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Abstract

This study introduces two algorithms based on the Inductive Conformal Martingale (ICM)
approach to address the change point (CP) detection problem in array-based Comparative
Genomic Hybridization (aCGH) data. The ICM, a distribution-free approach with mini-
mal assumptions, is particularly suitable for this application. We have implemented two
ICM-based algorithms; the first utilizes nonconformities from preprocessed data, while the
second incorporates the label conditional distribution and the labels’ distribution to en-
hance detection accuracy. This approach significantly improves our results, demonstrating
the potential of ICM in complex genomic data analysis.
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1. Introduction

Detecting DNA sequence alterations is essential for understanding the genetic underpin-
nings of various disorders and cancers. Comparative Genomic Hybridization (CGH), first
introduced by Kallioniemi A (1992), provides a comprehensive method for analyzing chro-
mosomal variations across the genome. This technique saw significant advancements with
the introduction of Array CGH (aCGH) by Pinkel et al. (1998), which uses microarrays to
improve resolution. aCGH enables the accurate identification of genomic gains or losses by
measuring fluorescence ratios between test and reference DNA on microarrays, a critical
step for developing targeted therapeutic strategies.

The ideal case would be for the log2 ratio to be zero; however, a positive log2 ratio
indicates a gain in the genomic sequence, while a negative log2 ratio indicates losses. While
observing a problematic aCGH sequence, the data-generating mechanism may change at
some point, i.e., to start showing high gains or losses. It is also possible that the aCGH
sequence will switch from gains to losses and vice versa; thus, we do not deal only with the
absolute value of these changes but also take into account their sign, i.e. whether it is a
gain or a loss. We aim to identify these change points (CP), which is a complex and time-
consuming tasks. Thus, implementing a reliable method of low computational complexity
that allows for the analysis of each person’s aCGH data and detects at which point a change
occurs, will contribute to understanding the kind of genetic disorder medical practitioners
are dealing with, enabling treatments tailored to specific genetic variations (Doudican et al.,
2015).

Our work introduces a CP detection algorithm tailored for aCGH data by testing the
exchangeability assumption at a prespecified significance level. Our methodology is based
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on Inductive Conformal Martingales (Volkhonskiy et al., 2017) and draws upon the prop-
erties of Conformal Prediction, as introduced by Vovk et al. (2005), to evaluate the data’s
exchangeability. Conformal Martingales is a robust framework for identifying distribution
changes, which makes it suitable for genomic data where statistical properties undergo
significant shifts.

Most previous works rely on assumed distributions for hypothesis testing or fit a model
on the data. However, these assumptions might not always hold; the model might not fit
on the data well, or the assumed distribution might be wrong.

The proposed approach requires only data preprocessing and tests the exchangeability
assumption without assuming a particular distribution. Furthermore, we don’t assume any
structure in the data, e.g. constant variance or mean within segments. These properties
allow us to apply this CP framework across various genomic data types without the need
of any model on the data. These minimal assumptions ensure our method’s probabilistic
validity.

A CP occurs when the underlying data distribution shifts, given a data stream S =
{(x0, y0), (x1, y1), . . . } consisting of feature vectors xi and labels yi. A CP at timestamp t
occurs when S can be segmented into two sets S0,t = {(x0, y0), . . . , (xt, yt)} and St+1,... =
{(xt+1, yt+1), . . . }, such that S0,t and St+1,... are generated by different distributions.

The remainder of this paper is organized as follows: Section 2 provides a comprehensive
review of the existing literature on change detection. In Section 3, we introduce the prin-
ciples upon which our methodology is based. Section 4 details our proposed methodology,
followed by Section 5, which presents our experimental framework, the performance metrics
used, and the results of our evaluations. We conclude in Section 6 by summarizing our
findings and suggestions for future research.

2. Related work

Given the vast amount of research on this topic we will present only the most prominent
works related to the method we follow.

2.1. Related Work on ACGH Change Point Detection

In this section, we explore the contributions of various researchers towards CP detection in
aCGH data.

Circular Binary Segmentation (CBS), introduced by Olshen et al. (2004), assumes no
specific data distribution but employs permutation-based reference distributions. Assuming
that the data has a constant number of the log2 ratio in each segment, it identifies regions
with a statistically significant change in the mean log2 ratio of the aCGH data.

The Energy Divisive (ED) Algorithm proposed by Matteson and James (2014) is a
permutation-based nonparametric method. This method employs hierarchical clustering
through divisive and agglomerative algorithms to estimate the number and locations of
change points.

Chen and Wang (2009) introduced the Mean and Variance CP Model (MVCM), a novel
approach for identifying copy number variations in aCGH data based on hypothesis testing
for mean and variance. This model, which assumes a Gaussian distribution of log2 ratios,
employs a Binary Segmentation Procedure alongside the Schwarz Information Criterion
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to accurately detect CNVs. Through iterative refinement of genomic segments, MVCM
efficiently identifies significant changes in mean and variance.

