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Abstract

Deep learning solutions for image classification are more and more widespread and sophis-
ticated today, bringing the necessity to properly address their reliability. Many approaches
exist in uncertainty quantification, and, among these, conformal prediction is one of most
solid and well-established frameworks. In this paper, we study another approach, defined as
deep probabilistic scaling, based on the notion of scalable classifiers, combined with proba-
bilistic scaling from order statistics. Given a pre-trained neural network for (binary) image
classification and a target class on which it is desirable to control the error, this method is
able to bound that error to a user-defined level (ε). The method individuates probabilistic
safety regions of target class samples correctly predicted in high probability. We show how
the proposed method links with conformal prediction, discussing analogies and differences.
By considering a (binary) convolutional neural network classifier, experiments on several
benchmark datasets show a good overall performance of the methodology in controlling
false negatives.

Keywords: uncertainty quantification, image classification, probabilistic scaling, confor-
mal prediction.

1. Introduction

Uncertainty quantification is a crucial topic in machine and deep learning, playing a funda-
mental role in making models safe and trustworthy (Abdar et al., 2021). The need for reli-
able predictions is evident in applications where uncertainty can dramatically affect model
safety: avionics, bioengineering, finance, autonomous vehicles, and healthcare are just a
few examples where unreliable predictions can lead to serious consequences for users of an
AI-based system. Although the issue of AI reliability is at the center of international debate
and (preliminary) standards are being implemented (e.g., the recent and much-discussed
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“EU AI Act” of the European Parliament1), most algorithms currently in use do not meet
these standards. In the eyes of our research, therefore, there are two questions that need to
be addressed: how can a machine learning algorithm be made more reliable and how can it
be done without disrupting the architecture of the algorithm (so that it can also be applied
to already existing algorithms). With this in mind, we have begun to address the problem
of classification error reduction within the classical framework of binary image classification.
We propose a probabilistic method, deep probabilistic scaling (deep PS), based on the con-
cept of Scalable Classifiers (Carlevaro et al., 2023). This approach can bound the number of
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Figure 1: The goal is to understand which samples are “not conformal” with respect to
a target class. Specifically, we claim nonconformity is a property of the data that the
algorithm has to learn, necessitating an additional (a-posteriori) treatment.

false negatives (or false positives) without changing the structure of the network. In partic-
ular, our proposed solution is able to identify a special region in the input space, namely Sε,
where in high probability the prediction corresponds with a chosen target class. Consider,
for example, Figure 1: the numbers 3 and 8 in the digit-MNIST dataset can also be easily
confused by the human eye, and this is understandable because the digits have different
levels of similitude with each other. We can naively translate this idea of similitude into an
“intrinsic probability” that the samples have: the digit on the left edge of the image have
a high probability of being a 3 while the middle digit, while labeled as a 3, evidently has
more features in common with an 8 and thus a lower probability of being identified as a 3.
Our method, which we will describe thoroughly in the next sections, encodes precisely the
concept that prediction is only a level of probability. A probability that can be controlled
by appropriately shifting the classifier and identifying regions where the prediction result is
highly “1−ε” certain. Such a design of safety regions with controlled error on a target class
proves useful in many practical contexts where errors of the classification could have bad
consequences (e.g., missing clinical diagnosis or failing in avoiding collisions): indeed, it will
allow the monitoring of the input images and acknowledging when the image classification
model will perform well (i.e., when the image falls in the region) or not on those inputs.

1. https://artificialintelligenceact.eu/the-act/
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1.1. Contribution

The paper studies a new approach to probabilistically bound the model error in image binary
classification and shows how it relates with conformal prediction. The main achievements
relate to: error bound within algorithm design, finding proper definitions of score functions
as well as exploiting probabilistic scaling in conformal prediction.

1.2. Structure of the paper

The remaining of the paper is structured as follows: Section 2 reports the main literature
approaches in the field of uncertainty quantification in deep learning; Section 3 introduces
the fundamentals of scalable classifiers and probabilistic scaling; Section 4 presents the idea
of deep probabilistic scaling and describes the algorithmic steps to perform it; Section 5
describes the theoretical links of the proposed approach with conformal prediction the-
ory; finally, the application of deep probabilistic scaling on benchmark image classification
datasets is presented and discussed in Section 6, while Section 7 concludes the paper.

