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Abstract

Satellites and airborne sensors are critical components of the modern surveillance and

reconnaissance capability. A common use case involves the application of object detection

models to such images in order to rapidly process the large volumes of data. This optimises

use of expensive communications channel bandwidth, reduces the cognitive load on a human

interpreter and accelerates the rate at which intelligence can be generated. However there

is a clear need for statements of con�dence in any predictions in order to provide context

and enable trust in model outputs.

Our work examines the use of conformal prediction approaches to robustly quantify

types of uncertainty in object detection models applied to aerial and satellite imagery for

intelligence, surveillance and reconnaissance use cases. We investigate measures of detection

and location uncertainty in a YOLO model and indicate how these may be leveraged

conformal-wise to provide guarantees on the percentage of objects which aren't detected

and the coverage of predicted bounding boxes. We �nd that conformal approaches provide

a simple and e�ective means to expose the uncertainty in the outputs of an object detection

model and highlight the utility of this knowledge in the intelligence setting.

Keywords: Conformal prediction, conformal risk control, distribution-free uncertainty

quanti�cation, object detection

1. Introduction

The activities of intelligence generation, surveillance and reconnaissance (ISR) form a centuries-
old part of military operations (Prunckun, 2015). ISR is an integrated process which takes
a tasking requirement, collects data and information to meet that requirement and trans-
lates this into an intelligence format which is useable by decision-makers (MOD, 2023). The
proliferation of modern sensing technology means that intelligence is no longer scarce but
even the best intelligence can be subject to a range of interpretations (Freedman, 2022).
This observation has particular resonance when machine learning models are used to derive
intelligence: such models typically do not come with any performance guarantees and yet
they have the potential to be con�dently wrong in their predictions, for example (Moon
et al., 2020).

Satellites and airborne sensors are critical components of the surveillance and recon-
naissance capabilities of NATO Allies1. One modern ISR use case applies object detection
models to images from these sources in order to rapidly process large volumes of data. This

1. https://www.nato.int/cps/en/natohq/topics_111830.htm
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reduces the cognitive load on a human interpreter and accelerates the rate at which intelli-
gence is generated. However there is a need for statements of con�dence in these predictions
in order to provide context and enable trust in their outputs as well as potentially to direct
further data collection. Intelligence analysis is itself an exercise in expert judgement under
conditions of uncertainty (Dhami et al., 2015) and as part of this endeavour it is therefore
vital to expose any uncertainty in an underlying machine-learning model as transparently as
possible. This will allow all sources of uncertainty to be accounted for in the decision-making
process.

Conformal prediction is a straightforward method of creating uncertainty intervals or
sets for machine learning models which have rigorous theoretical guarantees (Vovk et al.,
2022; Angelopoulos and Bates, 2022; Vovk et al., 1999). Given a notion of uncertainty, and
provided that some calibration data are available, the method can be applied retrospectively
to any pre-trained machine learning model with minimal assumptions. It therefore has vast
potential application and has been used in areas as diverse as drug development, cough
detection and medical imaging (Alvarsson et al., 2021; Ashby et al., 2022; Lu et al., 2022).

In this paper we use conformal prediction approaches to quantify sources of uncertainty
in object detection models of aerial and satellite imagery for ISR use cases. Object detection
has been applied to image data from earth observation satellites and airborne sensors for
various purposes such as disaster response (Pi et al., 2020); tree counting (Moharram et al.,
2023); and monitoring of maritime tra�c (Petkovi¢ et al., 2023) but to our knowledge not
in an ISR setting. Previous applications of conformal approaches to object detection models
include Andéol (Andéol et al., 2023) and de Grancey (de Grancey et al., 2022) who use
the method to create conformalised bounding boxes in models identifying railway signals
and pedestrians respectively. More recently (Timans et al., 2024) has developed a two-step
conformal method which uses uncertainty in predicted class labels to inform uncertainty
intervals for bounding boxes. We complement and extend this previous work to examine
other sources of uncertainty and evaluate the bene�t of conformal approaches to the overall
ISR enterprise. The contributions of this work are as follows:

� it demonstrates the utility of conformal prediction approaches to quantify both the
detection uncertainty and localisation uncertainty which exist in object detection mod-
els;

� examines the performance of two loss functions for the conformalised detection uncer-
tainty problem and evaluates alternative nonconformity measures for detection and
localisation; and

� applies the algorithms to object detection models trained on the satellite and aerial
remotely sensed data which are typical of an ISR setting.