In their work, Hyun et al. (2021) advanced the field of CP detection within copy number
variation (CNV) data analysis by tailoring post-selection inference methods to this context,
under the assumption of normally distributed (Gaussian) data variables. They managed
to produce uniformly distributed p-values, which is a crucial aspect for determining the
statistical significance of the identified CP’s.

While the previously discussed methods effectively analyse aCGH data, they depend
heavily on specific statistical assumptions about the data distribution. For instance, MVCM
presupposes a Gaussian distribution of log2 ratios, an assumption which may not hold under
specific biological conditions where such assumptions are invalid. Meanwhile, even though
CBS and ED do not assume a specific distribution, they rely on permutation-based refer-
ences, which can be computationally intensive if a high number of permutations is required.
In contrast, the approach proposed in this work does not rely on heavy computations or as-
sumptions about the aCGH data, enhancing its effectiveness across diverse genomic datasets
where verifying statistical assumptions can be challenging.

2.2. Related Work on Conformal Martingales

In this section, we explore the contributions of various researchers towards testing the Ex-
changeability Assumption (EA) using Conformal Martingales (CM). A notable challenge in
this domain has been the reliance on specific distributional assumptions for test statistics, a
limitation adeptly addressed by the introduction of CM. This innovative approach, detailed
in (Vovk et al., 2005), offers a robust framework for EA testing without the constraints of
predefined distributional assumptions on the test statistics.

One notable contribution by Vovk et al. (2003) in this field involved a method for
online exchangeability testing based on Conformal Prediction and Conformal Martingales.
This method involves computing a sequence of p-values using conformal prediction online,
where each new example’s p-value is determined using new and previously seen examples.
Following this, a Betting Function (BF) is applied to each p-value, and the product of
these BF outputs forms the Martingale’s value. When the Martingale’s value M becomes
sufficiently large, the EA can be rejected at a significance level of 1/M . This approach is
valuable for testing if a dataset satisfies the EA and detecting CPs in time series, aiding in
Change Detection.

Further developing the concept introduced by Vovk et al. (2003), another study (Ho,
2005) introduced an enhanced Conformal Martingale (CM) that utilizes a straightforward
betting mixture function. This adaptation is tailored to identify concept shifts within
dynamic data streams. The authors of this work formulated two types of martingale tests:
one predicated on the values of the martingale itself and the other on the differences observed
in successive martingale values. Both types of tests were derived using the mixture Betting
Function (BF) as their core computational element.

Extending these principles, another investigation Fedorova et al. (2012) applied them to
test the exchangeability of data in two datasets, USPS and Statlog Satellite. The approach
involves online testing, where data is processed sequentially, and the CM value is computed
as a valid measure for assessing the EA. They utilized a density estimator for the observed
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p-values as a BF, with kernel density estimation showing superior performance to the simple
mixture BF.

In addition, Volkhonskiy et al. (2017) introduced an Inductive version of CM for de-
tecting changes in time series. In their study, the initial observations of the time sequence
are used to train the underlying model, and all nonconformity scores are calculated via
this model. They experimented with several BFs and found that the pre-computed ker-
nel BF yields the most efficient results, evidenced by the lowest mean delay in their tests
on synthetic datasets. Their findings are comparable with other methods like CUSUM,
Shiryaev-Roberts, and Posterior Probability statistics.

In their work Ho and Wechsler (2012) leverage CM to identify concept changes in data
streams by examining the EA. Their innovative approach, grounded on Doob’s Maximal In-
equality, establishes a robust framework for hypothesis testing within time-varying data en-
vironments. They rigorously tested their methodology on synthetic and real-world datasets,
showcasing its applicability and effectiveness in detecting concept changes.

A novel real-time martingale-based approach is proposed by Ho et al. (2019) using
Gaussian Process Regression (GPR) to predict and detect anomalous flight behaviour as
data arrives sequentially. They implemented multiple CM tests to reduce the number of
false alarms and the detection delay time, again utilizing the mixture BF for Martingale
calculation.

In our study presented in Eliades and Papadopoulos (2021), we explored the integration
of ICM with a histogram betting function. This novel combination is specifically designed
to detect violations of the EA and, as a result, identify CD in data streams. Notably, our
approach is distribution-free, distinguishing it from other methods that often presuppose a
specific distribution in their drift detection metrics.

Eliades and Papadopoulos (2022) introduced the ‘Cautious’ betting function to improve
the detection of Concept Drift by preventing the martingale values from going near zero
when no changes occur. This method was tested with kernel and histogram functions across
five datasets, demonstrating enhanced detection and model accuracy.

To conclude, this section lays the groundwork for our study, in which we employ Induc-
tive Conformal Martingales (ICM) to tackle Change Detection (CD) challenges. Inspired
by the seminal studies reviewed, our methodology tailors ICM to specifically address the
dynamic characteristics of changing data streams.

