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LIX, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France

Laurent Pautet laurent.pautet@telecom-paris.fr

LTCI, Télécom Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France

Editor: Simone Vantini, Matteo Fontana, Aldo Solari, Henrik Boström and Lars Carlsson

Abstract

Split conformal prediction is a statistical method known for its finite-sample coverage
guarantees, simplicity, and low computational cost. As such, it is suitable for predicting
uncertainty regions in time series forecasting. However, in the context of multi-horizon
forecasting, the current literature lacks conformal methods that produce efficient intervals
and have low computational cost.

Building on the foundation of split conformal prediction and one of its most prominent
extensions to multi-horizon time series forecasting (CF-RNN), we introduce ConForME, a
method that leverages the time dependence within time series to construct efficient multi-
horizon prediction intervals with probabilistic joint coverage guarantees. We prove its
validity and support our claims with experiments on both synthetic and real-world data.
Across all instances, our method outperforms CF-RNN in terms of mean, min, and max
interval sizes over the entire prediction horizon, achieving improvements of up to 52%. The
experiments also suggest that these improvements can be further increased by extending
the prediction horizon and through hyperparameter optimization.

Keywords: split conformal prediction, multi-horizon time series forecasting, uncertainty
quantification.

1. Introduction

Multi-horizon time series forecasting is essential in various fields, including predicting
COVID-19 infection rates, modeling stock market trends, and motion prediction, a core
component of the autonomous driving stack.

Within safety-critical applications, it is important to provide not only point predictions
but also uncertainty estimates in the form of interval predictions. That is, for a time series
of length T and a prediction horizon H, given a sequence of past observations y1 . . . yT−H ,
output ŷT−H+1 . . . ŷT prediction intervals. However, providing intervals that are both ef-
ficient (i.e., have small widths) and valid (i.e., contain the true future values of the series
with a given target error rate α, 0 < α < 1) is a challenging task. It becomes even harder
when we consider that state-of-the-art predictors, such as (Salzmann et al., 2020), are often
large neural networks.

A widely known choice to quantify uncertainty for a predictor neural network is through
the means of Bayesian neural networks (Fortunato et al., 2017). Nevertheless, this com-
putation often proves to be intractable for large machine learning models and lacks solid
guarantees. With that in mind, split conformal prediction (Vovk et al., 2005) has gained
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significant attention due to its ability to provide finite-sample probabilistic guarantees.
Additionally, it has a low computational cost and can work with essentially any type of
predictor under only mild conditions1. It is in this context that CF-RNN (Stankeviciute
et al., 2021) was introduced. This method extends split conformal prediction to provide
valid prediction intervals for multi-horizon time series, effectively solving the problem of
lack of guarantees and high computational cost in previous works (Wen et al., 2017; Alaa
and Van Der Schaar, 2020; Gal and Ghahramani, 2016). However, it suffers from a funda-
mental limitation: due to its reliance on approximations, it often produces intervals that
are not efficient, underestimating too conservatively the target error rate.

To address this limitation, we propose ConForME, a method that considers the predic-
tion intervals not individually, but grouped into blocks whose validity is considered as a
whole. Thanks to this, our method uses considerably fewer approximations, thus generat-
ing more efficient prediction intervals in the context of multi-horizon time series forecasting.
ConForME maintains the same validity guarantees as CF-RNN and has the same sequen-
tial computational cost during calibration and prediction. To the best of our knowledge,
no other work proposes an efficient method in these settings without the need for an addi-
tional calibration dataset and an additional optimization step. Our main contributions are
twofold:

• We propose a new method to compute valid prediction intervals for any measurable
predictor. Our method has low computational cost, with execution time dominated
by the predictor’s cost.

• We demonstrate the validity of our method both theoretically and through experi-
ments on synthetic data and three real-world datasets. The method is detailed for
1-D time series, but we also extend it to 2-D time series to work with a dataset
containing trajectory data.

This paper is structured as follows: in Section 2, we formally state the problem, also
introducing the core notions of validity and efficiency; then, in Section 3 we present the
related work; following that, Section 4 details ConForME, as well as CF-RNN and split
conformal prediction; finally we present and discuss our experiments in Section 5.

2. Problem formulation

Let us consider sequences of length T and a prediction horizon H < T . We assume that
we are given observations y1, . . . , yT−H and a point predictor f that produces predictions
ŷT−H+1, . . . , ŷT of the ground truth future values yT−H+1, . . . , yT . Our problem is to compute
prediction intervals ŷT−H+1, . . . , ŷT around these predictions that are both small (efficient)
and contain the ground truth future values with at least a given coverage probability 1−α.
In particular, the main weakness of the current literature is the lack of efficiency.

Formally, let (Yi)Ti=1 be a sequence of T random variables with unknown distribution.
Given the realization of its first T − H values (yi)T−Hi=1 and a coverage probability 1 − α,
compute valid (Definition 1) and efficient (Definition 2) prediction intervals (ŷi)Ti=T−H+1.

1. Split conformal prediction requires a measurable predictor f and a calibration dataset Dcal which is
exchangeable with the observed data, as detailed in Section 4.1.
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Definition 1 Let (yi)Ti=T−H+1 be samples from the random variables (Yi)Ti=T−H+1. The pre-
diction intervals (ŷi)Ti=T−H+1 are valid if, for an error rate 0 < α < 1:

P(
T

⋃
i=T−H+1

(Yi ∉ ŷi)) ≤ α ⇔ P(
T

⋂
i=T−H+1

(Yi ∈ ŷi)) > 1 − α

Definition 2 Let the upper and lower bounds of an interval ŷi be ŷi and ŷi respectively.