2. Data

2.1. Satellite data

Satellite data together with a pretrained object detection model were shared by a sister
project. The data are multispectral RGB images from Airbus Vision-12 with an image size

2. Vision-1 data courtesy of Airbus Intelligence UK and UK MOD ARTEMIS programme
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of 1024 x 1024 pixels and pixel size of 3.5m. The supplied object detection model, with six
classes, aims to detect and identify types of maritime vessel ranging in size from small leisure
craft occupying few pixels to aircraft carriers which may be over 300m long. An example
Vision-1 image showing the relative size of di�erent maritime vessels relative to each other
is given in Figure 1.

The full dataset used in model development consists of more than 750 images. For
conformal calibration and validation we restrict our attention to holdout data only which
comprises 81 images and 1919 labelled maritime objects. Given that the model had already
been trained we did not have �exibility in choice of the number of images for conformal
calibration since no further images were available to our study. The limited number of
calibration and validation images is consistent with potential constraints on data supply in
an operational ISR setting and will help to establish if the conformal method is performant
in this circumstance.

Figure 1: Example Vision-1 RGB satellite image showing relative size of di�erent maritime
vessels.

2.2. Aerial data

For aerial data we use the Aerial Floating Object (AFO) RGB dataset available from Kag-
gle34 (G¡sienica-Józkowy et al., 2021). This contains images obtained from aerial drone
video with annotated humans and other objects �oating in the water. Image size is variable,
ranging from 3840 x 2160 pixels to 1280 x 720 pixels. Pixel size is also variable depending
on drone altitude and image distortions. Some of the �oating objects are small and occupy

3. https://www.kaggle.com/datasets/jangsienicajzkowy/afo-aerial-dataset-of-floating-objects
4. used under CC licence https://creativecommons.org/licenses/by-nc-sa/3.0/igo/
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only a few pixels which makes them di�cult to detect, however as the images are derived
from video there are many repeating similar images which may help boost object detection
model performance. An example AFO image is given in Figure 2.

We make use of the complete AFO dataset which consists of more than 3500 images and
39991 labelled objects in six classes (G¡sienica-Józkowy et al., 2021). A majority subset
of images was intially used to train an object detection model while 339 images containing
5392 objects were used for conformal calibration and validation.

Figure 2: Example image from Aerial Floating Object (AFO) dataset (G¡sienica-Józkowy
et al., 2021).

3. Methods

3.1. Object detection

Object detection is a computer vision task which locates instances of objects in images or
videos and delineates these with bounding boxes. Object detection models are commonly
�tted using convolutional neural networks and many o�-the-shelf model architectures are
available including R-CNN (Girshick et al., 2014), Detectron2 (Wu et al., 2019) and YOLO
(Redmon et al., 2016; Redmon and Farhadi, 2016, 2018). YOLO is one of the most popular
architectures because of its high accuracy and overall processing speed and there are a range
of YOLO architectures to suit di�erent use cases. The YOLO v5 nano architecture is small
compared to other models in the YOLO stable and a trained nano model is roughly 4MB
in size (Wong et al., 2019). This requires less processing resource for both training and
detection and is thus highly suitable for onboard use on lightweight satellites with limited
compute which are used for ISR purposes, for example Tyche5.