3. Inductive Conformal Martingales

In this section we describe the basic concepts of ICM and how our nonconformity scores
and p-values are calculated.

3.1. Data Exchangeability

Let (Z1, Z2, . . . ) be an infinite sequence of random variables. Then the joint probability
distribution P(Z1, Z2, . . . , ZN ) is exchangeable if it is invariant under any permutation of
these variables. The joint distribution of the infinite sequence (Z1, Z2, . . . ) is exchangeable if
the marginal distribution of (Z1, Z2, . . . , ZN ) is exchangeable for every N ∈ N. Testing if the
data is exchangeable is equivalent to testing if it is independent and identically distributed
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(i.i.d.); this is an outcome of de Finetti’s theorem (Schervish, 1995): any exchangeable
distribution on the data is a mixture of distributions under which the data is i.i.d.

3.2. Exchangeability Martingale

A test exchangeability Martingale is a sequence of random variables (S1, S2, S3, . . . ) being
equal to or greater than zero that keep the conditional expectation E(Sn+1|S1, . . . , Sn) = Sn.

To give an idea how a martingale works, consider a fair game where a gambler with
infinite wealth follows a strategy based on the distribution of the events in the game. The
gain acquired by the gambler can be described by the value of a Martingale, specifically
Ville’s inequality (Ville, 1939) indicates that the probability of having high profit (C) is
small, P{∃n : Sn ≥ C} ≤ 1/C.

According to Ville’s inequality for the case of the EA, a large final value of the Mar-
tingale suggests rejection of the assumption with a significance level equal to the inverse
of the Martingale value, i.e. a Martingale value of 10 or 100 rejects the hypothesis of
exchangeability at 10% or 1% significance level, respectively.

3.3. Calculating Non-conformity Scores and Pvalues

As mentioned in Section 1, this study eliminates the necessity of assuming a model for
calculating Non-Conformity Scores (NCS); instead, it requires only preprocessing of the
data. Here, we begin with an overview of Inductive Conformal Martingales (ICM) and
demonstrate how this approach can be adapted to our context, which is free from model
dependencies. We will show how we calculate pvalues, label conditional pvalues and label
pvalues.

Let {z1, z2, . . . } be a sequence of examples, where zi = (xi, yi) with xi an object given
in the form of an input vector, and yi the label of the corresponding input vector. The CM
approach generates a sequence of pvalues corresponding to the given sequence of examples
and then calculates the martingale as a function of these p-values. ICM uses the first k
examples {z1, z2, . . . , zk} in the sequence to train a classification algorithm, which it then
uses to generate the p-values for the next examples. Consequently, it starts checking for
violations of the EA from example zk+1 on, i.e. the sequence {zk+1, zk+2, . . . }.

Our aim is to examine how strange or unusual a new example zj ∈ {zk+1, zk+2, . . . } is.
For this purpose, we define a function A(zi, {z1, . . . , zk}), where i ∈ {k + 1 . . . }, called a
nonconformity measure (NCM) that assigns a numerical value αi to each example zi, called
nonconformity score (NCS). The NCM is based on the trained underlying classification
algorithm. The bigger the NCS value of an example, the less it conforms with {z1, . . . , zk}
according to the underlying algorithm.

For every new example zj we generate the sequence Hj = {αk+1, αk+2, . . . , αj−1, αj} to
calculate its p-value. Note that the NCSs inHj are calculated with the underlying algorithm
trained on {z1, z2, . . . , zk}. Given the sequence Hj we can calculate the corresponding p-
value (pj) of the new example zj with the function:

pj =
|{αi ∈ Hj |αi > αj}|+ Uj · |{αi ∈ Hj |αi = αj}|

j − k
, (1)
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where αj is the NCS of the new example, αi is the NCS of the ith element in the example
sequence set and Uj is a random number from the uniform distribution (0,1). Here we
calculate the p-value pj for a new example zj by comparing its nonconformity score αj

relative to all previous scores in the sequence set Hj . For more information, refer to (Vovk
et al., 2003).

As described in (Vovk, 2020) it is possible to calculate label conditional pvalues given
by the slightly modified function:

pj =
|{αi ∈ Hj |αi > αj ∧ yi = yj}|+ Uj · |{αi ∈ Hj |αi = αj ∧ yi = yj |

|{αi ∈ Hj |yi = yj}|
, (2)

In this adaptation, the p-value calculation specifically focuses on examples with the same
label as the new example zj . By conditioning the comparison on the label yj , the p-value
pj is determined by comparing the nonconformity score αj of the new example against only
those scores from the sequence Hj that belong to the same label category. This adaptation
is crucial in datasets where each example’s distribution depends on the label.

