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Abstract

crepes is a Python package for conformal prediction, which has been extended in several
ways since its introduction. While the original version of the package focused on conformal
regressors and predictive systems, the current version also includes conformal classifiers.
New classes and methods for computing non-conformity scores and Mondrian categories
have also been incorporated. Moreover, the package has been extended to allow for seamless
embedding of classifiers and regressors in the conformal prediction framework; instead of
generating conformal predictors that are separate from the learners, the latter can now be
equipped with specific prediction methods that in addition to providing point predictions
also can generate p-values, prediction sets and intervals, as well as conformal predictive
distributions. Extensive documentation for the package has furthermore been developed.
In this paper, these extensions are described, as implemented in crepes, version 0.7.0.

Keywords: Conformal classifiers, Conformal regressors, Conformal predictive systems,
Mondrian conformal predictors, Mondrian conformal predictive systems, Python

1. Introduction

The Python package crepes implements selected techniques from the field of conformal
prediction (Vovk et al., 2005). The focus of the first version of the package, presented in
(Boström, 2022), was on conformal regressors (Papadopoulos et al., 2002) and predictive
systems (Vovk et al., 2020), through which point predictions are turned into prediction
intervals by the former and into cumulative distribution functions (conformal predictive
distributions) by the latter, in both cases employing the inductive approach, i.e., using a
calibration set for which residuals between actual and predicted values are computed. Both
standard and normalized conformal regressors and predictive systems were implemented,
where the latter employ object-specific difficulty (quality) estimates, and the former uses the
residuals only. In addition, the package also implemented Mondrian conformal regressors
(Boström and Johansson, 2020) and Mondrian predictive systems (Boström et al., 2021),
which both rely on partitioning the calibration and test objects into so-called Mondrian
categories. Moreover, already in the first version of the package, there was an option for
using out-of-bag predictions for calibration (Johansson et al., 2014).

Since its inception, crepes has been extended in several ways, most notably by the
inclusion of conformal classifiers (Vovk et al., 2005). Another important addition concerns
the coupling of the underlying model (which is used for making point predictions) and the
conformal predictor generated on top of the former. In the original package, the under-
lying model was separated from the conformal predictor; objects belonging to the classes
ConformalRegressor and ConformalPredictiveSystem were fitted using the output of the
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model, and in order to make predictions for a test set, point predictions for this had to be
provided. Although this gives quite some flexibility, e.g., the underlying model can have
any format and does not have to be located at the same place as the conformal predictor,
it is not always ideal from a usability perspective, as the user will need to make the nec-
essary arrangements to keep the conformal predictor aligned with the underlying model.
While this option is still available, now also for the new class ConformalClassifier, the
classes WrapRegressor and WrapClassifier have been added, which allow for seamlessly
extending the object containing the underlying model with a calibrate method for fitting
the conformal predictor, and with the methods predict_p and predict_set to output
p-values and prediction sets, respectively, predict_int to output prediction intervals, and
predict_cps to output conformal predictive distributions.

In this paper, we give an overview of the above extensions. Examples will be given from
using the package in conjunction with a separate module, called crepes.extras, which
implements several options for defining difficulty estimates and Mondrian categories. In the
next section, we describe how to install the package; in addition to installing from PyPI,
which was the only option for the first version, the package can now also be installed from
Anaconda. In Section 3, we show how to embed classifiers to obtain conformal classifiers,
and in Section 4, we show how to embed regressors to obtain conformal regressors and
predictive systems, while also illustrating new functionality for computing non-conformity
scores and Mondrian categories. In Section 5, we give some examples of the extensive
documentation of the package, which was non-existent for the first version, and finally, in
section 6, we summarize the current implementation and outline some directions for further
developments.