As previously noted the Vision-1 satellite data were supplied with a pre-trained model
for maritime object detection. This was in YOLO v5 nano format. We trained our own
YOLO v5 nano model for �oating object detection on the AFO data using transfer learning
and the baseline weights which are supplied in the YOLO v5 Python library (Jocher, 2020).

Although performance of an object detection model is commonly evaluated with a single
number, the mean average precision metric, there are in fact at least six sources of error

5. https://www.sstl.co.uk/space-portfolio/missions-in-build/2024/project-tyche
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and therefore uncertainty (Figure 3)6. The relative importance of the error types can vary
between applications (Bolya et al., 2020). For example precise localisation may be necessary
for an autonomous vehicle seeking to avoid pedestrians, while guarantees that objects are
not missed may be prioritised in ISR applications. Our focus in this paper is on missed
detections and localisation uncertainty.

Figure 3: Possible types of error in an object detection problem. Red boxes indicate false
positive detections while green boxes indicate true positives. Gold boxes represent
ground truth. "Cls" = incorrect class error; "loc" = localisation error. Source:
(Bolya et al., 2020).

3.2. Conformal prediction

Conformal prediction is a straightforward way to generate con�dence sets or intervals for any
machine learning model. Brie�y, inductive conformal prediction (Papadopoulos et al., 2002)
takes a pre-trained predictive model f̂ and a holdout calibration dataset Dcal = (Xi, Yi)

n
i=1

to compute a measure of goodness of �t between the ground truth data and model prediction
s(X,Y ), known as a nonconformity measure (NCM) (low values are good). The choice of a
nonconformity measure is a key one in the development of a conformal predictor.

Empirical quantiles of the nonconformity measure, controlled by the user-speci�ed error
level, α, may then be used to form prediction sets or ranges. Sets or ranges formed in
this way are theoretically guaranteed to contain the true value with a probability of almost
exactly 1-α, a property known as coverage. Formally, with Xnew as the observed data of a
new sample with Ynew ground truth, we obtain a set predictor C(Xnew) which satis�es

P
(
Ynew ∈ C(Xnew)

)
≥ 1− α. (1)

Equation (1) gives the core theoretical coverage guarantee of the conformal prediction
framework. The probability in Equation (1) is averaged over the randomness in the calibra-
tion and new data points and the guarantee is therefore for marginal coverage. Miscoverage
is the probability that a prediction set fails to include the true value and correspondingly
has probability of almost exactly α:

6. �gure used under MIT licence https://github.com/dbolya/tide?tab=MIT-1-ov-file
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P
(
Ynew �∈ C(Xnew)

)
≤ α. (2)

A recent extension to the conformal framework is conformal risk control which allows
for control of any single monotone loss function ℓ which shrinks as C grows and provides a
theoretical guarantee of the following form:

E
[
ℓ(C(Xnew), Ynew)

]
≤ α. (3)

Conformal risk control uses a prediction-sourced parameter λ to control the size of a
prediction set (larger values of λ lead to larger prediction sets) (Angelopoulos et al., 2023).
Risk control satisfying Equation (3) is achieved for an arbitrary risk level upper bound
α ∈ (−∞, B) by picking λ̂ with the algorithm

λ̂ = inf

{
λ :

n

n+ 1
R̂n(λ) +

B

n+ 1
≤ α

}
, (4)

where R̂(λ) = (ℓ(Cλ(X1), Y1+ ...+ ℓ(Cλ(Xn), Yn))/n is the empirical risk for the calibra-
tion data. (Angelopoulos et al., 2023) show that conformal prediction reduces to conformal
risk control when a miscoverage loss is used. In this case λ̂ is the conformal quantile, which is
selected in conformal prediction as the ⌈(n+1)(1−α)⌉/n sample quantile of {s(Xi, Yi)}ni=1.

In an object detection application theoretical guarantees may be desired either at the
marginal level, considering all images and objects, or at the image-level. Conformal risk
control enables the use of image-level loss functions such as false negative rate to complement
the marginal coverage guarantee provided by inductive conformal prediction. Further details
of the conformal framework and some of its possible applications are given in (Angelopoulos
and Bates, 2022; Vovk et al., 2022).