In our study we also use label-pvalues as described in (Vovk, 2020). The label noncon-
formity measure we use is:

ãj = median{ai ∈ {α1, . . . , αj}|yj = yi} (3)

Then we generate the sequence H̃j = {α̃k+1, α̃k+2, . . . , α̃j−1, α̃j} and the produced label
pvalues are calculated by

pj =
|{α̃i ∈ H̃j |α̃i > α̃j}|+ Uj · |{α̃i ∈ H̃j |α̃i = α̃j}|

j − k
, (4)

The nonconformity score aj is transformed to ãj to measure the strangeness of the
label of each new example zj . The label p-value pj is then calculated by comparing this
transformed nonconformity ãj with all other label nonconformity scores in the sequence H̃j .

However, in this study, no model is required, thus k = 0. Therefore, it is possible to start
checking for violations of the EA from example z1 onward, i.e., the sequence {z1, z2, . . . }.
The function A(zi, {z1, . . . , zk}) simplifies to A(zi,M), where M denotes both the molecular
cytogenetic method used to produce the aCGH data and the preprocessing applied to this
data. Furthermore, the label yj used in (2), (3) and (4) is determined as follows: it takes
the value GAIN if zj > 0 and LOSS if zj < 0.

3.4. Inductive Conformal Martingales

An ICM is an exchangeability test Martingale (see Subsection 3.2), which is calculated as
a function of p-values such as the ones described in Subsection 3.3.

Given a sequence of p-values (p1, p2, . . . ) the Martingale Sn is calculated as:

Sn =

n∏
i=1

fi(pi) (5)

where fi(pi) = fi(pi|p1, p2, . . . , pi−1) is the betting function (Vovk et al., 2003).
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The betting function should satisfy the constraint:
∫ 1
0 fi(p)dp = 1, fi(p) ≥ 0 and also

the Sn must keep the conditional expectation: E(Sn+1|S0, S1, . . . , Sn) = Sn.
The integral

∫ 1
0 fi(p)dp equals to 1 because fi(p) is the p-values (p1, p2, . . . , pi−1) density

estimator. We also need to prove that E(Sn+1|S0, S1, . . . , Sn) = Sn under any exchangeable
distribution.
Proof E(Sn+1|S0, S1, . . . , Sn) =

∫ 1
0

∏n
i=1 fi(pi) · fn+1(p)dp =

∏n
i=1 fi(pi) ·

∫ 1
0 fn+1(p)dp =∏n

i=1 fi(pi) = Sn

Using (5), it is easy to show that Sn = Sn−1 · fn(pn), which allows us to update the
Martingale online. Let us say that the value of Sn equals M, then Ville’s inequality (Ville,
1939) suggests that we can reject the EA with a significance level equal to 1/M .

When calculating p-values using (2), we obtain a label conditional conformal Martin-
gale, denoted as Sc

n. This tests whether the label conditional distribution, in our case the
amplitude of the log2 ratio for specific classes of labels (‘GAINS’ or ‘LOSSES’), changes.
Conversely, when using (4), the result is a label Conformal Martingale, denoted as Sl

n, which
tests if the distribution of labels (‘GAINS’ or ‘LOSSES’) changes. The product of these two
Martingales, Sc

n ·Sl
n, forms an exchangeability Martingale as demonstrated by Vovk (2020),

which tests whether the joint distribution of amplitude and label has changed. Thus, if
this product reaches a value equal to M , Ville’s inequality (Ville, 1939) allows us to reject
the Exchangeability Assumption (EA) with a significance level equal to 1/M . This product
of Martingales contains valuable information about both the amplitude changes and label
distribution in the dataset,which, in our case, helps to detect more CP.

Note that we can calculate equation (5) in the logarithmic scale to deal with precision
issues.

4. Proposed Approach

This section presents our approach for detecting CP in aCGH data. Our method identifies
CPs by evaluating the exchangeability assumption (EA) against a predefined significance
level. A violation of the EA, indicating a shift in the data-generating mechanism, signals
the presence of a CP. One of the key advantages of our methodology is its independence
from traditional model fitting and the assumption-free nature of our hypothesis testing
concerning the EA.

Our process begins with applying median filters to the data, followed by standardization
through the use of sliding windows. This preprocessing step enables us to define noncon-
formities in the data by calculating the absolute values of the filtered data. Subsequently,
for each instance, we determine the labels based on the sign of the log2 ratio (GAIN or
LOSS). We then compute p-values and assess the Exchangeability Assumption (EA) using
Inductive Conformal Martingales (ICM).

To implement CM with the derived sequence of p-values, we must employ a betting
function. The ‘Cautious’ betting function (Eliades and Papadopoulos, 2022), integrated
with density estimation techniques such as the Simple Histogram or the Kernel Density
Estimator (KDE), has been utilized.

In the following subsections, we describe the ’Cautious’ betting function, the density
estimators integrated with it, the preprocessing techniques applied to our dataset, and the
details of our CP detection algorithm.
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4.1. Preprocessing

As previously mentioned, our methodology does not depend on fitting any specific model
to the data; thus, nonconformities can be calculated directly after preprocessing. The
preprocessing steps are as follows:

� Missing Values Removal: All missing values are removed as their accurate estima-
tion is challenging due to the lack of technical details.

