributions of this study. First, we introduce a novel loss function
for probabilistic forecasting, derived from an existing score, the Pinball Loss. Second, we
present an application of this new loss function in probabilistic load forecasting with ANNs.
With the proposed technique, we show that it is possible to increase the reliability of the
predicted distributions and to enhance the modelling of their tails – a crucial aspect for
managing operational and financial risks. Finally, we show that the increase in forecast
reliability comes at no expense of forecast accuracy.

The rest of the paper is organised as follows. In Section 2, we describe the standard
evaluation measures employed in probabilistic forecasting. In Section 3, we introduce the
new loss function and discuss its role in mitigating overconfidence in predictive models. In
Section 4, we present the experimental analysis, focusing on the applications of the pro-
posed methodology in probabilistic load forecasting. Finally, Section 5 provides concluding
remarks.
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2. Evaluation of probabilistic forecasts: the standard approach

While measuring the accuracy of point forecasts is generally straightforward, evaluating the
quality of probabilistic forecasts is a more complex task. Specific scores are employed for
this purpose: depending on the output issued by the forecasting model, these scores are
designed to evaluate either the quality of a forecasted quantile, or the quality of a forecasted
probability distribution; in the literature, the expression scoring function is used to indicate
scores of the former type, and the expression scoring rule to indicate scores of the latter
type (see, e.g., Gneiting et al., 2007).
In this section, we discuss the most relevant scoring functions and scoring rules used in
probabilistic forecasting.

2.1. From Pinball Loss to CRPS

According to the literature, the Pinball Loss is the fundamental scoring function used in
probabilistic forecasting of univariate time series (see, e.g., Gneiting et al., 2007; Hong and
Fan, 2016). It serves to measure the quality of forecasted quantiles and it is defined as
follows: given a random variable Y and a level α ∈ (0, 1),

P(q, y ;α) :=

{
α(y − q) if y ≥ q ,
(1− α)(q − y) if y < q ,

(1)

where q is the forecast for the α-quantile of Y , and y is the corresponding realisation. This
scoring function is well-known in the probabilistic forecasting literature and it is commonly
selected as loss function in Quantile Regression (see, e.g., Könker, 2005). In particular,
given an integrable random variable Y with CDF F , it holds that

E
[
P
(
F−1(α), Y ; α

)]
≤ E [P (q, Y ; α)] ∀q ∈ R ,

a property known as (strict) consistency (see, e.g., Fissler et al., 2023).

In forecasting practice, probabilistic forecasts are commonly provided in the form of PIs,
rather than quantiles. The Pinball Loss can be extended to serve as a scoring function for
PIs. We define a new scoring function PC, which we call the central Pinball Loss: given a
central α-PI [l, u], we write

PC(l, u, y; α) := P
(
l, y ;

1− α
2

)
+ P

(
u, y ;

1 + α

2

)
. (2)

The central Pinball Loss is obtained as the sum of the Pinball Loss of the quantiles at
level 1−α

2 and 1+α
2 , the two quantiles which characterise the central α-PI. Even this scoring

function is consistent with respect to the class of integrable random variables – because
each of the two terms in (2) is –, making it suitable to be a natural loss function for PIs.

When evaluating the quality of a probabilistic forecasting model, one considers the
sample Pinball Loss of the forecasted α-quantiles of the time span {1, . . . , T}. Given a set
of forecasts for the α-quantile, the sample Pinball Loss is computed as

PLα :=
1

T

T∑
t=1

P(qt,α, yt ; α) , (3)
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being yt the realisation at time t and qt,α the corresponding forecast for the α-quantile. The
computation of this quantity requires the selection of a specific confidence level α: in the
load forecasting literature, the performances of different forecasters are typically evaluated
considering just a few relevant values for α (for instance, 50% and 90%; see, e.g., Liu et al.,
2015; Yang et al., 2019).

In recent years, it has also become common to evaluate probabilistic forecasts in terms
of Average Pinball Loss (APL), a score obtained as the mean of Pinball Losses over the
percentiles, i.e.

APL :=
1

99

99∑
k=1

PL k
100

. (4)

APL gained momentum since the last editions of the GEFCom, where it was employed to
rank predictive models and to assess probabilistic forecasts (Hong et al., 2016, 2019). APL
can also be chosen as a loss function for models that output multiple quantiles, or entire
probability distributions. Its employment for model training – and not just for performance
evaluation – is quite recent in the literature; for instance, it has been considered by Wang
et al. (2019) for training an LSTM network which predicts simultaneously all percentiles of
the inferred density.