We define our efficiency metric for the intervals (ŷi)Ti=T−H+1 as follows:

mean size ((ŷi)ni=1) =
1

n

n

∑
i=1

(ŷi − ŷi)

Remark 3 We also evaluate the maximum and minimum interval sizes in our experiments,
and the results also support the same general claims as the mean sizes.

We assume that we have at our disposal a measurable predictor f , described as follows:

f(y1, . . . , yT−H) = (ŷ)Ti=T−H+1 ≈ (y)Ti=T−H+1 (1)

The predictor in Equation (1) approximates the ground truth future values (yi)Ti=T−H+1
given the past observations (yi)T−Hi=1 . We also assume that we are given a set of sequences
Dcal, each having length T , such that any observed ground truth trajectory (yi) is exchange-
able with Dcal. That is, the set Dcal ∪ {(yi)} obeys Definition 4:

Definition 4 Given a set D with n elements {si}ni=1. Let s1, . . . , sn be samples from the ran-
dom variables S1, . . . , Sn. We say that D is exchangeable if the tuples (Si)ni=1 and (Sσ(i))ni=1
have the same distribution for any permutation σ i.e.:

(Si)ni=1
d= (Sσ(i))ni=1

3. Literature review

Although we employ Recurrent Neural Networks (RNNs) (Schmidt, 2019) as the foundation
for our predictions, the primary focus of this study is on the interval bounds around the
predictions. Consequently, this literature review does not delve into the details of the
state-of-the-art predictors.

3.1. Conformal prediction

Conformal prediction (CP) was first introduced in (Vovk et al., 2005), but it has gained more
attention in the last decade, mainly because it is a very general uncertainty quantification
technique with theoretical guarantees. These guarantees hold even in the finite-sample case,
and work for complex functions such as neural networks (Papadopoulos and Haralambous,
2011). Its main requirement is a calibration dataset that is exchangeable with the observed
data. The main drawback of this technique, however, is the lack of conditional validity,
which is a topic well explored in (Vovk, 2012).
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More recently, CP has been extended to handle distribution shifts of the observed data
under certain conditions (Tibshirani et al., 2019). It has also been extended by (Romano
et al., 2019) to produce interval sizes that adapt to each input using quantile regression.
Other extensions include adaptations to classification problems, see e.g. (Romano et al.,
2020; Angelopoulos et al., 2021). However, most of these extensions do not consider data
with temporal dependence.

3.2. Conformal prediction for time series

Our primary focus is on the application of CP to time series forecasting. In this context, we
find it useful to distinguish between two scenarios: data generated from a single time series
and data derived from multiple time series. In the first scenario, maintaining independence
between data points is a significant challenge. In the latter scenario, however, it is plausible
to assume that we are dealing with independent and identically distributed (i.i.d.2) time
series.

When considering data from a single time series, the common approach is to continuously
update a sequence of points with new data. The predictor then uses the most recent data
points to make predictions and estimate uncertainty by adjusting its prediction interval.
Notable developments in this area include the ACI technique (Gibbs and Candès, 2021),
which is further refined in (Feldman et al., 2023). These conformal techniques update the
prediction interval for the next discrete time step, ensuring asymptotic coverage. Under
similar settings, (Chernozhukov et al., 2021) is able to approximate conditional validity
and, in (Chernozhukov et al., 2018), the same author considers a prediction horizon larger
than one and develops a randomization scheme to achieve approximate validity. Other work,
such as EnbPI (Xu and Xie, 2021) and SPCI (Xu and Xie, 2023), also extend this setting.
The recent study in (Auer et al., 2023) uses modern Hopfield networks to better handle
temporal dependence in this context. However, these methods have a major limitation
because they can only provide asymptotic guarantees.

The second scenario involves a dataset comprising multiple i.i.d. time series, where the
goal is to perform multi-step forecasts. This approach was initially explored in CF-RNN
(Stankeviciute et al., 2021). A significant limitation of their method is the dependence on
the Bonferroni correction to provide guarantees over the entire prediction horizon. This
becomes particularly problematic in time series with substantial temporal dependence. To
address this, (Sun and Yu, 2023) attempts to model dependence using Copulas, although
this introduces the requirement for an additional calibration dataset. (Lindemann et al.,
2023) employs the same technique as CF-RNN, but integrates the forecasts with motion
planning to create a guaranteed planning framework. Building upon (Lindemann et al.,
2023), (Cleaveland et al., 2024) optimizes a single nonconformity score for the entire pre-
diction horizon, an analogous idea to what (Diquigiovanni et al., 2021) uses in the context
of functional data analysis, albeit at the expense of an extra calibration dataset. Similarly,
(Lin et al., 2022) considers a conformal score that assigns different weights to time steps,
but they only provide guarantees over average coverage, not joint coverage.

When considering multi-step joint coverage (formalized in Definition 1), to the best of
our knowledge, the current literature lacks efficient methods (formalized in Definition 2).

2. i.i.d. implies exchangeability, for this reason, CP can be applied as well.
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The current state-of-the-art tackles this problem by introducing an extra calibration step,
which requires some optimization and more data, or by using inefficient approximations.
We propose a novel approach that is efficient, does not require extra calibration data, and
adds minimal computational overhead.

4. Approach

Our method, ConForME, which stands for Conformal Forecast for Multi-horizon prEdiction
can be seen as a generalization of CF-RNN. We solve the problem of lack of efficiency by
dividing the prediction horizon into blocks, where we can compute more precise intervals.
We also present a general formulation where the error rate can vary over the horizon for
each block.