4. Experiments

Our experiments seek to demonstrate the utility of conformal prediction approaches to
quantify both the detection uncertainty and localisation uncertainty which exist in object
detection models. We present two di�erent sets of experiments:

� Detection experiments. These use the framework of conformal risk control to quantify
detection uncertainty in the Vision-1 and AFO object detection models. Two loss
functions are examined within this framework: marginal miscoverage and false negative
rate. For each loss function two alternative nonconformity measures are also evaluated.

� Localisation experiments. These apply inductive conformal prediction to examine the
e�ect of di�erent nonconformity measures on the accuracy and e�ciency of confor-
malised bounding boxes predicted by the Vision-1 object detection model.
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4.1. Detections

Considering detection uncertainty, possible choices of nonconformity measure available in a
YOLO v5 model include (1 - object score) and (1 - con�dence score). These are predicted
directly from the underlying neural network and trained model weights and are available
on a per-box basis. Object score is the model-calculated likelihood that there is an object
of interest contained within a bounding box, while con�dence score is equal to the object
score multiplied by the score of the most likely class within that box. We test both of these
nonconformity measures in our detection experiments.

In inference mode YOLO initally predicts thousands of boxes per image and uses a
process of non-maximum suppression (NMS)7 to reduce these to a user-controlled level.
The ultimate number of detections shown to the user is determined by input parameters
including the maximum detections per image and threshold IOU of overlapping boxes to use
in the NMS process, as well as the threshold con�dence score to apply to candidate boxes.
We apply conformal risk control to identify the precise values which guarantee marginal
miscoverage or false negative rates at given values of α, NMS IOU threshold and maximum
detections per image.

To implement our approach we �rst randomly split the data remaining after model
training into two subsets. The �rst of these is used for conformal calibration while the second
split is used to verify the score settings identi�ed in the calibration phase. In calibration we
take predicted boxes in an image after NMS and con�dence/object score thresholding have
been applied and match a single predicted box to each ground truth box using the best IOU
score. We count a match as a successful detection if the IOU of the predicted box with the
ground truth box exceeds 0.5. Considering in turn (1 - object score) and (1 - con�dence score)
for matched boxes we then use conformal risk control to �nd threshold values which control
the marginal miscoverage across all objects in the data, and the expectation of false negative
rate per image. We repeat this process across 30 random splits of the data for di�erent levels
of α and monitor for miscoverage and false negative rate control as well as detections as
a multiple of true detections. The latter measure is an indicator of the relative number of
predicted bounding boxes compared to ground truth objects and represents the e�ciency of
the conformal guarantee. This determines how useful it might be to an intelligence analyst
since a large surfeit of predicted bounding boxes demonstrates a level of uncertainty which
may be too great for the decision problem at hand.

A summary of our experimental design is given in Table 1. Di�erent levels of α were
examined for the two models owing to their respective performance at the detection task:
the Vision-1 model is much less accurate overall than the AFO model and cannot provide
performance guarantees at lower levels of α without returning an unhelpfully large number
of predicted boxes. For the same reason we also do not consider lower values of α such as 0.05
for either model. For all experiments we use an IOU threshold of 0.6 for the NMS process
and specify maximum detections per image at an arbitrarily large 300,000 in order to avoid
premature loss of predicted boxes. Exploratory analysis showed that the precise value of
the NMS IOU threshold does not matter but it is important that it is held constant across
calibration and validation runs to satisfy the exchangeability assumption of the conformal

7. https://pytorch.org/vision/main/generated/torchvision.ops.nms.html
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method. A value of 0.6 was chosen for this threshold in order to accommodate overlapping
boxes in the AFO model case.

Table 1: Summary of experiments for detections. These examine two nonconformity mea-
sures (NCM); two loss functions and an e�ciency measure as performance metrics;
and contrasting values of α for each model.