Many safety-critical applications, such as those in the energy sector, require forecasts
in the form of continuous densities (see, e.g., Gilbert et al., 2023). In this case, forecasting
models are designed to predict not quantiles or percentiles, but a vector of parameters θ
that completely characterises the CDF F (x) = F (x; θ) of the forecasted distribution. An
example of a probabilistic forecaster of this kind is a model that predicts the mean and the
standard deviation of a Gaussian density (see, e.g., Azzone and Baviera, 2021; Marcjasz
et al., 2023).

To train these forecasting models, one can use as loss function the Continuous Ranked
Probability Score (CRPS; cf. Matheson and Winkler, 1976; Berrisch and Ziel, 2023), which
is defined as

CRPS(F, y) : =

∫ +∞

−∞
(F (x)− 1x≥y)2 dx = (5)

= 2

∫ 1

0
P
(
F−1(α), y ; α

)
dα . (6)

As highlighted by the expression (6), this scoring rule represents the continuous counterpart
of the APL, with the arithmetic average replaced by the integral average. The forecast q for
each α-quantile – the first argument of the Pinball Loss in (1) – is selected as the α-quantile1

of the CDF F . Moreover, with a change of variable, the CRPS can also be expressed in
terms of the central Pinball Loss in (2), namely as

CRPS(F, y) =

∫ 1

0
PC
(
F−1

(
1− α

2

)
, F−1

(
1 + α

2

)
, y ; α

)
dα . (7)

1. In the following, we consider a strictly monotone CDF F , so that any α-quantile is given by F−1(α), i.e.
by CDF inversion. Nevertheless, all results can be generalised for non-invertible CDFs.
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In the energy forecasting literature, CRPS has mainly been employed as an evaluation
metric, but recently it has also been adopted as a loss function for model training (see, e.g.,
Li et al., 2019; Wang et al., 2022).

The strength of CRPS is that it evaluates a whole probability distribution, providing
an overall index of forecast quality. It is however important to underline that CRPS alone
is not enough to measure reliability, and in particular to deal with overconfident forecasts,
as we discuss in Section 3.

2.2. The Gaussian CRPS

ANNs are trained on data using iterative algorithms, making it crucial for loss functions
to be easily computable. In the case of CRPS, calculating the integral in (5) quickly and
accurately poses some relevant challenges. In the following proposition, we prove that this
scoring rule admits a closed-form expression if F – the distribution we want to calibrate or
forecast – is Gaussian. We denote the resulting scoring rule as G-CRPS.

Proposition 1 Let F be the CDF of a Gaussian random variable with mean µ and stan-
dard deviation σ. Then, CRPS reads

G-CRPS(µ, σ, y) = σ

[
y − µ
σ

(
2N

(
y − µ
σ

)
− 1

)
+ 2ϕ

(
y − µ
σ

)
− 1√

π

]
, (8)

where ϕ(·) and N (·) represent the PDF and the CDF of a standard normal, respectively.

Proof See Gneiting et al. (2005), p.1102.

The obtained expression is very simple and it only makes use of the Gaussian PDF
and CDF. We notice that G-CRPS is symmetric with respect to the standardised error
y−µ
σ , a fact that is explained by the symmetry of the normal distribution. In this sense,

this scoring rule does not discriminate on whether the realisation y is above or below the
forecasted mean µ, but only on the magnitude of the standardised error

∣∣y−µ
σ

∣∣.
3. The new loss function

Highly-parametrised ML models, such as ANNs, are particularly prone to overconfidence
(see, e.g., Guo et al., 2017). In the context of probabilistic forecasting, this results in
lack of generalisation on out-of-sample data and in underestimation of the true predictive
uncertainty. As mentioned in Section 1, the issue of overconfidence is particularly relevant
for safety-critical applications, such as energy systems.

In this section, we propose a new methodology to tackle overconfidence and to enhance
the reliability of probabilistic forecasts. We introduce a novel “robustified” loss function,
obtained by suitably modifying the CRPS, which can be employed for training ANNs.

3.1. Enhancing reliability: the general case

Nowadays it is standard practice to use CRPS – and its discretised version, the APL –
to assess the quality of probabilistic forecasts, especially in the energy sector (see, e.g.,
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Hong et al., 2016; Nowotarski and Weron, 2018). It would therefore seem natural to use
CRPS as a loss function to train a well-performing forecasting model. Nevertheless, a good
predictive model must both be accurate and ensure high out-of-sample reliability; as we
show in Section 4, CRPS often falls short in achieving this second goal.