To lay the groundwork for our discussion, we first delve into the details of split conformal
prediction, which forms the foundation of our guarantees. Subsequently, we introduce CF-
RNN, the method against which we will benchmark our approach. Lastly, we elaborate on
ConForME, providing insight into its validity proof and hyperparameter selection.

4.1. Split conformal prediction

Conformal prediction (CP) (Vovk et al., 2005) is a statistical framework that enables the
construction of valid probabilistic prediction regions (following a similar definition of validity
as Definition 1) for any given measurable point predictor. In general, it only requires
exchangeability between a calibration dataset and the observed data, and measurability of
the predictor.

We detail, here, the variant of CP called split conformal prediction (SCP) which was
introduced as inductive conformal prediction alongside CP. Its main advantage over CP is
the low computational cost, which is necessary when dealing with neural network predictors.
The main idea of SCP is to split an available dataset D of observations and labels (xi, yi) ∈ D
into two disjoint parts, the training data, and calibration data i.e. D = Dtrain ∪Dcal. Dtrain
is used to train the predictor g and Dcal is used to calibrate the conformal predictor Cαg (x).
The conformal predictor computes, for any observation x, a prediction region which contains
the true label y with coverage probability of at least 1 − α (α is also called the error rate),
as shown in Equation (2).

P (y ∈ Cαg (x)) ≥ 1 − α (2)

More broadly, SCP guarantees Equation (2) for any measurable predictor g as long as
Dcal ∪ {(x, y)} is exchangeable (Definition 4). In our case, g corresponds to a single output
fi of a multi-horizon predictor neural network f ; the observations x correspond to the past
observations (yi)T−Hi=1 and y corresponds to one of the ground truth future values yi with
i > T −H.

To compute the prediction regions, as described in (Papadopoulos and Haralambous,
2011), it suffices to compute the residuals in Equation (3) and select the r∗ = ⌈(1 − α)(1 +
∣Dcal∣)⌉ − th largest. Afterwards, r∗ is used as the radius of the prediction region shown in
Equation (4).
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R = {∣∣g(xi) − yi∣∣ ∣ (xi, yi) ∈ Dcal} (3)

Cαg (x) = {y ∣ ∣∣g(x) − y∣∣ ≤ r∗} (4)

The calibration dataset used to construct Cαg (x) is left implicit in most cases. To make
it explicit, we use the notation Cαg,Dcal(x), this notation is necessary when we condition x to
belong to some subspace, that is: given x ∈ X, where X is some measurable space, restrict
x to X ′ ⊂X. In this case, the following holds:

P (y ∈ Cαg,{(x,y)∈Dcal∣x∈X′}(x) ∣ x ∈X ′) ≥ 1 − α (5)

As an example, let us consider the case where we are given ground truth sequences of
length T = 3, and a prediction horizon H = 2, therefore each sequence (yi) has the form
(y1, y2, y3) and the predictor f is such that f(y1) = (ŷ2, ŷ3). In our example, the problem is
to compute intervals ŷ2 and ŷ3 given a set of ground truth sequences Dcal and respecting
the following condition:

P(y2 ∈ ŷ2 ∩ y3 ∈ ŷ3) ≥ 1 − α

Our solution is to compute ŷ2 = Cγf1,Dcal(y1) and ŷ3 = Cγ
f2,D′cal

(y1) where D′cal =
{(y1, y2, y3) ∈ Dcal ∣ y2 ∈ ŷ2}. Split conformal prediction and Equation (5) give us, re-
spectively:

P(y2 ∈ ŷ2) ≥ 1 − γ and P(y3 ∈ ŷ3 ∣ y2 ∈ ŷ2) ≥ 1 − γ

By simply setting (1−γ)2 = 1−α and using Bayes’ theorem we get the desired probability
P(y2 ∈ ŷ2∩y3 ∈ ŷ3) ≥ 1−α. The described formulation is precisely the base for the conditional
part of our method. It is used in ConForME to compute intervals that respect conditional
probabilities in the form P(yi ∈ ŷi ∣ yi−1 ∈ ŷi−1, . . . ), which allows for an efficient coverage.

4.2. Conformal time series forecasting (CF-RNN)

Introduced in (Stankeviciute et al., 2021), CF-RNN extends split conformal prediction to
time series for multi-horizon forecasting.

CF-RNN produces valid prediction intervals (ŷi)Ti=T−H+1 given an error rate α. The
method computes the prediction intervals as follows:

ŷi = Cα/Hfi
(y1, . . . , yT−H) (6)

where f is an RNN in the same form as Equation (1) and ŷi is constructed using split
conformal prediction on each ŷi separately with an error rate of α/H. These prediction
intervals ensure error rates of α/H for each prediction. It follows from Boole’s inequality
that the joint error rate is less than α.

The term α/H is called the Bonferroni correction. Note that this method relies on
Boole’s inequality which is very conservative if the events are not disjoint, which can lead
to inefficient coverage.
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4.3. ConForME: Proposed method

The general idea of the method is to divide the prediction horizon H into blocks Bj and use
Bayes’ theorem within each block to compute the coverage probability. The main motivation
for this block partitioning is that, with the formulation in Equation (5), validity can be
guaranteed without the need for Bonferroni’s correction. This way, we reduce the amount
of approximations which are made in the process of computing the intervals (ŷi)Ti=T−H+1.

More formally, the output of our method are intervals (ŷi)Ti=T−H+1 for each input se-
quence (yi)T−Hi=1 . These H intervals are partitioned into k blocks Bj such that:

• Each block Bj has a size bj = ∣Bj ∣.