NCM Performance metrics Model α

1 - object score Miscoverage Vision-1 0.5
0.4

False negative rate 0.3
1 - con�dence score AFO 0.3

Detection multiple 0.2
0.1

4.2. Localisation

A signi�cant source of uncertainty in the object detection use case is in the location of
the objects. By choosing a nonconformity measure based on the coordinates of the ground
truth and predicted bounding boxes, we can use conformal prediction to provide performance
guarantees on probabilities that predicted bounding boxes will fully contain the entirety of
the detected object.

To do this we take the approach of (de Grancey et al., 2022) in which the nonconformity
measures are set to be the distance between the ground truth coordinates for xmin, xmax,
ymin and ymax and the equivalent coordinates of the predicted bounding boxes. We let k =
1, ..., nbox index every ground truth box, irrespective of image. The ground truth coordinates
of the k-th box are Y k = (xkmin, y

k
min, x

k
max, y

k
max) while Ŷ k = (x̂kmin, ŷ

k
min, x̂

k
max, ŷ

k
max) is its

prediction. The nonconformity measure is de�ned as

Rk =

(
x̂kmin − xkmin, ŷ

k
min − ykmin, x

k
max − x̂kmax, y

k
max − ŷkmax

)
. (5)

Before this can be done, the correct set of ground truth bounding boxes and predictions
must be paired up. In our case, as in (de Grancey et al., 2022), this was done by calculat-
ing the IOU of each prediction with each ground truth, and then applying the Hungarian
matching algorithm (Kuhn, 1955) to �nd the minimum di�erence matches. Once each box
has been correctly paired to its prediction, the nonconformity measures can be calculated.
This leads to a set of 4 nonconformity measures and therefore a set of quantiles rather
than the traditional single quantile, thus a Bonferroni correction to account for multiple
comparisons must be applied here. We will refer to this set of 4 quantiles as the bounding
box di�erence quantiles from here on. We also examine a more conservative approach to
utilising these quantiles, in which rather than apply 4 di�erent quantiles, we pick the largest
di�erence between ground truth and prediction for each set of quantiles and apply this to
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every coordinate. This method will produce larger bounding boxes on average, but will be
more likely to fully cover the ground truth as a result.

Once the bounding box di�erence quantiles have been calculated, these are combined
with future predictions to produce new conformalised bounding boxes, which have a coverage
guarantee. We calculate this for a range of α values and examine the e�ect on coverage, IOU
and the average area of bounding boxes pre- and post-conformal to evaluate the performance
cost of applying conformal for localisation.

5. Results

5.1. Detections

Results of experiments for miscoverage and false negative rate are given in Table 2 and
Table 3 respectively. The tables show that risk control is achieved in all cases as the mean
values of miscoverage and false negative rate are less than their associated values of α.

Table 2: Results for miscoverage experiments. (NCM - nonconformity measure.)

Miscoverage Detection multiple

NCM Model α Mean Std dev Mean Std dev

1- object score Vision-1 0.5 0.49 0.091 1.69 0.402
0.4 0.40 0.082 553.8 3020
0.3 0.25 0.079 12 050 6269

AFO 0.3 0.28 0.044 1.01 0.041
0.2 0.19 0.044 1.20 0.094
0.1 0.08 0.020 2025 690

1- con�dence score Vision-1 0.5 0.49 0.113 1.63 0.321
0.4 0.39 0.087 2.46 0.773
0.3 0.26 0.087 4248 3570