2. Installing crepes

The source code of the crepes package, which is licensed under the permissive BSD-3-
Clause license, together with examples, Jupyter notebooks and references, can be found at
GitHub,1 while the documentation of the package can be found at ReadtheDocs.2

To install the package from the Python Package Index (PyPI)3, the following command
should be provided at a command prompt, assuming that pip4 has already been installed:

pip install crepes

The package may alternatively be installed from the conda-forge channel of Anaconda5.
Assuming conda has been installed6, crepes may be installed by:

conda install conda-forge::crepes

1. https://github.com/henrikbostrom/crepes
2. https://crepes.readthedocs.io
3. https://pypi.org/project/crepes/
4. https://pip.pypa.io
5. https://anaconda.org/conda-forge/crepes
6. https://www.anaconda.com/download
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3. Wrapping Classifiers

Let us illustrate how we may use crepes to generate and apply conformal classifiers with
a dataset from openml7, namely qsar-biodeg, which contains 1055 chemicals represented
by 41 features (molecular descriptors) and the task is to classify the chemicals as ready
or not ready biodegradable. We first split the dataset into a training and a test set using
train test split from scikit-learn,8 and then further split the training set into a proper
training and a calibration set:

from sklearn.datasets import fetch_openml

from sklearn.model_selection import train_test_split

dataset = fetch_openml(name="qsar-biodeg", parser="auto")

X = dataset.data.values.astype(float)

y = dataset.target.values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)

X_prop_train, X_cal, y_prop_train, y_cal = train_test_split(X_train, y_train,

test_size=0.25)

We will first embed, or “wrap” in the terminology of crepes, a random forest classifier
from scikit-learn, fit it to the proper training set, and fit a standard conformal classifier
through the calibrate method:

from crepes import WrapClassifier

from sklearn.ensemble import RandomForestClassifier

rf = WrapClassifier(RandomForestClassifier(n_jobs=-1))

rf.fit(X_prop_train, y_prop_train)

rf.calibrate(X_cal, y_cal)

The wrapped classifier will largely act as the non-wrapped classifier in that the fit, predict
and predict proba methods will behave in the same way. The learner, which in the above
example can be accessed by rf.learner, may be fitted before as well as after being wrapped.

In addition to generating standard point predictions for the test set through the meth-
ods predict and predict proba, we may also obtain p-values using predict p; these are
provided in the form of a NumPy array with as many rows as there are test objects and as
many columns as there are classes (two in this case), where the latter are ordered according
to classes of the underlying learner:

7. https://www.openml.org
8. https://scikit-learn.org
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rf.predict_p(X_test)

array([[0.00427104, 0.74842304],

[0.07874355, 0.2950549 ],

[0.50529983, 0.01557963],

...,

[0.8413356 , 0.00201167],

[0.84402215, 0.00654927],

[0.29601955, 0.07766093]])

We can also get prediction sets, represented by binary vectors indicating presence (1) or
absence (0) of the class labels that correspond to the columns, here at the 90% confidence
level, using predict set:9

rf.predict_set(X_test, confidence=0.9)

array([[0, 1],

[0, 1],

[1, 0],

...,

[1, 0],

[1, 0],

[1, 0]])

Since we have access to the true class labels for the test set, we can evaluate the conformal
classifier using the evaluate method. Unless we specify a list of metrics to use, through
the argument metrics, all of them will be used by default, where error is the fraction of
prediction sets not containing the true class label, avg c is the average number of predicted
class labels, one c is the fraction of singleton prediction sets, empty is the fraction of empty
prediction sets, time fit is the time taken to fit the conformal classifier (not including the
time to fit the underlying learner), and time evaluate is the time taken for the evaluation.

rf.evaluate(X_test, y_test, confidence=0.99)

{'error': 0.005681818181818232,

'avg_c': 1.691287878787879,

'one_c': 0.3087121212121212,

'empty': 0.0,

'time_fit': 2.3365020751953125e-05,

'time_evaluate': 0.017678260803222656}

To control the error level across different groups of objects of interest, we may use so-called
Mondrian conformal classifiers. A Mondrian conformal classifier if formed by providing a
function or a MondrianCategorizer (defined in crepes.extras) as an additional argument,
named mc, for the calibrate method.