• If all blocks are concatenated in increasing order, we obtain the prediction intervals
(ŷi)Ti=T−H+1, i.e.:

(ŷi)Ti=T−H+1 = (ŷT−H+1 . . . ŷT−H+b1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B1

⋯⋯
°
Bj

ŷT−bk+1 . . . ŷT
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Bk

)

To lighten the index notation, (l)j is used to translate block indexing to whole sequence
indexing, with l = 1, . . . , bj and j = 1, . . . , k. It is defined as follows:

(l)j =
⎛
⎝

j−1
∑
m=1

bm
⎞
⎠
+ l + (T −H)

This way, for example, if we write ŷ(1)2 we refer to the first element of the second block.
The core of our method is to ensure validity within each block with an error rate αj

(Equation (7)) and then combine the blocks to ensure that the overall error rate is at most
α. The process of combining the blocks relies on Bonferroni’s correction, which means that
we have the constraints described in below in Equation (8):

P
⎛
⎝

bj

⋃
l=1

(y(l)j ∉ ŷ(l)j)
⎞
⎠
≤ αj (7) αj > 0,

k

∑
j=1

αj ≤ α (8)

Then, for each block Bj , the conformal intervals ŷ(l)j with l = 1, . . . , bj are built to
ensure an error rate of αj for the block. The idea is to build the intervals ŷ(l)j such that
y(m)j ∈ ŷ(m)j for all 0 <m < l. So, for example, ŷ(3)j is built considering only the sequences
that fell inside both ŷ(2)j and ŷ(1)j . We can translate that to the following expression:

ŷ(l)j = C
αlj

f
(l)j

,D(l)j

cal

(y1, . . . , yT−H) (9)

where D(l)j
cal = {(yi) ∈ Dcal ∣ y(m)j ∈ ŷ(m)j∀m ∈ ((1)j , . . . , (l)j − 1)}

This means that ŷ(l)j is the interval given by a conformal predictor built with an error

rate of αlj and calibrated only on sequences that fell within the previous intervals of the
same block.
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This conditional formulation, alongside the identity P(⋃Ei) = P(1 − ⋂Ei), allows the
computation of the error rate αj of the block Bj as:

1 −
bj

∏
l=1

(1 − αlj) = αj (10)

Note that no additional approximation is made with respect to the individual conformal
predictors. The inequality (1 − a)(1 − b) ≥ 1 − a − b for a, b ≥ 0 allows us to write:

bj

∑
l=1
αlj ≥ αj (11)

We note that the approximation error in the approximation used above tends to zero
for small αlj . Finally, the constraints in Equation (8) can be rewritten as function of the

individual error rates αlj :

k

∑
j=1

bj

∑
l=1
αlj ≤ α (12)

These building blocks are put together in detail in Algorithm 1 below:

Algorithm 1: ConForME intervals computation

/* Calibration sequences, predictor function, sequences length,

prediction horizon, block sizes, and individual error rates */

Input: Dcal, f , T , H, (bj)kj=1, αlj for l ∈ {1, . . . , bj} and j ∈ {1, . . . , k}

Output: Calibrated conformal predictors C
αlj

f
(l)j

,D(l)j

cal

1 C ← {}
2 for j ← 1 to k do
3 D′cal ← Dcal
4 for l ← 1 to bj do
5 if l > 1 then

6 D′cal ← {(yi) ∈ D′cal ∣ y(l−1)j ∈ C
αl−1j

f
(l−1)j

,D(l−1)j

cal

(y1, . . . , yT−H)}

7 end

8 C
αlj

f
(l)j

,D(l)j

cal

← C
αlj
f
(l)j

,D′
cal

▷As described in Section 4.1

9 C ← C ∪ {C
αlj

f
(l)j

,D(l)j

cal

}

10 end

11 end
12 return C
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The algorithm takes as inputs a set of calibration sequences (dataset) Dcal, a predictor
function f , block sizes (bj)kj=1, and all αlj already chosen, respecting Equation (12). For
every block (Line 2), for every interval in a block (Line 4), it filters the calibration dataset
Dcal in Line 6 to produce a filtered calibration dataset. The filtering is made such that the
sequences that fell within the intervals given by the previous conformal predictors of the
same block are the only ones that remain. In Line 8, it uses only the filtered calibration
dataset to compute the conformal predictor. This process implements what is described in
Equation (9). Finally, in Line 9 the computed conformal predictor is added to the set of
conformal predictors and the whole set is returned in Line 12.

4.4. Proof of validity

In this section, we provide the supporting arguments to show that, for any choice of positive
αlj that satisfies Equation (12), the ConForME intervals ŷ(l)j built as in Equation (9) are
valid as defined in Definition 1.

First, if we have block validity as in Equation (7), by the definition of the block and
Boole’s inequality, we have:

P

⎛
⎜⎜⎜⎜⎜
⎝

T

⋃
i=T−H+1

(yi ∉ ŷi)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
validity

⎞
⎟⎟⎟⎟⎟
⎠

= P

⎛
⎜⎜⎜⎜⎜
⎝

k

⋃
j=1

bj

⋃
l=1

(y(l)j ∉ ŷ(l)j)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
block validity

⎞
⎟⎟⎟⎟⎟
⎠

≤
k

∑
j=1

αj

This way, with the constraint in Equation (8), we only need to show block validity. To
show that, let E(l)j be the random event y(l)j ∉ ŷ(l)j and let E(l)j be its complement. The
conformal predictor which is used to build ŷ(l)j provides the following guarantee:

P (E(l)j ∣ E(l−1)j , . . . ,E(1)j) ≥ 1 − αlj
By applying Bayes’ theorem, we arrive at:

P
⎛
⎝

bj

⋂
l=1
E(l)j

⎞
⎠
=

bj

∏
l=1

P (E(l)j ∣ E(l−1)j , . . . ,E(1)j) ≥
bj

∏
l=1

(1 − αlj)

⇒P
⎛
⎝

bj

⋃
l=1

(y(l)j ∉ ŷ(l)j)
⎞
⎠
≤ 1 −

bj

∏
l=1

(1 − αlj) = αj ≤
bj

∑
l=1
αlj

Then, it follows directly that Equation (12) implies validity as in Definition 1.