AFO 0.3 0.28 0.036 1.00 0.034
0.2 0.19 0.040 1.20 0.092
0.1 0.08 0.012 2169 416

For the Vision-1 model, variation in miscoverage across experiments is slightly smaller
with object score compared to con�dence score (for example standard deviation of 0.091
compared to 0.113 at α=0.5 (Table 2)). However the opposite is true in the false negative
rate experiments where variation in mean false negative rate across experiments is greater
for object score compared to con�dence score (Table 3). (1 - con�dence score) provides a
more e�cient choice for λ than (1 - object score) for both miscoverage and false negative
rate cases when measured in terms of the detection multiple (Table 2 and Table 3). Both
measures become very undiscriminating of objects at lower values of α as the Vision-1 model
is not performant here; although the risk control guarantees hold, detection multiples become
unhelpfully large. At α=0.3 the value used to threshold the model is approaching zero so
nearly all predicted boxes are returned, subject to the user-speci�ed NMS IOU threshold

9
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Table 3: Results for false negative rate experiments. (NCM - nonconformity measure; FNR
- false negative rate.)

FNR Detection multiple

NCM Model α Mean Std dev Mean Std dev

1 - object score Vision-1 0.5 0.48 0.094 1.28 0.454
0.4 0.37 0.131 1888 4892
0.3 0.15 0.126 13 008 5367

AFO 0.3 0.27 0.031 0.90 0.031
0.2 0.18 0.030 1.03 0.053
0.1 0.07 0.026 1573 1048

1 - con�dence score Vision-1 0.5 0.48 0.082 1.29 0.315
0.4 0.37 0.097 252.3 1367
0.3 0.14 0.111 5981 2785

AFO 0.3 0.27 0.028 0.90 0.025
0.2 0.19 0.028 1.01 0.055
0.1 0.08 0.029 1274 1134

(Section 4.1). This can be seen in Figure 4 where the number of spurious detections increases
as α decreases.

Results for the AFO model indicate no clear preference for (1 - con�dence score) or (1
- object score). Variation across miscoverage experiments is lower for (1 - con�dence score)
than it is for (1 - object score) (Table 2) but this does not wholly extend to false negative
rate (Table 3). Risks are controlled at lower values of α than is achieved with the Vision-
1 model indicating the improved predictive power of the AFO model. Excess detections
proliferate at α=0.1 in a similar manner to the Vision-1 model at α=0.3 (Table 2, Table 3
and Figure 5).

5.2. Localisation

Localisation results given in Table 4 show that while the bounding box coverage guarantee is
maintained at a range of values of α, the performance cost in terms of bounding box precision
and size varies with α. The average IOU retained represents the average percentage change
in IOU between the predicted and conformalised bounding boxes and the ground truth, a
lower score indicating a larger decrease in IOU score after conformal prediction has been
applied, and a score of 1 indicating no change in IOU. As α increases and the strictness of
the coverage guarantee decreases, we see both the average size of the conformalised bounding
boxes and the loss of IOU both decrease. When examining the e�ect of using the conservative
bounding box quantile we see a higher level of coverage maintained overall, however with
an increase in both average size of the resulting bounding box and loss of IOU score as
compared to the less conservative quantile.

10



The Uncertain Object

(a) Ground truth boxes (b) α=0.5 (c) α=0.3

Figure 4: Vision-1 model example false negative rate detection results using risk controlled
value of con�dence score at selected values of α compared with ground truth boxes
in (a).

(a) Ground truth boxes (b) α=0.3

(c) α=0.2 (d) α=0.1

Figure 5: AFO model example false negative rate results using risk controlled value of con-
�dence score at selected values of α compared with ground truth boxes in (a).

11
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From Table 4 we can see that our coverage guarantee is in many cases is signi�cantly
higher than the required value of ( 1-α). This is most likely caused by our need for a Bonfer-
roni correction due to having multiple quantiles for localisation, which results in generally
much more conservative quantile values. Depending on the accuracy of the underlying de-
tection algorithm, using either a more strict coverage guarantee with a lower α, or a more
conservative nonconformity measure, produces larger bounding boxes in order to maintain
this guarantee.

Example localisation results are shown in Figure 6 for a Vision-1 image. Figure 6 demon-
strates that the performance cost of conformal prediction on localisation can be very low, as
conformal boxes di�er from the ground truth boxes by only a few pixels in each dimension.