2. Related Work

In recent years, the boosting of highly performing deep learning methods has achieved
great results in solving a large number of real-word problems and applications; however,
these models generally do not provide information about the reliability of their predic-
tions. For this reason, an important research subject consists in elaborating methods to
quantify the epistemic uncertainty of deep models: recent works by Gawlikowski et al.
(2023); Abdar et al. (2021) review the main current methods, that can be broadly grouped
in Bayesian techniques (e.g., Monte Carlo dropout, Markov Chain Monte Carlo, or Vari-
ational Inference), Ensemble techniques, and test-time augmentation (Shanmugam et al.,
2021). Bayesian theory is exploited in Sensoy et al. (2021) to design risk-calibrated evi-
dential classifiers that allow to incorporate the misclassification error in the loss function
while training deep image classifiers, thus accurately quantifying the uncertainty of the
predictions. An innovative approach with respect to the mentioned well-established tech-
niques was presented in Baek et al. (2023), where uncertainty is studied from a metrological
perspective that considers neural networks as measurements tools and uses probabilistic
robustness theory to provide safety guarantees to a robotic system. Moreover, Ghobrial
et al. (2023) introduced a trustworthiness score quantifying the reliability of a deep neural
network prediction by checking for the existence of given features in the predictions made
by the model. Authors also design a suspiciousness score in the overall input images to help
in the detection of those frames where false negatives existed. Yue et al. (2022) designed
EviDCNN-3WC, a new methodology that combines deep convolutional neural networks
(DCNNs) for feature learning and Dempster–Shafer (D-S) evidence theory as uncertainty
measure to implement a three-way method for image classification. This technique was ex-
perimented in several medical classification scenarios, showing reduced classification risks.
Speaking of trustworthiness, Mackowiak et al. (2021) represents a pioneering work on the
explainability and robustness of generative classifiers (i.e., algorithms that classify by max-
imizing the probability of a sample given a class, as opposed to the standard procedure of
discriminative classifiers). Although this classification approach is different from the one
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used in this research (classical classifiers, like softmax classification, are discriminative), the
work remains relevant in that it addresses the concept of uncertainty quantification as a
metric of a model’s explainability and not just as an assessment of its robustness. Finally,
special attention should be paid to the use of conformal prediction in image classification,
see Angelopoulos et al. (2020). The fact that conformal prediction has only recently been
worked on for the evaluation of uncertainty quantification in images is due solely to the
youth of the method (it has been developed starting in the late nineties and early two thou-
sands by V. Vovk., the definitive reference is Vovk et al. (2005)) and not to its ability to
make reliable predictions. Conformal predictors are indeed being used in several computer
vision applications. As an example from smart agriculture, Farag et al. (2023) presents the
adoption of inductive conformal predictors in a vision-based harvest-readiness classifica-
tion of cauliflower plants, and compare this method with more traditional softmax outputs
and uncertainties derived from Monte Carlo dropout. Another interesting work, Gendler
et al. (2021), introduces a novel algorithm, Randomly Smoothed Conformal Prediction, that
makes conformal prediction sets valid even in case of adversarial attacks that make the i.i.d.
hypothesis untrue.

3. Background

3.1. Scalable Classifiers

Scalable Classifiers (SCs) were introduced in Carlevaro et al. (2023) as a family of (binary)
classifiers parameterized by a scale factor ρ ∈ R

ϕ(x, ρ)
.
=

{
0 if f(x, ρ) < 0,

1 otherwise
(1)

where the function f : X ×R −→ R is the so-called classifier predictor. Although this is
a classical binary classifier, and thus the role of the labels is “interchangeable”, we want to
focus attention on class 0, being the one on which our method is able to provide confidence
bounds in prediction. For example, to give the classifier a meaningful interpretation, we
refer to the class 0 as a “safe” situation we want to target and the other class 1 as an
“unsafe” situation2.
Some examples might be differentiating between a patient’s condition in developing or not
developing a certain disease (Lenatti et al., 2022), or understanding what input parameters
lead an autonomous car to a collision or non-collision (Carlevaro et al., 2022), and many
others can be listed.
SCs rely on the main assumption that for every x ∈ X ⊂ RN (where N is the dimension
of the feature space) f(x, ρ) is continuous and monotonically increasing in ρ and that
lim