4.5. Hyperparameter selection

Algorithm 1 produces conformal predictors that are capable of computing valid prediction
intervals for any selection of αlj satisfying Equation (12).

Searching for the optimal αlj , however, is costly. Therefore, for our experiments, we use
the natural choice of evenly distributed error rates as detailed in Section 4.5.1. We also
discuss two other possible hyperparameter choices that have been implemented.
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4.5.1. Evenly distributed error rates

This is the natural approach used in our experiments. It consists on choosing αlj as:

αlj =
α

H
(13)

This choice has proven to achieve good results, has low computational cost, and also
allows us to better measure the impact of the number of blocks k as it compares directly
with CF-RNN (for evenly distributed αlj , CF-RNN is equivalent to ConForME when k =H).
Regarding block sizes bj , they are also distributed evenly over the horizon.

4.5.2. Pairwise evenly distributed error rates

Another possible choice is to group the prediction horizon in pairs and balance the error
rates between the two elements of the pair with a parameter β. This is done by setting
k = ⌈H/2⌉, bj = 2 for all j < k and, for j = k, setting bk to either 1 or 2 depending on H.
Then, by selecting αlj as follows:

αlj =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

α
⌈H/2⌉ if j = k and bk = 1

1−β
1−β α

⌈H/2⌉

α
⌈H/2⌉ if l is 2

β α
⌈H/2⌉ else

(14)

Here, β is a new hyperparameter. The interest of this approach is that we found in our
test cases that if β is optimized by using binary search, the results are close to the true
optimal β. This way, we get a direct improvement over Section 4.5.1 with only a small
added computational cost.

4.5.3. Globally optimized error rates

For a given number of blocks k with evenly distributed sizes bj , this choice consists on using
stochastic gradient descent’s (SGD) implementation from Pytorch (Paszke et al., 2019) to
optimize the mean size of the intervals generated by the conformal predictors that are given
as output of Algorithm 1. The loss function is defined below:

loss =mean size (conforme ((αlj)) , k, (bj)) + λ ⋅ tan
⎛
⎝

k

∑
j=1

bj

∑
l=1
αlj − α

⎞
⎠

(15)

conforme is Algorithm 1 and its other inputs are omitted for simplicity. (bj), k are
fixed and λ is a hyperparameter tuned manually, so that the second term is small. The
idea is that we minimize via SGD the mean size of the conformal intervals, while ensuring
that the target coverage is close to 1−α (coverage term weighted by the parameter λ). The
tangent function is used to heavily penalize high deviations from the target error rate.

5. Experiments and discussion

We validate the empirical performance of our approach by comparing it to CF-RNN on
four datasets, each of which is intended to highlight a different aspect of our method.
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The comparison is made against CF-RNN because it is the only approach in the literature
that shares the same settings. Other methods either lack the joint coverage guarantee in
Definition 1 or require an additional optimization step as well as more data.

We start in Section 5.1 by describing how we set up the experiments, then we give an
overview of our results in Section 5.2. We end up in Section 5.3 by looking more closely at
each single example we used.

5.1. Setting up the experiments

The four datasets presented in this section are: synthetic 1-D data, 1-D data composed of
EEG (electroencephalogram) scans, 2-D trajectory data of autonomous vehicles from the
Argoverse (Chang et al., 2019) dataset, and finally real-world 1-D data from a small dataset
following COVID-19 cases. These are fully described in Sections 5.3.1, 5.3.2, 5.3.3 and 5.3.4
respectively.

All experiments were performed on a laptop equipped with an Intel Core i9-12900H
CPU, 32 GB of RAM, and a single NVIDIA RTX A2000 GPU. To deal with 2-D data,
we compute the distances between the predicted positions and the true positions, which
allows us to compute prediction intervals with respect to these distances as usual. For the
Argoverse results, therefore, instead of interval widths, we report the area corresponding to
circles centered in the prediction with radius equal to the widths of the prediction intervals.
A similar approach is used in (Lindemann et al., 2023), we do not discuss this case further
as it is not the main focus of the article. The reader can refer to our code available at
https://github.com/aloysiogl/conforme for more details.

We compare the mean size of the predicted intervals from ConForME to CF-RNN. We
also experimentally verify the validity property on the proposed datasets by testing the
empirical joint coverage. That is, we divide each dataset into three disjoint parts: training,
calibration, and test (Dtrain, Dcal, and Dtest). We repeat the experiment 5 times with
different random seeds and present the mean and standard deviation of the results in the
tables. General information about each dataset is summarized in Table 1:

Dataset ∣Dtrain∣ ∣Dcal∣ ∣Dtest∣ Input size T −H Horizon H 1 − α (%)

Synthetic 1000 1000 500 15 10 90
EEG10 15360 3840 19200 40 10 90
EEG40 15360 3840 19200 40 40 90

Argoverse 208272 5210 5211 30 20 90
COVID-19 200 100 80 100 50 30

Table 1: Summary of datasets, where 1 − α is the target coverage. Note that the EEG
dataset has two variants corresponding to different prediction horizons.