9. The columns are ordered according to the instance variable classes of the underlying learner, which
in this case is rf.learner.classes .
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For illustration, we will use the predicted labels of the underlying model to form the cat-
egories. Note that the prediction sets for the test objects are obtained using the same
categorization as for the calibration objects.

rf_mond = WrapClassifier(rf.learner)

rf_mond.calibrate(X_cal, y_cal, mc=rf_mond.predict)

rf_mond.predict_set(X_test)

array([[0, 1],

[1, 1],

[1, 0],

...,

[1, 0],

[1, 0],

[1, 1]])

We may also form the categories using a MondrianCategorizer, which may be fitted in
several different ways. Below we show how to form categories by equal-sized binning of the
first feature value, using five bins (instead of the default which is 10); note that we need
objects to get the threshold values for the categories (bins).

from crepes.extras import MondrianCategorizer

def get_values(X):

return X[:,0]

mc = MondrianCategorizer()

mc.fit(X_cal, f=get_values, no_bins=5)

rf_mond = WrapClassifier(rf.learner)

rf_mond.calibrate(X_cal, y_cal, mc=mc)

rf_mond.predict_set(X_test)

array([[0, 1],

[1, 1],

[1, 0],

...,

[1, 0],

[1, 0],

[1, 1]])

For learners that use bagging, like random forests, we may consider an alternative strategy
to dividing the original training set into a proper training and calibration set; we may
use the out-of-bag (OOB) predictions, which allow us to use the full training set for both
model building and calibration. It should be noted that this strategy does not come with
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the theoretical validity guarantee of the above (inductive) conformal classifiers, due to
that calibration and test instances are not handled in exactly the same way. In practice,
however, conformal classifiers based on out-of-bag predictions rarely fail to meet the coverage
requirements.

Below we show how to enable this in conjunction with a specific type of Mondrian
conformal classifier, a so-called class-conditional conformal classifier, which uses the class
labels as Mondrian categories:

rf = WrapClassifier(RandomForestClassifier(n_jobs=-1, n_estimators=500, oob_score=True))

rf.fit(X_train, y_train)

rf.calibrate(X_train, y_train, class_cond=True, oob=True)

rf.evaluate(X_test, y_test, confidence=0.9)

{'error': 0.10795454545454541,

'avg_c': 1.0984848484848484,

'one_c': 0.9015151515151515,

'empty': 0.0,

'time_fit': 0.0001518726348876953,

'time_evaluate': 0.06513118743896484}

4. Wrapping Regressors

Let us also see how crepes can be used to generate conformal regressors and predictive
systems. Again, we import a dataset from openml, which we split into a training and a test
set and then further split the training set into a proper training set and a calibration set:

from sklearn.datasets import fetch_openml

from sklearn.model_selection import train_test_split

dataset = fetch_openml(name="house_sales", version=3, parser="auto")

X = dataset.data.values.astype(float)

y = dataset.target.values.astype(float)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.5)

X_prop_train, X_cal, y_prop_train, y_cal = train_test_split(X_train, y_train,

test_size=0.25)

Let us now embed (“wrap”) a RandomForestRegressor from scikit-learn using the class
WrapRegressor from crepes and fit it (in the usual way) to the proper training set:
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from sklearn.ensemble import RandomForestRegressor

from crepes import WrapRegressor

rf = WrapRegressor(RandomForestRegressor())

rf.fit(X_prop_train, y_prop_train)

We may now fit a conformal regressor using the calibration set through the calibrate

method:

rf.calibrate(X_cal, y_cal)

The conformal regressor can now produce prediction intervals for the test set using the
predict int method, here using a confidence level of 99%:

rf.predict_int(X_test, confidence=0.99)

array([[ 8260.53, 1065083.53],

[ -54858.5 , 1001964.5 ],

[ -7779.25, 1049043.75],

...,

[ 297229.8 , 1354052.8 ],

[-270260. , 786563. ],

[-185146.94, 871676.06]])

The output is a NumPy array with a row for each test instance, and where the two columns
specify the lower and upper bound of each prediction interval.

We may request that the intervals are cut to exclude impossible values, in this case
below 0, and if we also rely on the default confidence level (0.95), the output intervals will
be a bit tighter:

rf.predict_int(X_test, y_min=0)

array([[ 288602.83, 784741.23],

[ 225483.8 , 721622.2 ],

[ 272563.05, 768701.45],

...,

[ 577572.1 , 1073710.5 ],

[ 10082.3 , 506220.7 ],

[ 95195.36, 591333.76]])

The above intervals are not normalized, i.e., they are all of the same size (at least before
they are cut). We could make them more informative through normalization using difficulty
estimates; objects considered more difficult will be assigned wider intervals.