To enhance generalisation capability on unseen data, we introduce in the following
CRPS[λ], a new loss function obtained by adding a regularisation term to the original
CRPS, which is designed to counter predictive overconfidence. The derivation of this loss
function requires two steps: first, we suitably modify the central Pinball Loss; then, we
compute its integral average over all percentiles, as in (7).

Let us first focus on the structure of the central Pinball Loss. By writing explicitly the
two components in (2), we can reformulate this scoring function as

PC(l, u, y; α) =
1− α

2
(u− l) +


(y − u) if y > u ,

0 if y ∈ [l, u] ,

(l − y) if y < l .

(9)

It is thus possible to notice that the central Pinball Loss is composed of two terms:

B the first one, 1−α
2 (u− l), pertains to the sharpness of the PI [l, u];

B the second one, (y − u)1y>u + (l − y)1y<l, is a penalty applied when the realisation
falls outside the PI, thereby assessing the reliability of the PI [l, u].

As our goal is to mitigate overconfidence, we aim to increase the impact of the second term,
the reliability penalty – or equivalently to lower that of the sharpness term. We modify
the central Pinball Loss by introducing a coefficient λ ∈ [0, 1), and we define the novel loss
function

P [λ]
C (l, u, y;α) : = (1− λ)

1− α
2

(u− l) + (y − u)1y>u + (l − y)1y>l = (10)

= PC(l, u, y;α)− λ 1− α
2

(u− l) , (11)

The correction we propose serves as an adjustment for overconfidence, as it encourages
models to prioritise reliability over sharpness. Specifically, as highlighted by expression (11),

the loss function P [λ]
C introduces a reward for wide PIs, which can be suitably controlled

via the parameter λ.

As discussed in Section 2, for many practical applications it is required to train models
that output entire probability distributions. As a second step, we use (7) to similarly modify
CRPS, obtaining a new loss function for density forecasting. We define this “robustified”
version of CRPS as

CRPS[λ](F, y) :=

∫ 1

0
P [λ]
C

(
F−1

(
1− α

2

)
, F−1

(
1 + α

2

)
, y ; α

)
dα . (12)

Since CRPS[λ] is purposely designed as a loss function, it is essential for it to have a simple
expression. Learning algorithms need to evaluate loss functions a large number of times
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during training, and the numerical integration of (12) does not ensure sufficient accuracy
or computational speed. In the next subsection, we discuss a relevant case in which this
new loss function admits an explicit formula.

3.2. Enhancing reliability: the Gaussian case

In the Gaussian case, it is possible to deduce a closed-form expression for CRPS[λ], which
extends that presented in Proposition 1. Specifically, the following result holds.

Proposition 2 Let F be the CDF of a Gaussian random variable with mean µ and stan-
dard deviation σ. Then, the new loss function reads:

G-CRPS[λ](µ, σ, y) := G-CRPS(µ, σ, y)− λ

(√
2− 1√
π

σ

)
, (13)

where G-CRPS is the original scoring rule defined in (8).

Proof The proof is analogous to that of Proposition 1.

The new loss function is an extension of the original one. It includes an adjustment term
which is similar to the Lasso and Ridge penalties commonly employed in deep learning
to increase generalisation capability (see, e.g., Aggarwal, 2018). This term is specifically
tailored to affect only the σ component, aiming to mitigate overconfidence by encouraging
the generation of more dispersed density forecasts.

4. Experimental Analysis

To test the effectiveness of the new loss function in mitigating overconfidence, we conduct an
experimental analysis on a benchmark dataset. It contains the households’ hourly electricity
load, plus the dry-bulb and the dew-point temperatures, for the New England region. Data
are published by the Independent System Operator of New England (ISO-NE), and this
dataset was adopted for the Global Energy Forecasting Competition in 2017 (GEFCom2017
Hong et al., 2019). For this analysis, we work with data for the whole region, considering
six calendar years, from January 2007 up to December 2012.

4.1. The model

We consider the predictive methodology described in Baviera and Manzoni (2022), which
makes use of RNN(p) models, recurrent networks with a single hidden layer and multiple
feedbacks of Jordan type (i.e. lagged feedbacks from the output layer to the input layer).
These models are the nonlinear extension of ARX(p) models; thus, they are characterised
by a high degree of interpretability.

We aim to generate probabilistic forecasts for the electricity load on an hourly scale.
We consider a one-year-ahead time horizon, a problem that in the literature is known as
mid-term forecasting (see, e.g., Hong and Fan, 2016). In the energy sector, this represents
a challenging forecasting problem due to the coexistence of multi-scale seasonality (at a
yearly, weekly and daily scale) and complex temporal dependencies.
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The predictive methodology considers as target variable the logarithm of the electricity
load, as standard in the literature (see, e.g., Benth et al., 2008, and references therein). It
is a two-stage modelling scheme that considers an initial detrending and deseasonalisation
of the time series and a more refined modelling of the residuals using an RNN.