In the first three experiments, namely the synthetic 1-D data, the EEG data, and the
COVID-19 data, we use the same data preparation and underlying predictor as in CF-RNN:
a vanilla RNN. For the Argoverse data, we follow (Sun and Yu, 2023) using LaneGCN (Liang
et al., 2020) as the underlying predictor.

11
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5.2. Main findings

The main results we obtained are summarized in Tables 2 and 3. The first table shows
the sizes of the prediction zones and the coverage, while the second reports the runtime
of our experiments. In these tables, we only consider the natural hyperparameter choice
of uniformly distributed error rates (see Section 4.5), and ConForMEl denotes a choice of
number of blocks k = l. We measure the empirical joint coverage to evaluate the validity
condition using the following metric:

Empirical coverage = 1

∣Dtest∣
∑

(yi)Ti=1∈Dtest
(1yi∈ŷi

∶ i ∈ {T −H + 1, . . . , T}) (16)

The first dataset emphasizes the coverage guarantee: as the dataset is synthetic, we can
guarantee exchangeability. The second dataset shows the performance gain on real data
with more temporal dependence. The third demonstrates the performance of the method
on 2-D data and reinforces the claims made with the second dataset. Finally, the fourth
dataset shows the behavior of the method when the data is scarce.

Besides the natural hyperparameter selection, we discussed two other options in Sec-
tion 4.5: pairwise evenly distributed error rates and global optimization with SGD. The
second option did not show significant improvements in our experiments, it also requires
significantly more computation time during calibration. The first alternative, however,
showed promising results.

We can see from Figure 1(a) that, for all experiments, expressing the intervals sizes in
function of β (defined in Section 4.5.2) gives a function that is ε-close to a convex function
for every β. This implies that the optimal β can be found in these examples by binary
search with high precision, making this optimization very inexpensive. We believe that
this is a general claim given some mild assumptions about the predictor, but we have not
been able to prove it for the moment. Moreover, with this optimization, the interval widths
oscillate significantly less with the horizon as it can be seen in Figure 1(b). In the case of
the EEG40 dataset, the interval sizes are 19% smaller than the baseline, as opposed to 13%
for the corresponding natural hyperparameter choice (ConForME20).

For calibration, the time complexity of our method is the same as CF-RNN in a sequen-
tial execution. Our calibration pass is equivalent to one predictor model evaluation on the
calibration data plus a per block calibration pass. CF-RNN can be parallelized for each
horizon, while we can only do it in blocks. It is, however, important to notice that the time
complexity is the same during test time, because we only need to store interval sizes after
the calibration for both methods, regardless of the number of blocks.

Analyzing the results of table Table 2 we clearly see a trend towards better results with
fewer blocks. This is due to the fact that the more blocks we have, the more we rely on
Bonferroni’s approximation. We also see that the coverage tends to get more exact when
we have fewer blocks. In this sense, it is recommended to use as fewer blocks as possible.
However, when exchangeability cannot be guaranteed or when there is not enough data,
we can get insufficient empirical coverages. In such cases, it might be better to use a more
conservative approach, choosing a number of blocks greater than one.

Considering now the results of Table 3, we can see that the test time is the same for both
ConForME and CF-RNN, as expected. We also see no significant difference between the run
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Figure 1: (a) shows the normalized mean interval widths/areas for each dataset when β
ranges from 0 to 1 in steps of 0.01. When the intervals are infinite, their normal-
ized width is displayed as 1. (b) shows the mean interval widths per horizon for
the optimal β compared with ConForME20 on the EEG40 dataset. The standard
deviations are represented with the semi-transparent zones.

times of ConForME with one block and ConForME with a number of blocks equal to the
horizon during calibration. There is a difference during calibration between ConForME and
CF-RNN, due to some constant time overhead. We remind the reader that ConForME with
number of blocks equal to the horizon is equivalent to CF-RNN, the observed difference
comes from the fact that ConForME is implemented for any number of blocks, therefore it
must spend more time initializing code structures. Finally, we decided to omit the results
for some intermediate number of blocks in Table 3 for the ConForME method, as they do
not provide any additional insight.

5.3. The examples, in detail

5.3.1. Synthetic data

Following CF-RNN (Stankeviciute et al., 2021), for the synthetic dataset, we generate points
following a Gaussian with a memory parameter a. This memory creates a dependence in
time between the values yt. An extra normally distributed noise is added, which overall
corresponds to Equation (17):

yt =
t

∑
k=1

at−kxk + εt,∀t ∈ {1, . . . , T} (17)

where xk ∼ N (µx, σ2x), εt ∼ N (0, σ2t ) and a = 0.9. We consider only the case where
σ2t = 0.1, µx = 1 and σ2x = 4. CF-RNN considers time-varying noise as well, but we consider
that these experiments bring no additional insight to the comparison. It is, however, possible
to replicate them as well with our code. Sequence lengths and generated dataset sizes are
shown in Table 1.
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Dataset Method
Zone width/area

Coverage (%)
Mean (% reduction) Min Max

Synthetic

CF-RNN 21.4 ± 0.8 (0.0) 11.8 ± 0.5 28.6 ± 1.5 94.8 ± 1.4
ConForME10 21.4 ± 0.8 (0.0) 11.8 ± 0.5 28.6 ± 1.5 94.8 ± 1.4
ConForME5 20.9 ± 0.6 (2.5) 11.8 ± 0.5 27.4 ± 1.0 94.2 ± 1.3
ConForME3 20.7 ± 0.6 (3.3) 11.8 ± 0.5 27.4 ± 1.0 94.0 ± 1.2
ConForME2 20.1 ± 0.5 (5.9) 11.8 ± 0.5 26.0 ± 1.2 92.7 ± 0.9
ConForME1 19.3 ± 0.5 (9.7) 11.8 ± 0.5 23.7 ± 0.9 91.0 ± 0.8