We will use a DifficultyEstimator from the crepes.extrasmodule for this purpose.10

Here we estimate the difficulty by the standard deviation of the target of the k (default k=25)
nearest neighbors in the proper training set to each object in the calibration set. A small

10. For a description of the available options, as well as their implementations, the reader is referred to the
documentation; https://crepes.readthedocs.io/en/latest/crepes.extras.html
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value (beta) is added to the estimates, which may be given through an argument to the
function; below we just use the default, i.e., beta=0.01.

We first fit the difficulty estimator and then calibrate the conformal regressor, using the
calibration objects and labels together the difficulty estimator:

from crepes.extras import DifficultyEstimator

de = DifficultyEstimator()

de.fit(X_prop_train, y=y_prop_train)

rf.calibrate(X_cal, y_cal, de=de)

To obtain prediction intervals, we just have to provide test objects to the predict int

method, as the difficulty estimates will be computed by the incorporated difficulty estimator:

rf.predict_int(X_test, y_min=0)

array([[ 222036.82862012, 851307.23137988],

[ 316413.83821721, 630692.16178279],

[ 384784.44135415, 656480.05864585],

...,

[ 110527.74801848, 1540754.85198152],

[ 174799.94131735, 341503.05868265],

[ 274305.55734858, 412223.56265142]])

Depending on the employed difficulty estimator, the normalized intervals may sometimes
be unreasonably large, in the sense that they may be several times larger than any previ-
ously observed error. Moreover, if the difficulty estimator is uninformative, e.g., completely
random, the varying interval sizes may give a false impression of that we can expect lower
prediction errors for instances with tighter intervals. Ideally, a difficulty estimator provid-
ing little or no information on the expected error should instead lead to more uniformly
distributed interval sizes.

A Mondrian conformal regressor can be used to address these problems, by dividing the
object space into non-overlapping so-called Mondrian categories, and forming a (standard)
conformal regressor for each category.

Similar to how a Mondrian conformal classifier is created, we may form a Mondrian con-
formal regressor by providing a function or a MondrianCategorizer through the argument
mc for the calibrate method.

Here we employ a MondrianCategorizer and show how to form categories by binning
of the difficulty estimates into 20 bins, using the difficulty estimator fitted above:

from crepes.extras import MondrianCategorizer

mc_diff = MondrianCategorizer()

mc_diff.fit(X_cal, de=de, no_bins=20)

rf.calibrate(X_cal, y_cal, mc=mc_diff)
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When making predictions, the test objects will be assigned to Mondrian categories according
to the incorporated MondrianCategorizer (or labeling function):

rf.predict_int(X_test, y_min=0)

array([[ 242624.89, 830719.17],

[ 329358.5 , 617747.5 ],

[ 371028. , 670236.5 ],

...,

[ 0. , 1730501.3 ],

[ 157022.53, 359280.47],

[ 266456.61, 420072.51]])

We can very easily switch from conformal regressors to conformal predictive systems. The
latter produce cumulative distribution functions (conformal predictive distributions). From
these we can generate prediction intervals, but we can also obtain percentiles, calibrated
point predictions, as well as p-values for given target values. In order to consider conformal
predictive systems (cps) instead of conformal regressors, we just have to provide cps=True
to the calibrate method.