As a first step, a General Linear Model (GLM) is employed to remove seasonal and trend
components in the time series, using only calendar variables as regressors. Specifically, the
regressors considered are: a linear trend, the first two Fourier terms for the day-of-the-year
and the hour-of-the-day, and three dummy variables that identify Saturday, Sunday and
holidays.

As a second step, the residuals of this linear regression are processed by the RNN(p)
model, so as to capture the nonlinear dependencies involving calendar variables, weather
variables and autoregressive effects. Each residual is modelled as a Gaussian random vari-
able with mean µt and standard deviation σt, outputted by the RNN.

We start by training the baseline model, i.e. the model that uses the original G-CRPS (8)
as loss function for the RNN. Then, to enhance reliability and mitigate overconfidence, we
utilise the new loss function G-CRPS[λ] (13), selecting multiple values for the overconfidence
parameter λ. Moreover, we also compare the results obtained with Maximum Likelihood
Estimation (MLE), which corresponds to using the negative Gaussian log-likelihood as loss
function (see, e.g., Goodfellow et al., 2016). The results are striking.

4.2. Results

We divide the dataset into a training set (data from 2007 to 2010), a validation set (2011)
and a test set (2012). As standard in the literature, we consider training and test sets that
span the full length of the year due to the significant yearly seasonality observed in the data
(see, e.g., Hyndman and Fan, 2010).

We consider an RNN({1, 2, 24}) model due to the autocorrelation of the residuals. In
this way, we aim to capture both hourly (i.e. 1 and 2 hours before) and daily (i.e. 24 hours
before) autoregressive effects: when predicting the distributional parameters for the hour
t, the network takes as autoregressive inputs the parameters forecasted for the hours t-1,
t-2 and t-24. To train the RNNs, we split the original dataset into sequences with length
equal to two days. Moreover, we use Adam as optimiser, and train the model using early
stopping with a patience of 100 epochs. As standard in the literature, a sigmoid activation
function is used in the hidden layer, while a linear one is used in the output layer (see, e.g.,
Goodfellow et al., 2016).

We perform a grid search to determine the best architecture for the RNN. We con-
sider three main hyperparameters: the number of hidden neurons, considering 5, 10, 15
and 20 as possible values; the batch size, which can be 32, 64, or 128; and the learning
rate, either 1e-4, 5e-4, 1e-3 or 5e-3. We perform a grid search for G-CRPS, selecting the
configuration that records the best accuracy in terms of MAPE. The best triplet of hyper-
parameters – corresponding to hidden neurons, batch size and learning rate – is found to
be [10, 32, 0.0005].

To test the effectiveness of the proposed approach, we then recalibrate the model with
the selected optimal hyperparameters on the 2008-2011 data and analyse the results on
the 2012 data. We compute the Empirical Coverage, denoted as EC(α), for the PIs with
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significance levels α ranging from 90% to 99% – those relevant for standard operations in
the energy sector, where high reliability is required (see, e.g., Wang et al., 2017). To achieve
more robust estimates, each model is trained ten times with a different random initialisation
of the RNN weights. The mean of the ten Empirical Coverages is then considered, and the
Standard Error (SE) is used as measure of variability. Different values of the overconfidence
parameter λ are considered.

Figure 1 shows the main result: the parameter λ proves capable of increasing the re-
liability of the probabilistic forecasts. By changing the value of λ, it is possible to re-
duce overconfidence, obtaining more reliable forecasts. In particular, we observe that the
MLE-trained model is outperformed in terms of predictive reliability at every considered
confidence level α when λ is greater than 0.10.

Figure 1: Coverage plot for PIs on the test set (2012). We plot the Empirical Coverage, i.e. the
proportion of realisations falling inside the corresponding α-PI, against the Nominal
Coverage level α. Ten repetitions with different random RNN seeds have been performed:
the plots show the average coverage, with the shaded areas corresponding to ±1 SE.