ρ→−∞
f(x, ρ) < 0 < lim

ρ→∞
f(x, ρ), (Carlevaro et al., 2023, Assumption 1). These assumptions

imply that there exists a unique solution ρ̄(x) to the equation

f(x, ρ) = 0 (2)

2. The choice of labels is independent of the properties of scalable classifiers, and a remapping of the
output does not affect the performance of the classification. In this case, we chose the labels 0 and 1 to
establish a link with the deep learning framework, where usually the output of a (classification) network
is interpreted as a probability level.
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and the proof is available in (Carlevaro et al., 2023, Property 2). In words, a scalable
classifier is a classifier that satisfies some crucial properties: i) given x, there is always a
value of ρ, denoted as ρ̄(x), that establishes the border between the two classes, ii) the
increase of ρ forces the classifier to predict the 1 class and iii) a decrease of ρ maintains
the target 0 class. Moreover, (Carlevaro et al., 2023, Property 3) shows how any standard
binary classifier can be rendered scalable by simply including the scaling parameter ρ in
an additive way with the classifier predictor, i.e. given the function f̂ : X −→ R and its
corresponding classifier ϕ̂(x) then the function f(x, ρ) = f̂(x) + ρ provides the scalable
classifier ϕ(x, ρ). Thus, examples of classifiers that can be rendered scalable are support
vector machines, support vector data descriptions, logistic regressions but also artificial
neural networks.
Different values of the parameter ρ correspond to different classifiers that can be considered
as the level sets of the classifier predictor with respect to ρ. In particular, since the class 0
encodes a safety condition, we introduce the scalable set

S(ρ) = { x ∈ X : f(x, ρ) < 0 }, (3)

that is the set of points x ∈ X predicted as 0 (“safe”) by the classifier with the specific
value ρ, i.e. the safety region of the classifier f for given ρ. The definition of scalable
classifier allows to make the classifier more tractable and flexible without the necessity
of a retraining. Specifically, special values of the parameter ρ can be defined in order to
achieve target tasks of the classifier (like the minimization of the number of misclassified
points). To achieve this, it is necessary to introduce methodologies capable of handling the
statistical properties of the classified samples: among them, we introduce the probabilistic
scaling (Mammarella et al., 2022) that, as explained in the next section, provides a readly
way to tune ρ.

3.2. Probabilistic Scaling

Following the procedure of (Carlevaro et al., 2023, Theorem II.1) (that is reported in details
in the next section), it is then possible to define the ρε−safe set (Sε, equation (9) of the
next section), in which the probability of unsafe instances (y = 1) belonging to the safety
region is guaranteed to be less than ε. Before starting, however, we need to introduce the
concept of “generalized maximum” that is at the basis of the whole procedure:

Definition 1 (Generalized Max) Given a collection of n scalars Γ = {γi}ni=1 ∈ Rn, and
an integer r ∈ [n], we denote by

max(r)(Γ)

the r-greatest value of Γ, so that there are no more than r − 1 elements of Γ strictly larger
than max(r)(Γ).

This definition is interesting because of the “scaling factor” property in Alamo et al. (2018)
that, in words, shows that, if the number of points is chosen large enough, the generalized
max constitutes with very high probability a good approximation of the r

n -th quantile of
the distribution of Γ. This makes it possible to limit a-priori the probability of observing
values greater than the generalized maximum, making it possible, in this application on
classification learning, to control the misclassification error of the prediction.
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4. Deep Probabilistic Scaling

In the context of classification, the classifier’s prediction function of a (convolutional) neural
network is constructed as a weighted composition of activation functions applied to an affine
transformation of the input x, specifically

f̂(x) = σ(wLgL−1(wL−2gL−2(. . . g1(w0x+ b0) . . . ) + bL−1) + bL)−
1

2

= σ(h(x))− 1

2

(4)

where L is the depth of the network, wℓ and gℓ(·) are respectively weights and activation
function of the layer ℓ ∈ [L], h(·) is the function representing the composition of all hidden
layers and σ(·) is the sigmoid function. After training, a new instance xtest is then associated
to a class according to the rule

φ̂(xtest) =

{
0 if f̂(xtest) < 0,

1 otherwise
(5)