Table 4: Experimental results for bounding box localisation. (NCM - nonconformity mea-
sure; IOU - intersection over union.)

NCM α Coverage Average IOU retained Average box area change

Bounding box 0.4 0.8222 0.6593 1.848
di�erence quantile 0.3 0.8444 0.6399 1.908

0.2 0.9171 0.5688 2.217
0.1 0.9436 0.5254 2.423

Conservative 0.4 0.9291 0.5865 2.152
bounding box 0.3 0.9291 0.5705 2.225
di�erence quantile 0.2 0.9675 0.4895 2.665

0.1 0.9709 0.4567 2.849

6. Discussion

Intelligence analysis produces outputs which are ordinarily couched in terms of probabilities
or uncertainty (Irwin and Mandel, 2023; Dhami et al., 2015; van der Bles et al., 2019;
Friedman and Zeckhauser, 2012) and as such readily lends itself to the methods of the
conformal framework which seek to expose uncertainty in black box machine learning models.
We have demonstrated the successful application of conformal risk control to detections
predicted by YOLO models trained using aerial and satellite data, all of which are widely
used in ISR tasks. Although conformal guarantees were maintained in all cases we examined,
these were less good for detections in the Vision-1 satellite maritime object model compared
to the AFO model due to the respective model accuracies: higher values of the error rate
α were required in the Vision-1 model case to avoid returning an impracticable number of
detections. Achieving good quality object detection models with lower spatial resolution
satellite data is a di�cult task owing, amongst other things, to the few pixels which may be
occupied by objects; relative availability of su�cient high quality training data; and greater
variability of data which may span the whole planet, in contrast to aerial data which is
likely to survey a few select environments at most (Van Etten, 2018; G¡sienica-Józkowy
et al., 2021).
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Figure 6: Vision-1 model example localisation result showing 3 objects and their associated
set of bounding boxes: ground-truth (green); YOLO v5 prediction (blue); and
conformalised prediction (orange).
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Although it is always preferable to have a high quality trained model, the modest per-
formance guarantees that we found for detections arising from the Vision-1 model are less
germane than the ability of conformal methods to expose the underlying uncertainty in any
prediction in a manner which is both �exible and versatile. The possibility to switch be-
tween loss functions in conformal risk control, for example, accommodates use cases with
di�erent objectives and o�ers a route by which an intelligence analyst may obtain the most
appropriate measure of uncertainty for a particular intelligence assessment.

Our results also show that conformal prediction can be successfully applied to the lo-
calisation of objects in satellite images to provide coverage guarantees on the likelihood of
a bounding box fully containing the target object. Although coverage was maintained in
all cases, a performance cost in terms of bounding box precision and size was unavoidable.
These performance costs were dependent on both values of α and choice of nonconformity
measure, and as such a range of values should be examined for each use case depending
on the acceptable performance loss versus coverage guarantee. In addition we found that
due to the requirement for a Bonferroni correction, for localisation our coverage was often
signi�cantly more conservative than required, exceeding the value of 1-α. This suggests that
in use cases in which the precision of the bounding box is valued highly, a more relaxed α
may still allow a high level of coverage without commensurate loss of performance.

Conformal approaches can also be used in ISR settings to inform decisions on optimal use
of the limited power, bandwidth and earth downlink opportunities which are encountered
on small surveillance satellites such as Tyche. For example, images which are considered to
include objects of interest, even with the 50% probability seen in our Vision-1 experiments,
will be more worthy of downlink than images which do not meet this threshold. In this way
the number of images for onward transmission will be substantially reduced in a theoretically
rigorous manner. This has further bene�t in terms of ground station processing and cognitive
load on the analyst, both of which are also reduced. Ultimately, conformal methods enable
greater transparency of the workings of machine learning models and this will in turn help
to engender vital trust in their outputs (Bhatt et al., 2021; Radcly�e et al., 2023).
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