EEG10

CFRNN 58.3 ± 1.6 (0.0) 30.7 ± 1.3 75.1 ± 1.9 96.4 ± 0.2
ConForME10 58.3 ± 1.6 (0.0) 30.7 ± 1.3 75.1 ± 1.9 96.4 ± 0.2
ConForME5 51.3 ± 0.7 (12) 30.7 ± 1.3 75.1 ± 2.8 94.4 ± 0.3
ConForME3 49.1 ± 1.1 (15) 30.7 ± 1.3 75.1 ± 2.8 93.4 ± 0.2
ConForME2 43.8 ± 0.7 (25) 30.7 ± 1.3 74.7 ± 2.6 91.5 ± 0.5
ConForME1 38.1 ± 0.8 (35) 30.7 ± 1.3 42.4 ± 1.2 89.1 ± 0.6

EEG40

CF-RNN 106 ± 14.8 (0.0) 34.1 ± 3.8 269 ± 34 96.4 ± 0.6
ConForME40 106 ± 14.8 (0.0) 34.1 ± 3.8 269 ± 34 96.4 ± 0.6
ConForME20 92.7 ± 10.9 (13) 34.1 ± 3.0 264 ± 31 95.1 ± 0.4
ConForME8 74.7 ± 6.6 (30) 34.1 ± 3.0 264 ± 35 93.2 ± 0.5
ConForME4 63.4 ± 3.4 (40) 34.1 ± 3.0 264 ± 35 91.5 ± 0.6
ConForME2 53.8 ± 1.9 (49) 34.1 ± 3.0 79.0 ± 6.5 89.8 ± 0.6
ConForME1 50.9 ± 1.5 (52) 34.1 ± 3.0 77.8 ± 7.8 88.7 ± 0.6

Argoverse

CFRNN 4423 ± 122 (0.0) 122 ± 2.3 13875 ± 436 98.5 ± 0.2
ConForME30 4423 ± 122 (0.0) 122 ± 2.3 13875 ± 436 98.5 ± 0.2
ConForME15 4159 ± 111 (6.0) 106 ± 1.7 12546 ± 290 97.8 ± 0.3
ConForME10 3954 ± 90.9 (11) 106 ± 1.7 11560 ± 247 97.4 ± 0.3
ConForME3 3224 ± 63.2 (27) 106 ± 1.7 8402.8 ± 238 94.8 ± 0.5
ConForME1 2364 ± 29.9 (47) 106 ± 1.7 6101.1 ± 65.5 90.4 ± 0.5

COVID

CFRNN 631 ± 253 (0.0) 90.2 ± 75 2341 ± 477 88.5 ± 5.8
ConForME50 631 ± 253 (0.0) 90.2 ± 75 2341 ± 477 88.5 ± 5.8
ConForME25 570 ± 167 (9.8) 85.9 ± 42 2341 ± 480 85.7 ± 6.3
ConForME10 492 ± 100 (22) 90.2 ± 34 2341 ± 477 82.3 ± 5.4
ConForME5 427 ± 76.4 (32) 69.9 ± 32 2341 ± 552 76.7 ± 5.8
ConForME2 336 ± 48.5 (47) 58.8 ± 5.8 1793 ± 336 67.2 ± 9.5
ConForME1 ∞±∞(−∞) 108 ± 24 ∞±∞ 71.0 ± 5.0

Table 2: Summary of coverage and prediction zone sizes for all datasets with empirical
means and standard deviations reported over 5 experiments with different random
seeds. In the case of width/area, the minimum (best) is highlighted in bold.
Empirical joint coverage is reported and the closest valid result to the target
coverage rate 1 − α is highlighted in bold.
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Dataset Method
Calibration time (ms) Test time (ms)
Mean Min Max Mean Min Max

Synthetic
CF-RNN 1.41 ± 0.53 1.13 2.36 6.93 ± 6.3 3.98 18.1

ConForME10 6.62 ± 0.50 6.04 7.35 4.09 ± 0.16 3.96 4.29
ConForME1 5.10 ± 0.19 4.94 5.43 4.05 ± 0.03 4.01 4.08

EEG10

CF-RNN 3.73 ± 0.2 3.54 4.10 213 ± 5.6 208 222
ConForME10 15.5 ± 8.6 9.96 30.6 213 ± 3.8 206 215
ConForME1 9.58 ± 1.0 8.82 11.4 217 ± 6.2 208 224

EEG40

CFRNN 9.09 ± 1.0 8.00 10.3 223 ± 9.7 214 238
ConForME40 45.8 ± 22 33.6 85.4 214 ± 2.5 211 218
ConForME4 32.8 ± 2.4 30.4 36.2 214 ± 6.1 207 222
ConForME1 34.7 ± 4.0 30.8 41.0 231 ± 19 213 255

Argoverse

CFRNN 12.0 ± 1.3 10.7 14.3 3.38 ± 0.2 3.09 3.65
ConForME30 35.7 ± 12 29.1 57.4 2.93 ± 0.9 2.16 4.45
ConForME3 44.7 ± 13 30.5 56.3 3.01 ± 0.3 2.54 3.38
ConForME1 43.0 ± 20 27.3 78.4 2.94 ± 0.4 2.25 3.31

COVID

CFRNN 0.61 ± 0.017 0.60 0.64 1.90 ± 0.06 1.81 1.98
ConForME50 22.3 ± 4.2 20.2 29.89 1.28 ± 0.02 1.26 1.30
ConForME4 15.6 ± 2.1 14.5 19.37 1.29 ± 0.02 1.27 1.32
ConForME1 7.06 ± 0.83 6.50 8.52 1.32 ± 0.04 1.28 1.37

Table 3: Summary of observed runtimes for CFRNN and ConForME for all datasets and
the most relevant number of blocks for ConForME. We report calibration and test
runtimes. Best results are highlighted in bold.