In this formulation, (Carlevaro et al., 2023, Property 3) can be applied to obtain a scalable
version of the above deep classifier by defining the new prediction function

f(x, ρ) = f̂(x) + ρ, ρ ∈ R, (6)

and by punctually following the procedure explained in (Carlevaro et al., 2023, Theorem
II.1) it is therefore possible to deal rigorously with the uncertainty naturally carried by the
model and correct it without retraining the model itself. In fact, we recall that the
whole procedure outlined below is performed after training, as in the spirit of conformal
prediction. However, probabilistic scaling allows to provide an operational methodology to
control the model’s prediction error rather than a quantification of the uncertainty. This
methodology has been shown to work for any type of classifier (and recent insights suggest
that it might work for regressors as well), but since this is the very first application to deep
learning, for the sake of comprehensibility, we summarize the entire procedure here:

0. Take a pre-trained model and set the value of ε ∈ (0, 1), δ ∈ (0, 1).

1. Sample a calibration set Zc
.
= {(xi, yi)}nc

i=1 with size nc such that nc ≥ 7.47
ε ln 1

δ
3 and

consider Z1
c
.
= { (x, y) ∈ Zc : y = 1 } .

2. Compute for all the samples belonging to Z1
c the ρ−scores as follows

ρ̄(x) =
1

2
− σ(h(x)) ∀x ∈ Z1

c (7)

3. Compute r =
⌈εnc

2

⌉
and take the probabilistic scaling of level ε as

ρε
.
= max(r)

(
{ρ̄(x̃1

j )}
n1
j=1

)
(8)

3. This bound is well explained in (Carlevaro et al., 2023, Corollary I.1).
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4. Define the ρε-safe set

Sε
.
=

{
S (ρε) if n1 ≥ r
X otherwise

Then, with probability no smaller than 1− δ,

Pr
{
y = 1 and x ∈ Sε

}
≤ ε (9)

In few more words, the above procedure defines an algorithm to statistically bound the
number of false negatives4 in the prediction of the network, with high probability. This is
still an open topic in machine learning.

5. Link with Conformal Prediction

Although developed separately, our approach based on probabilistic scaling has much to
share with conformal prediction. Both methods have their roots in quantile regression
theory (Hao and Naiman, 2007) and are used in the post-processing phase of an algorithm
(i.e., both techniques require having a pre-trained model on which to be applied) but there
are aspects that are substantially different: of all of them, in the context of classification, CP
provides only a qualitative measure of model uncertainty, while the combination of PS and
SC provides a way to correct the performance of the algorithm itself, thereby improving the
prediction result. Moreover, the approach can be useful when the statistical characteristics
of the data have changed after training. Namely, the scalable classifier becomes more
resilient while exploiting the re-calibration process on new data against those used for
learning.
In this section, we highlight the similarities and differences between the two approaches,
thus deriving a common link between the two, with a focus on image classification.

5.1. Score function for scalable deep neural networks

The idea of a score function is at the heart of conformal prediction theory. This special
function encodes the agreement between a sample x ∈ X and a proposed label ỹ, namely
s(x, ỹ), as well as a statistical information of the model. There is no unambiguous definition,
although there are properties that it is preferable to satisfy (see Angelopoulos and Bates
(2023)), such as the fact that the greater the value of the score function, the worse the
agreement between the sample and the proposed label (in jargon, negatively oriented). For
this reason, when dealing with image classification, one minus the softmax output of the
class is usually adopted. Since we are focusing on binary classification, the softmax is
replaced by the sigmoid, and the “standard” score function takes this form:

sst = s(x, ỹ) = ỹ(1− σ(h(x))) + (1− ỹ)σ(h(x)) (10)

considering that, with the notation introduced in (4), σ(h(x)) denotes the probability of
observing y = 1 given the sample x. The definition of a scalable classifier, however, embodies
a natural definition of a score function that generalizes to any type of classifier and thus to
deep neural networks (Carlevaro et al., 2024):

4. In this formulation we refer to a false negative when an instance labelled as 1 is predicted as 0.
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Definition 2 (Score Function for Scalable Classifiers)
Given a scalable classifier ϕ(x, ρ) with classifier predictor f(x, ρ), given a point x and an
associated candidate label ŷ, the score function associated to the scalable classifier is defined
as

s(x, ŷ) = ŷρ̄(x) + (1− ŷ)(−ρ̄(x))

with ρ̄(x) such that f(x, ρ̄(x)) = 0.