� Outlier Removal: Our dataset includes a dummy variable for outlier identification,
simplifying this task. We eliminate outliers because extreme values can lead to false
alarms of CPs or even miss CPs.

� Median Filtering: This step smoothes the data by replacing each instance with the
median of its neighbouring values within a predefined window. This process helps
eliminate undetected outliers, reduces noise, and preserves the data’s dynamics.

� Data Normalization: We normalized the filtered data using a moving standard
deviation. Each data point was divided by the standard deviation of its neighbours,
utilizing the same window size as in the median filtering step.

� Absolute Value Calculation: Given that high deviations from zero indicate sig-
nificant losses or gains in the genomic data, our final step consists of calculating the
absolute value of the normalized data.

This study uses the absolute values obtained from the normalization process as noncon-
formity scores ai. Ideally, all nonconformity scores would be zero for a perfectly conforming
subject, indicating no deviation from a reference subject. High nonconformity scores suggest
significant deviations, potentially indicating anomalies or changes in the genomic sequence,
whereas low scores suggest minimal deviations.

However, using absolute values alone results in a loss of information about the di-
rection of change, whether a gain or a loss in the genomic sequence. To illustrate this,
consider the sequence {0.1, 0.1, 0.1, 0.1, . . . ,−0.1,−0.1,−0.1,−0.1, . . .} with corresponding
labels {G,G,G,G, . . . , L, L, L, L, . . .}. Although the magnitude of the scores remains con-
sistent, there is an evident shift in the label distribution from gains to losses, signifying a
CP in the genomic data. Consequently, each instance is labelled: ‘Gain’ if the log2 ratio is
positive and ‘Loss’ if negative.

Additionally, for calculations required to determine the value of the label Martin-
gale, denoted as ãi, we take the median of the sequence {a1, . . . , ai}, such that ãi =
median{a1, . . . , ai}. This measure serves as the nonconformity score used in Martingale
computations to assess the exchangeability of the label sequences.

4.2. Cautious Betting Function

Here, we describe the Cautious Betting Function proposed in (Eliades and Papadopoulos,
2022). An issue of the CM and ICM is that they might need much time to recover from
a value very close to zero (Volkhonskiy et al., 2017). This betting function avoids betting
(i.e. hn = 1) when insufficient evidence is available to reject the EA, thus keeping the value
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of Sn from getting close to zero and reducing the time needed to detect a CD. Theorem 1
establishes that under a uniform distribution of p-values, any betting function diverging
from constant unity leads to S∞ identically equaling zero. Theorem 2 extends this, showing
that for any sequence of betting functions converging uniformly to a function other than
constant unity, S∞ will also converge to zero. These principles underscore the selection
of the Cautious Betting Function for its strategic avoidance of unnecessary bets, ensuring
more stable and timely CP detection.

Theorem 1 (Eliades and Papadopoulos (2022)) When the distribution of the p-values
is uniform then for any betting function f other than f = 1, it follows that S∞ ≡ 0

Theorem 2 (Eliades and Papadopoulos (2024)) When the distribution of the p-values
is uniform, for any sequence of betting functions fi that converges uniformly to a function
f other than f = 1, it follows that S∞ ≡ 0.

Before defining the mathematical formulation of our Cautious Betting Function, let us
consider the strategic interplay between two hypothetical players in a game of probability.
Player 1 evaluates the performance of Player 2, who employs a variable betting strategy
based on the density estimator fn. This evaluation guides Player 1’s decision to bet or
abstain. The following equation formalizes this strategic evaluation, where the decision to
bet hinges on a comparison of recent and past performance metrics:

hn(x) =

1 ifS1n−1/min
k

S1n−k ≤ ϵ

fn ifS1n−1/min
k

S1n−k > ϵ
(6)

with S1n =
∏n

i=1 fi(pi) representing the cumulative product of betting functions applied to
p-values, and k spanning the range {1, . . . ,W}, the parameters ϵ > 0 andW ∈ {1, . . . , n−1}.
ϵ, set at 10, serves as a critical threshold, beyond which betting is deemed justified based on
the evidence against the exchangeability assumption. Contrary to initial intuition, a higher
ϵ implies a more cautious approach, requiring stronger evidence for betting, thus enhancing
the model’s precision by betting only when substantial evidence is present. Meanwhile, W ,
fixed at inf , determines the breadth of historical data considered, enabling a broad analysis
of past performance to guide current betting decisions.

In (Eliades and Papadopoulos, 2022), the parameters ϵ and W are set to ϵ = 100 and
W = 5000, here we set ϵ to 10 andW to inf . This modification is necessitated by the specific
characteristics of our aCGH data sequence, which comprises fewer than 200 instances per
chromosome.