We can, for example, form normalized Mondrian conformal predictive systems, by pro-
viding both a Mondrian categorizer and difficulty estimator to the calibrate method. Here
we will consider Mondrian categories formed from binning the point predictions:

mc_pred = MondrianCategorizer()

mc_pred.fit(X_cal, f=rf.predict, no_bins=5)

rf.calibrate(X_cal, y_cal, de=de, mc=mc_pred, cps=True)

We can now make predictions with the conformal predictive system, through the method
predict cps. The output of this method can be controlled quite flexibly; here we request
prediction intervals with 95% confidence to be output:

rf.predict_cps(X_test, lower_percentiles=2.5, higher_percentiles=97.5, y_min=0)

array([[ 240114.65604157, 869014.03528742],

[ 339706.24924814, 609239.58260891],

[ 404920.87940518, 637934.16698199],

...,

[ 0. , 1947549.10314688],

[ 173038.55234664, 335836.19025193],

[ 280187.36965593, 399290.04471503]])
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Figure 1: Conformal predictive distribution for a randomly selected test instance

If we would like to take a look at the p-values for the true targets (these can be expected
to be uniformly distributed), we just have to provide these through the argument y:

rf.predict_cps(X_test, y=y_test)

array([0.38424814, 0.54023864, 0.28727364, ..., 0.35291685, 0.6110545,

0.60037036])

We may request that the predict cps method returns the full conformal predictive dis-
tribution (CPD) for each test instance, as defined by the threshold values, by setting
return cpds=True. The format of the distributions vary with the type of conformal predic-
tive system; for a standard and normalized CPS, the output is an array with a row for each
test instance and a column for each calibration instance (residual), while for a Mondrian
CPS, the default output is a vector containing one CPD per test instance, since the number
of values may vary between categories.

cpds = rf.predict_cps(X_test, return_cpds=True)

The resulting vector of arrays is not displayed here, but we instead provide a plot for the
CPD of a random test instance in Fig. 1.
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Figure 2: High-level documentation for the class WrapClassifier

5. Documentation

One of the most important things lacking in the early versions of crepes was a proper
documentation; this has now been addressed and the documentation can be found at
https://crepes.readthedocs.io. In addition to installation instructions and example
Jupyter notebooks, the classes and functions in the main crepes package as well as in
the accompanying module crepes.extras are described and exemplified in the documen-
tation. As an example, the highest level of documentation for the class WrapClassifer is
shown in Fig. 2. Additional documentation can be found for the underlined keywords, e.g.,
calibrate; the detailed documentation for this method is shown in Fig. 3.

6. Concluding remarks

We have presented recent extensions to the Python package crepes, which can be used to
generate, apply and evaluate standard and Mondrian conformal classifiers as well as stan-
dard, normalized and Mondrian conformal regressors and predictive systems. In addition
to the original approach of keeping the conformal predictors separate from the underlying
(point) predictors, the package now also allows for a tight integration of the learners and
conformal predictors through wrapper objects.

There are several directions in which the package can be further developed. One straight-
forward such extension is to include additional functions for computing non-conformity
scores. Incorporation of aggregation techniques, as described in (Linusson et al., 2017), is
also a possibility. Related approaches that could be considered in this context are also the
jackknife+ (Barber et al., 2021) and jackknife+-after-bootstrap (Kim et al., 2020). Another
possible extension concerns techniques for handling covariate shift, e.g., through weighted
conformal prediction (Tibshirani et al., 2019), and censored data (Boström et al., 2019,
2023; Candès et al., 2023).
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Figure 3: Detailed documentation for the calibrate method of the class WrapClassifier
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Henrik Boström, Ulf Johansson, and Tuwe Löfström. Mondrian conformal predictive dis-
tributions. In Lars Carlsson, Zhiyuan Luo, Giovanni Cherubin, and Khuong An Nguyen,
editors, Conformal and Probabilistic Prediction and Applications, 8-10 September 2021,
Virtual Event, volume 152 of Proceedings of Machine Learning Research, pages 24–38.
PMLR, 2021.

Henrik Boström, Henrik Linusson, and Anders Vesterberg. Mondrian predictive systems
for censored data. In Harris Papadopoulos, Khuong An Nguyen, Henrik Boström, and
Lars Carlsson, editors, Conformal and Probabilistic Prediction with Applications, 13-
15 September 2023, Limassol, Cyprus, volume 204 of Proceedings of Machine Learning
Research, pages 399–412. PMLR, 2023.

Emmanuel Candès, Lihua Lei, and Zhimei Ren. Conformalized survival analysis. Journal
of the Royal Statistical Society Series B: Statistical Methodology, 85(1):24–45, 2023.
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