Note that this definition preserves the property of being negative oriented, i.e. smaller
(negative) values mean better. Then, considering the predictor function as in (4), the score
function associated is:

sps = s(x, ŷ) = ŷ

(
1

2
− σ(h(x))

)
+ (1− ŷ)

(
σ(h(x))− 1

2

)
(11)

From now on, we will refer to the “standard” score function defined in (10) as sst and to
the “probabilistic scaling” one from (11) as sps. Without entering in the details of CP (for
which we refer to Angelopoulos and Bates (2023)), the very starting point of the procedure
is the computation of the (almost) (1−ε)−quantile, q̂ε, of the score values on the calibration
set. The computation of the quantile is clearly not affected by linear transformations or
composition with functions that preserve the order of the values. So, given a score function
s, a strictly monotone function ψ : R 7→ R and α, β real values, the function ψ(αs+β) will
generate the same conformal prediction sets of s. Considering then sst and sps as defined
above, the following property holds for the two quantities:

sps = sst −
1

2
(12)

This implies that the two score functions generate the same conformal sets. This result
allows the adoption of probabilistic scaling also for CP. A more in-depth discussion on the
topic follows in Section 6.4.

6. Experiments and Results

6.1. Data preparation

The performance of deep probabilistic scaling technique was assessed by considering several
open-source datasets5. These included two benchmarks for image classification such as the
MNIST database of handwritten digits (Deng, 2012) and CIFAR10 (Krizhevsky et al., 2009),
and also other two ones, namely pneumoniaMNIST from medMNIST-v2 (Yang et al., 2023),
and the WikiArt Art Movements/Styles dataset (Saleh and Elgammal, 2016)6. Pneumo-
niaMNIST is the only originally binary classification dataset: it contains 5856 chest X-ray
images labelled as ‘normal’ or ‘pneumonia’. MNIST dataset collects 60000 training images
from 10 classes (one per each digit 0-9), thus we defined three binary classification subtasks:
class ‘1’ versus class ‘7’, class ‘3’ versus class ‘8’, and class ‘2’ versus class ‘5’ ; to this end,

5. Code and data associated to the experiments is available at the following link: https://github.com/

AlbiCarle/Deep-Probabilistic-Scaling

6. https://www.kaggle.com/datasets/sivarazadi/wikiart-art-movementsstyles
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Dataset Class 0 Class 1

MNIST1-7 ‘7’ ‘1’

MNIST3-8 ‘3’ ‘8’

MNIST2-5 ‘2’ ‘5’

CIFAR10 ‘truck’ ‘automobile’

PneumoniaMNIST ‘normal’ ‘pneumonia’

WikiArt ‘renaissance’ ‘baroque’

Table 1: Labels mapping in class 0 and class 1, for each dataset. The error of a trained
image classification model, on class 0 images, will be bounded by ϵ thanks to the deep
probabilistic scaling.

we only picked the images from the mentioned classes, for a total number of more than
10000 images in all cases. Similarly, we selected the ‘automobile’ and ‘truck’ images from
the 10 classes of CIFAR10 dataset. WikiArt dataset contains images of artworks from a set
of 13 different artistic movements, from which we chose ‘renaissance’ and ‘baroque’ as the
classes to analyse. We remark that we selected the two classes to work on by thinking at
scenarios where the classification by a model could have been more tricky (e.g., digits ‘1’
and ‘7’ from MNIST can look similar in some cases). Since our method asks to define a
specific class on which to guarantee the model performance, and we assume this class to be
labelled with 0 (with the other being denoted as 1), Table 1 shows which classes we assume
as 0 and which as 1, for each dataset.