4.3. Density estimators

Here we describe the density estimators we have used to combine with the Cautious betting
function namely the: Histogram Density and the Kernel Density Estimators.

4.3.1. Kernel Density Estimator

This betting function is based on the kernel density estimate (KDE), which is a non para-
metric method, for approximating the p-value distribution. One drawback of the kernel
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density estimator is that it is computationally expensive. Another drawback is that in
some cases the estimation of the optimum bandwidth is a very time consuming task, for
this reason we have used Silverman’s “rule of thumb” (Silverman, 1986) for bandwidth
selection. The KDE will be equal to:

f̂n(x) =
1

nh

n∑
i=n−L+1

k(
|x− xi|

h
) (7)

where h is a bandwidth parameter and k is the simple Gaussian:

k(z) =
1√
2π

exp(−1
2z

2). (8)

Note that while calculating the KDE we have used the reflection method as in (Fedorova
et al., 2012) to improve performance for points that are near the bounds [0,1]. Also to
eliminate the risk of having an x0 with f̂n(x0) = 0 and that would lead to Martingale values
equal to zero we add a negligible constant to the f̂n(x). Because this constant is set to
be extremely small (10−10) it does not disturb the performance of KDE. The integral of

A =
∫ 1
0

ˆ(fn(x) + 10−10)dx ≈ 1 thus practically there is no need to multiply the integral
with any constant to force equality to 1.

4.3.2. Histogram Density Estimator

Compared to KDE the histogram estimator is faster (Eliades and Papadopoulos, 2021) and
needs less computational effort to tune. The p-values pi ∈ [0, 1], so we partition [0, 1] into a
predefined number of bins k and calculate the frequency of the observations that lie in each
bin. Dividing these frequencies by the total number of observations and multiplying it by
the number of bins gives us the histogram estimator.

Let us take a fixed number of bins κ this will partition [0, 1] into B1 = [0, 1/κ), B2 =
[1/κ, 2/κ),. . . , Bκ−1 = [(κ − 2)/κ, (κ − 1)/κ) and Bκ = [(κ − 1)/κ, 1]. Then for a p-value
pn ∈ Bj the density estimator will be equal to:

f̂n(pn) =
nj .κ

n− 1
, (9)

where n−1 is the number of p-values seen so far and nj is the number of p-values belonging

to Bj . Note that when n is small it is possible that ∃x : f̂n(x) = 0, in that case until a
sufficient number of observations arrives we reduce the number of bins κ by 1, the reduction
of κ is repeated until ∄x : f̂n(x) = 0.

4.4. Detecting CP using ICM

In order to detect a CP at a pre-specified significance level δ, the Martingale value must
exceed 1/δ, which leads to the rejection of the EA. This process is summarized in Algorithm
1. Specifically, if the Martingale value Sk at a given point k exceeds 100, a CP is detected
at a significance level of 1%, where L denotes the number of p-values that our estimator
uses.

Another method to detect CPs utilizes the label conditional conformal martingale (Sc
n)

and the label conformal martingale (Sl
n).
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Algorithm 1: Detect CP using ICM

1. Require set {z1, z2, . . . , zk}, significance level δ

2. Initialize S1 = 1, H = {}

3. Apply preprocessing steps (see Section 4.1) to {z1, z2, . . . , zk} to obtain
{α1, α2, . . . , αk}

4. For i = 1 to k

(a) Append (αi) to H

(b) pi =
|{αj∈H|αj<αi}|+Uj ·|{αj∈H|αi=αj}|

|H|

(c) Calculate betting function hi = h(pi−L, . . . , pi−1)

(d) Si = Si−1 · hi(pi)
(e) If Si >

1
δ

i. Raise an Alarm

ii. H = {}

In Algorithm 1, we calculated p-values using (1). To compute the label conditional
conformal martingale (Sc

n) and the label conformal martingale (Sl
n), the process is slightly

modified, and we employ (2) and (4) respectively for p-value calculations. Here, Sc
n tests for

changes within the conditional distribution of the data, specifically analyzing the amplitude
of the log2 ratio for distinct classes of labels (such as ‘GAINS’ or ‘LOSSES’), while Sl

n tests
for changes in the overall distribution of labels.

The product of these martingales must exceed 1/δ to lead to the rejection of the EA at
significance level δ. This approach is detailed in Algorithm 2.

4.5. Computational Efficiency

Here we examine the computational complexity of Algorithms 1 and 2. We focus on the
preprocessing, pvalue calculation, and betting function calculation.

For algorithm 1 we have:

� Preprocessing steps: Removing Missing Values and Outliers: Each of these steps is
implemented on k instances. Thus their combined complexity is O(k)

� Median filtering and standartization: for each point we examine w neighboring in-
stances. Thus the overall complexity is O(k · w).

� pvalues calculation: The pvalue calculation for each new instance starts by comparing
1 instance gradually to k instances, making the overall complexity O(k2).