For a quantitative analysis, we evaluate forecast quality using three standard perfor-
mance metrics, namely MAPE, RMSE and APL. Moreover, we assess reliability by consid-
ering the Empirical Coverage at level α = 90% and α = 95%, and the Average Absolute
Coverage Error (AACE; see, e.g., Alfieri and De Falco, 2020), an index defined as

AACE :=
1

Q

Q∑
q=1

|EC(αq)− αq| , (14)

where {αq}Qq=1 are the considered confidence levels: in our case, those between 90% and
99%. The results are reported in Table 1.
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(a) G-CRPS[λ]

λ MAPE [%] RMSE [MWh] APL [MWh] EC(90%) [%] EC(95%) [%] AACE [%]

0.00 2.01 ± 0.01 409.58 ± 1.31 104.23 ± 0.33 87.90 ± 0.22 92.94 ± 0.18 2.03 ± 0.17
0.05 2.00 ± 0.01 408.45 ± 1.60 103.97 ± 0.39 89.21 ± 0.14 93.64 ± 0.17 1.26 ± 0.13
0.10 2.00 ± 0.01 406.49 ± 1.64 103.87 ± 0.43 90.68 ± 0.10 94.73 ± 0.06 0.59 ± 0.03
0.15 1.99 ± 0.01 406.11 ± 1.67 103.77 ± 0.42 91.87 ± 0.19 95.36 ± 0.11 0.91 ± 0.08
0.20 2.00 ± 0.01 406.91 ± 1.50 104.12 ± 0.40 93.06 ± 0.15 96.06 ± 0.09 1.44 ± 0.07
0.25 2.00 ± 0.01 407.78 ± 1.49 104.62 ± 0.42 94.06 ± 0.11 96.60 ± 0.07 1.94 ± 0.06
0.30 2.00 ± 0.01 408.67 ± 1.76 105.27 ± 0.46 94.99 ± 0.08 97.13 ± 0.05 2.46 ± 0.05

(b) MLE

MAPE [%] RMSE [MWh] APL [MWh] EC(90%) [%] EC(95%) [%] AACE [%]

2.05 ± 0.01 423.59 ± 1.20 107.54 ± 0.39 89.28 ± 0.26 93.70 ± 0.19 1.33 ± 3.87

Table 1: Results on the test set (2012): MAPE, RMSE and APL for the considered loss functions,
together with Empirical Coverage (EC) for the 90% and 95% PIs, and the Average Abso-
lute Coverage Error (AACE). We report the average values and the SEs of the statistics,
obtained as a result of ten repetitions of the training with different random initialisation.

In all cases, we obtain probabilistic forecasts with high reliability, achieving in particular
an excellent coverage for λ = 0.10 and λ = 0.15. Moreover, the point forecasts are extremely
accurate, with a MAPE well below the threshold of 2.50%, the value commonly used by
practitioners to identify very good predictive models.

Compared to the benchmark MLE training, the loss function G-CRPS[λ] demonstrates its
capability to generate not only more reliable probabilistic forecasts but also more accurate
point forecasts. Moreover, we notice that MAPE, RMSE and APL are not affected by the
choice of λ: the adjustment does not have any impact in terms of the means µt of the
predicted distributions, but only on their standard deviations σt.

Finally, the effect of the adjustment for overconfidence can be observed in Figure 2. The
plot shows the forecasts for an entire week in August 2012, highlighting how the 95% PIs
are modified when the coefficient λ is moved from λ = 0.00 to λ = 0.10. The PIs appear
to be slightly enlarged, but not uniformly: the adjustment is more pronounced during the
central hours of the day compared to the night hours, where less variability is present.
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Figure 2: Density forecasts of hourly load on the test set (2012) for a week in August, when

G-CRPS[0.00] and G-CRPS[0.10] are used for training the predictive model. The 95%
PIs are plotted in the two cases, together with the realised electricity load. We observe
that the PIs obtained with the new loss function are only slightly larger than the ones
obtained with the standard technique. Nevertheless, as shown in the zoomed plot (right),
this almost negligible modification allows the realised load to fall within the PIs during
periods where, using the standard technique, they would have fallen outside of the PIs.

5. Conclusions

Artificial Neural Networks, although being highly accurate, often produce overconfident
predictions potentially undermining decision-making in critical systems such as those in the
energy sector. In the probabilistic load forecasting domain, very simple forecasting tech-
niques, even if relatively inaccurate, are frequently employed because they provide reliable
forecasts.

In this paper, we have presented a novel forecasting methodology aimed at reducing the
predictive overconfidence. First, we have introduced a new loss function that incorporates
an additional parameter λ. This loss function, called CRPS[λ], is designed to enhance the
reliability of probabilistic forecasts, and allows fine-tuning of the calibration of distribution
tails, which are crucial for decision-making in the energy sector. Second, we have tested
the proposed approach on a benchmark dataset of electricity load, demonstrating that our
methodology achieves exceptionally accurate and reliable results. Third, we have shown
that the increase in forecast reliability – and in particular that of the tails, i.e. for high
confidence levels – comes at no expense of forecast accuracy.
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