We expect this dataset to obey the validity condition as we can assure exchangeability of
the synthetically generated data. The results in Table 2 support this claim as the measured
coverage is always above the target coverage of 90%. As expected, when the number of
blocks decreases (larger blocks), the Bonferroni approximation is used less often and the
coverage gets closer to the target coverage, while the interval sizes reduce monotonically
with the number of blocks k. For k =H, as expected, ConForME is equivalent to CF-RNN.

5.3.2. EEG data

The EEG data is taken from (Begleiter, 1999) and follow the same preparation as in CF-
RNN. This dataset was generated by recording EEG signals from healthy patients subject
to different visual stimuli.

It is composed of two halves with 19200 sequences of size 256. The underlying RNN
model is trained on 15360 sequences and calibrated on the remaining sequences of the first
half. The second half is used for testing. To achieve the sizes that are shown in Table 1, we
downsample the sequences.
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We present two variants, one where the sequences are downsampled to a prediction
horizon of 10 and another where the prediction horizon is 40. Additionally, we present the
interval sizes per horizon, per method, in Figure 2(a). We can see that the bigger prediction
horizon favors ConForME, as the gains in interval size are more significant for the latter
intervals of a block. Effectively, with the default choice of hyperparameters, the first interval
of each block has, by definition, the same size of CF-RNN’s interval, as can be seen in the
Figure 2(a). We also highlight that our method leverages the conditional dependence of the
predictions, for this reason, the EEG data which should have a higher time dependence, has
shown significant improvements. Finally, for the horizon of 40 and only one block, we have
a coverage which is slightly lower on average than the target coverage of 90%; this could
be explained by the lack of exchangeability between the two halves of the dataset. Since
no approximations are used when the number of blocks is one, we could not expect exact
coverage if the exchangeability assumption is not fully met. Of course, this is a fundamental
limitation of any method based on conformal prediction, and to mitigate it one should verify
this assumption or possibly choose a more conservative coverage rate.
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Figure 2: Interval widths/areas for both EEG40 (a) and Argoverse (b). The standard
deviations are represented with semi-transparent zones. Same colors represent
equal block sizes. In (a) ConForME40 and CF-RNN are equivalent, and in (b)
ConForME30 and CF-RNN are equivalent.

5.3.3. Argoverse

We take data from the version 1 of the Argoverse dataset (Chang et al., 2019), which is
composed of 327790 sequences. Each sequence has size 50, which corresponds to 5 seconds
of data sampled at 10Hz. 30 past points are used to predict 20 future points. The pre-
trained model LaneGCN (Liang et al., 2020) is used, which utilizes 208272 sequences for
training. The validation data, consisting of 40127 sequences, is split for calibration and
testing. Sequences where the prediction gave invalid points are filtered out, totaling 5210
sequences for calibration and 5211 sequences for testing.
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The overall performance improvement is comparable to that seen in the EEG data
with horizon 40. The main difference can be seen in Figure 2, where we note that for
the EEG dataset there is a peak just after the middle of the prediction horizon, while for
Argoverse the largest area is present towards the end. This can be explained by the fact
that the prediction of trajectories is more certain for the near future, since the movement
of the vehicles is dictated by their dynamics, whereas brainwaves are not subject to these
dynamics.

5.3.4. COVID-19 data

Our COVID-19 dataset comes from (UK Health Security Agency, 2021), which tracks the
number of infected people in 380 regions over the course of 150 days. The dataset is split into
200 training sequences, 100 calibration sequences, and 80 test sequences. The prediction
horizon is 50 days, based on the previous 100 days.

In this case, as noted in (Lin et al., 2022), we found that there was not enough data
to calibrate the conformal predictors. In general, if α < 1/(n + 1), where n is the number
of points used to calibrate a conformal interval, the size of the conformal intervals should
be infinite to ensure validity. For this reason, ConForME and CF-RNN are not applicable
with a coverage rate of 90% for the COVID dataset. Even with only 30% coverage, as seen
in Table 2, some intervals for ConForME with a single block still have infinite width. This
shows an important limitation of both our method and CF-RNN: small calibration dataset
sizes (in this case 100 samples) lead intervals of infinite size. In practice, the data needed to
achieve finite size intervals during calibration is often a small fraction of the training data.
It is also not realistic to train a complex predictor with only 200 sequences, as it is done
here.

6. Conclusions

We presented in this paper ConForME, a low computational cost method for computing
valid and efficient prediction intervals for multi-horizon time series forecasting. We demon-
strated its validity and experimentally compared its efficiency with CF-RNN, showing that
its natural hyperparameter choice outperforms CF-RNN by a significant margin in all cases,
achieving up to 52% improvement in one dataset and, in all real-world datasets, achieving
at least an improvement of 35%.

As future work, we will explore different hyperparameter choices that could potentially
lead to greater efficiency gains, starting from the ones mentioned herein. In particular, it is
an open question to find low computational cost alternatives to our hyperparameter choice
of globally optimized error rates. Finally, we plan to integrate ConForME with a planner
for safe autonomous vehicle navigation, and evaluate its real-time performance.
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