� Betting function calculation: The betting function is evaluated k times, based on L
instances each time, thus the overall complexity is O(L · k)

11
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Algorithm 2: Detect CP using ICM in aCGH data

1. Require set {z1, z2, . . . , zk}, significance level δ

2. Initialize Sc
1 = 1,Sl

1 = 1

3. Apply preprocessing steps (see Section 4.1) to {z1, z2, . . . , zk} to obtain
{α1, α2, . . . , αk}

4. H = {}

5. H̃ = {}

6. For i = 1 to k

(a) Append(αi) to H

(b) ãi = median(ai|ai ∈ H ∧ yi = yj)

(c) Append(ãi) to H̃

(d) pi =
|{αj∈H|αi>αj∧yi=yj}|+Uj ·|{αj∈H|αi=αj∧yi=yj |

|{αi∈H|yi=yj}|

(e) p̃i =
|{α̃j∈H̃|α̃i>α̃j}|+Uj ·|{α̃j∈H̃|α̃i=α̃j}|

ãi∈H̃

(f) Calculate betting function hi = h(pi−L, . . . , pi−1)

(g) Calculate betting function h̃i = h( ˜pi−L, . . . , ˜pi−1)

(h) Sc
i = Sc

i−1 · hi(pi)

(i) Sl
i = Sl

i−1 · ˜hi( ˜ )pi

(j) If Sc
i · Sl

i >
1
δ

i. Raise an Alarm

ii. H = {},H̃ = {}
iii. Sc

1 = 1,Sl
1 = 1
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Algorithm 2 has many steps identical to Algorithm 1, including data preprocessing,
calculation of p-values, and calculation of betting functions. However, the difference here is
that specific calculations are performed twice, specifically, the calculation of two different
sets of p-values and the calculation of two separate betting functions.

However, here, we use the median to find the label nonconformity measure where the
calculation for each instance starts by comparing 1 instance gradually to k instances, making
the overall complexity O(k2).

5. Experiments and Results

In this section, we conduct experiments on the proposed approaches, using aCGH data.
Identifying CP in this context is challenging due to the absence of a definitive ground truth
to confirm false alarms or missed CP. Nonetheless our approach is probabilistically valid,
making no assumptions about the data distribution. We present our results within the
context of a 1% significance level. We start by describing our dataset.

5.1. Dataset

The aCGH (Stransky et al., 2006) dataset used in this study includes data from 57 patients
diagnosed with bladder tumours. It features the log2 ratio of DNA quantities between tu-
morous cells and a healthy reference. A negative log2 ratio indicates losses in the genomic
sequence, while a positive log2 ratio implies gains. To be able to calculate conditional p-
values (refer to (2)), label nonconformities (refer to (3)), and consequently label p-values
(refer to (4)), a categorical variable was introduced, with values ‘GAINS’ and ‘LOSSES’,
based on the sign of the log2 ratio. Figure 1 illustrates a heatmap representing the dis-
tribution of the remaining aCGH sequence elements for each patient by chromosome after
removing all NaNs and outliers, we also omit chromosomes associated with gender from
this analysis. As observed, there are cases, such as chromosome 22, where the number
of remaining instances is very low, ranging from 11 to 27. For CP detection, we handle
each chromosome itself; however, detecting CPs under such conditions poses a significant
challenge.

5.2. Experimental Setting

This section details the configurations used in our experiments, where we employed the ICM
to test the exchangeability assumption and thus detect CP. As previously discussed, our
method does not presuppose any specific model. For instance, as a model, we consider the
molecular method that quantifies the log2 ratio of gains or losses in the DNA sequence. After
preprocessing, as discussed in Section 4.1, the nonconformities ai are prepared for calculating
label-conditional p-values. During the preprocessing stage, while applying the median filter
and standardization, the frame window size is set to 15. A separate sequence of p-values
is computed for each label. The nonconformity measure used is ãi = median{a1, . . . , ai}.
When the Martingale value exceeds 1/δ, where δ = 0.01, a CP is detected, and the process
is then restarted from the subsequent point.

In this study, the Cautious Betting function is employed with the parameter ϵ set to 10
and W set to ∞. These settings are chosen because each chromosome’s aCGH time series is
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Figure 1: Distribution of Remaining aCGH Sequence Elements by Chromosome and Sub-
ject

relatively short, and a high value of ϵ would unnecessarily delay detection. Setting W to ∞
allows the utilization of all available data, aiding the decision-making process for betting.
This function is integrated with both the Histogram estimator and the Kernel estimator,
yielding the following betting functions:

a) Cautious-Hist: This betting function combines the Cautious Betting approach with
a Histogram density estimator featuring 15 bins. The parameter L is set to ∞, and the
number of bins κ to 15.

b) Cautious-Kernel: This betting function integrates the Cautious Betting function
with the Kernel betting function, where L = 100 and the number of bins κ is set to 15.