6.2. Model architecture

After properly defining the binary scenarios for our tests, the first step of the experiments
consisted in training deep image classifiers that will constitute the basis (i.e., pre-trained
models) of the deep PS algorithm.
In particular, we considered a Convolutional Neural Network (CNN) characterized by three
convolutional layers with 32, 64 and 128 hidden neurons, respectively, a fully-connected layer
with 512 neurons, and the output layer with the sigmoid activation function. For MNIST
digits, we removed the last layer to prevent overfitting. The training was performed, in all
cases, with the binary cross-entropy loss by using Adam optimizer (Kingma and Ba, 2014)
with learning rate fixed to 0.001. Due to the simplicity of the test scenarios, the number of
epochs was kept low, between 3 and 5. This network had a good performance, with false
negative rate ≤ 5% for all the datasets except CIFAR10 (38%). However, the advantage
of our proposed technique lies in the possibility of tuning the classifier so to provide high
guarantees that this error is bounded by choosing a pre-fixed ε level.

6.3. Impact of deep probabilistic scaling

Deep probabilistic scaling is a tool that has potentially great impact in developing useful
and effective reliability in trustworthy AI for images. This is not just a way to check for
false negatives, but rather a region where the reliability of the prediction is probabilistically
guaranteed, leaving no room for uncertainty. This is clear in Figure 2(a) that shows the
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(a) MNIST1-7.
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(b) PneumoniaMNIST.

Figure 2: Distribution of uncertainty of MNIST17 and PneumoniaMNIST. Shown in blue
and yellow, respectively, are the uncertain classifications for class ‘1’ and class ‘7’ for
MNIST1-7 and for class “normal” and class “pneumonia” for PneumoniaMNIST.

probabilistic correction of a network used to classify the digits ‘1’ and ‘7’ in the MNIST
dataset. To visualize the classes as a 2D scatter plot, we applied the Isomap method
(Tenenbaum et al., 2000), that is one of the earliest dimensionality reduction techniques,
seeking a lower-dimensional embedding while maintaining the geodesic distances among
all points. As shown in Table 1, the target class (0) is the digit ‘7’. The probabilistic
safety region contains digits that look like well handwritten ‘7’, impossible to confuse with
‘1’. Some of these are shown with a green box around them, over an Isomap embeddings
scatter plot representing the real ‘7’ class (green cluster in the figure). Outside the region,
instead, we can find samples that evidently share more characteristics with the digit ‘1’: in a
straightforward way (in the same spirit of Figure 1 from the introduction) there is a sample
labeled as ‘7’ that is more like a ‘1’ (sample with the blue box in the middle left part of the
graph). This methodology has potentially a great impact in real safety-critical applications,
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where being able to predict safe conditions with high probability guarantees is of paramount
importance. Our test case on pneumoniaMNIST dataset is a first example where a safe class
can be really defined. Deep probabilistic scaling allowed us to enclose inside the PSR all
images that correspond to truly healthy patients, and by setting ε = 0.01 we minimized the
probability that a pneumonia diagnosis is missed when the scalable classifier is adopted. The
Isomap scatter plot of Figure 2(b) shows the real normal and pneumonia classes through
their isomap embeddings. Colored boxes around sample images show the outcomes of
the deep PS classifier. As for MNIST1-7, green boxes represent the images composing
the safety region. Also, we can observe that false pneumonia images (i.e., normal class
images that were left outside the safety region by the PS, depicted with light blue boxes)
have isomap embeddings lying close to the pneumonia red cluster. In the same way, a
few (at most 1%) pneumonia images are still wrongly labelled as normal (yellow boxes),
and also their isomap components are located within the normal class. Current diagnostic
America Thoracic Society (Metlay et al., 2019) guidelines for pneumonia diagnosis recognize
chest radiography as the gold standard imaging modality, and the signs of this disease
in the images are opacities in the thoracic area, including interstitial infiltrates or lobal
consolidations. If we better look at the images of false pneumonia, we can note that they
are characterized by wider white shades in the lungs, within the ribs, which may have been
caused by artifacts. Conversely, the appearance of false normal images is closer to healthy
radiographs, with the thorax area looking darker.

These are simple but significant examples illustrating that this method can be a powerful
and explainable approach to uncertainty mitigation in image classification, with applica-
tions ranging from deep false detection to supporting tools for medical imaging, perception,
surveillance, and any other application where reliable predictions are needed.

6.4. Results with conformal predictions

In Section 5 we defined a score function sps that is suitable for deep scalable CNN classifiers,
which we applied to all the six considered datasets.