The parameter ϵ is set to 100 in both betting functions.

In the forthcoming subsection, we will conduct simulations on the aCGH dataset de-
scribed above. Given that there is no definitive ground truth to determine if a CP detection
is a false alarm or delayed, we will present several figures to illustrate the average number
of CPs per subject and per chromosome.

5.3. Results

In this subsection, we evaluate the performance of Algorithms 1 and 2, comparing them
with the CBS and ED algorithms as they are applied to detect CPs in DNA sequences. For
Algorithms 1 and 2, we assess their efficacy using both the Cautious-Kernel and Cautious-
Histogram betting functions. Descriptive statistics for all algorithms, including the mean,
median, standard deviation, and range of change points per person, are presented in Table
1.
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Table 1: Comparative Descriptive Statistics for CP Detection Across Algorithms 1, 2, CBS,
and ED

Algorithm 1 Algorithm 2 CBS ED

Betting function Caut Ker Caut Hist Caut Ker Caut Hist - -

Mean 53.70 32.49 78.63 55.11 44.37 46.43

Standard Deviation 11.02 8.21 15.90 10.51 12.04 20.91

Median 53 32 77 54 43 43

Range 24-78 11-54 48-112 31-78 25-73 21-91

While observing Table 1, we note that both the mean and median values of Algorithm
2 exceed those obtained with Algorithm 1 for both betting functions. Furthermore, the
maximum values for Algorithm 2 consistently surpass those observed with Algorithm 1. In
terms of minimum values, for the Cautious-Kernel betting function, Algorithm 2 exhibits
slightly lower values compared to Algorithm 1, yet, when employing the Cautious-Histogram
betting function, the minimum values are higher for Algorithm 2. Additionally, Algorithm
2 exhibits a consistently larger standard deviation, indicating greater variability around
its mean. This suggests that while Algorithm 2 tends to detect more CPs on average, its
performance across different genomic sequences or conditions is more variable.

When comparing the performance metrics of the CBS algorithm with those of Algo-
rithms 1 and 2, we notice that Algorithm 2, particularly when utilizing the Kernel betting
function, outperforms the CBS algorithm. Specifically, Algorithm 2 with the Kernel betting
function has a higher mean and median CP detection rate than the CBS algorithm. The
range of CP detections for Algorithm 2 is broader, with a higher minimum and maximum
values. Despite the larger standard deviation, which suggests a greater variability in CP
detection outcomes, this variability highlights the algorithm’s adaptability to a wide range
of genomic sequences. The same observations hold true when comparing Algorithm 2 to
the ED algorithm.

Figure 2 comprises six subfigures illustrating the distribution of detected CPs using the
Cautious-Kernel and Cautious-Histogram betting functions with Algorithms 1 and 2, as
well as with the CBS and ED algorithms.

Figure 3 shows the differences in detected CPs across subjects using various betting
functions and algorithms. Subfigure 3(a) compares CP detection between Algorithms 1
and 2 using the Cautious Histogram betting function. Subfigure 3(b) presents differences
in CP detection between the same algorithms using the Cautious Kernel betting function.
Additionally, Subfigure 3(c) displays the CP detection differences between Algorithm 2 with
the CBS algorithm, using the Cautious Kernel betting function. Subfigure 3(d) displays the
CP detection differences between Algorithm 2 with the ED algorithm, using the Cautious
Kernel betting function. Consistent with the data in Table 1, Algorithm 2 typically detects
more CPs than Algorithm 1 with both betting functions and more CPs than the CBS algo-
rithm while using the Cautious Kernel. The better performance of Algorithm 2 in detecting
more CP is because it utilizes numerical information from both the label distribution and
the label conditional distribution of the data, enhancing its ability to detect more CPs by
effectively rejecting the Exchangeability Assumption.
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(a) Cautious Kernel 1 (b) Cautious Hist 1

(c) Cautious Kernel 2 (d) Cautious Hist 2

(e) CBS (f ) ED

Figure 2: Distribution of Detected CP Across Subjects

6. Conclusion

In this study, we implemented two ICM-based algorithms to address the challenge of change
point (CP) detection in aCGH data. These algorithms require only data preprocessing and
do not assume any specific model or distribution when testing the exchangeability assump-
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(a) Cautious Hist 2-Cautious Hist 1 (b) Cautious Kernel 2-Cautious Kernel 1

(c) Cautious Kernel 2-CBS (d) Cautious Kernel 2-ED

Figure 3: Distribution of the difference of Detected CP Across Subjects

tion to detect CPs. Furthermore, our results significantly improve when we incorporate label
distribution and label conditional data distribution into our calculations. Using the Cau-
tious Kernel betting function, we surpass the performance of the CBS algorithm in terms
of the number of changes detected. Our future plans include utilizing more datasets and
combining multiple tests to enhance the robustness and accuracy of our detection methods.
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