As it is common in the evaluation of conformal predictions, we assessed the score function
with respect to four metrics, namely the average error and the average rates of empty, sin-
gleton (i.e., containing one label) and double-sized (i.e., containing two labels) prediction
sets. We compared the results with those obtained using the classical definition of a score
function, sst, and, as correctly argued in Section 5, they are equal. So, for the sake of read-
ability and avoiding redundancies, we will only report plots related to the score function
sps defined from the deep probabilistic scaling.
The message we would like to communicate to the reader with the score function defined
in (11), and analyzed here, is twofold: first, it allows a bridge to be drawn between two
theories unrelated until now, making it possible to derive benefits for improving one and the
other (e.g., by exploiting the well-established bounds of probabilistic scaling on the number
of samples for the calibration set), and second, the definition of score function for scalable
classifiers (11) is quite general and suitable for CP score function as well, whose choice is
very peculiar to the field of application and user’s experience.
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Figure 3: Average error obtained with sps score function, for ε ∈ [0.01, 0.5].
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(a) Empty.
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(b) Singleton.
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(c) Double.

Figure 4: Plots of the average rate of empty (left), singleton (middle), and double sized
(right) prediction sets obtained by using the sps score function of Eq. 11, for ε ∈ [0.01, 0.5]

The average error is computed by interpreting an error as the case that the correct class
label is not included in the prediction set. As expected, Figure 3 shows that the trend of the
average error, for ε ∈ [0.01, 0.5], tightly goes with ε for all datasets, with the only exception
of pneumoniaMNIST: in this case, it is far lower than the expected error.

On the other hand, evaluating the size of the conformal sets relates to efficiency. The ideal
behavior of a highly efficient conformal predictor should evidence large rates of singleton
sets, with low rates of empty and double prediction sets. Figures 4(a), 4(b) and 4(c) show
the obtained average rates of empty, singleton, and double sized prediction sets, respectively,
for our application cases. We can observe that our score function produces a coherent
behavior with respect to these metrics. Specifically, results are diversified between MNIST
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and other datasets. Concerning all MNIST cases, the average rate of empty sets constantly
increase following ε values, but no double sets are generated. As a result, the rate of
singleton sets starts with high values and then decreases up to about 0.5 for the maximum
ε level. For the other datasets, empty sets are absent up to some ε value (around 0.25
for pneumoniaMNIST, and 0.4 for CIFAR10 and Art), when their rate begins to grow.
Correspondingly, we can observe that the rate of double sets is high for lower ε and undergoes
a quick descent to zero in the same error level points where the empty rate starts to rise.
Also, it is for these ε values that the average singleton curves achieve a maximum peak.

7. Conclusions and future works

The evaluation of uncertainty quantification in machine learning, and particularly in image
analysis, is a topic that never ceases to demand new methodologies, new ideas or new inter-
pretations of existing algorithms. Indeed, with this work on probabilistic scaling we have
proposed a different approach in a highly studied field, highlighting the similarities and dif-
ferences with conformal predictions, one of the most widely used and popular frameworks
for uncertainty quantification nowadays. Nevertheless, the work focuses on the possibility
of using probabilistic scaling in the deep learning environment, proving that it is possible to
control misclassification error in the post-process, without the need to retrain the network.
This is a statement contained in the seminal work on probabilistic scaling, the aforemen-
tioned Carlevaro et al. (2023), which effectively took shape in this research. In particular,
starting from the concept of scalable classifiers, the paper shows the definition of scalable
neural networks and consequently the concept of probabilistic safety region for deep algo-
rithms. These special regions are able to enclose samples that represent the target class well
with high probability: the smaller the regions, the lower the uncertainty within them. This
concept is closely related to the idea of creating a safe environment for classification prob-
lems, which can have a significant impact on reliable artificial intelligence for engineering.
Moreover, this research contributes also to improve the knowledge on conformal prediction
theory, establishing non-trivial relationships between the two approaches (e.g. Definition 2)
and allowing to exploit well established results to enhance both the methods. An example is
the operational bound on the number of calibration samples (Carlevaro et al., 2023, Corol-
lary I.1) that can be exploited to better understand critical conformal prediction properties
like the well-known “(ε, δ)−validity”. Future work will follow, e.g., extension to multi-class
and multi-label classification or adaptation of the probabilistic safety region to regression
tasks.
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