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Abstract

Beyond the standard classification scenario, allowing a classifier to refrain from making a
prediction under uncertainty can have advantages in safety-critical applications, where a
mistake may hold great costs. In this paper, we extend previous works on the development
of classifiers with reject option grounded on the conformal prediction framework. Specifi-
cally, our work introduces a novel approach for inducing multi-class classifiers with reliable
accuracy or recall estimates for a given rejection rate. We empirically evaluate our sug-
gested approach in six multi-class datasets and demonstrate its effectiveness against both
calibrated and uncalibrated probabilistic classifiers. The results underscore our method’s
capability to provide reliable error rate estimates, thereby enhancing decision-making pro-
cesses where erroneous predictions bear critical consequences.

Keywords: Conformal Prediction - Multi-class Classification - Classification with Reject
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1. Introduction

Over recent years, the field of Machine Learning (ML) has undergone an exponential growth
due to the increase of computational resources and the availability of massive databases.
This has led to the proliferation of data-driven applications and the use of predictive algo-
rithms to enhance automatic decision-making. As a consequence, ML has rapidly infiltrated
critical areas of society, impacting many aspects of people’s lives and influencing crucial
decisions. In such settings, an erroneous decision by an ML model may have dire conse-
quences, hence estimating the likelihood of incorrect predictions at inference-time becomes
a desirable feature to gain trust in the technology.

Beyond the most common predictive scenario where an ML model makes a prediction
for all the available samples, an interesting alternative is the classification with reject option
(Chow, 1957; Herbei and Wegkamp, 2006), or selective classification (El-Yaniv and Wiener,
2010; Geifman and El-Yaniv, 2017). The main motivation behind classification with reject
option lies in developing suitable mechanisms to determine whether a prediction should
be made or not depending on some measure of confidence. Allowing an ML model to
refrain from making a prediction for uncertain samples has several advantages. For example,
in medical settings, the reject option can be used to refer ambiguous cases to an expert
clinician, so that an automatic evaluation is performed only when the model is confident
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enough (Kompa et al., 2021). In problems where each measurement has an associated cost
for the patient, such abstention can also be exploited by designing sequential approaches
that efficiently make use of the available predictor features, thus avoiding unnecessary harm
(Garcia-Galindo et al., 2023).

The task of computing a suitable measure of confidence for a new test sample can be
viewed through the lens of uncertainty quantification approaches. In this sense, the develop-
ment of classifiers with reject option can be grounded on the conformal prediction framework
(Vovk et al., 2005; Shafer and Vovk, 2008; Angelopoulos and Bates, 2023), which provides
distribution-free statistical methods to generate calibrated prediction sets with coverage
guarantees for a user-specified confidence level. The size of the prediction sets generated by
a conformal predictor can be directly interpreted as uncertainty estimates, suggesting them
as a promising choice for the reject option scenario. In practice, a conformal predictor would
predict the samples with singleton sets, whereas refusing to make a prediction in the case
of empty or multiple sets. If used in this fashion, the accuracy of the singleton predictions
can not be estimated in a straightforward way. This is because the validity of a confor-
mal predictor holds exclusively a priori, where coverage guarantees are on average, before
producing any prediction. As a result, once a particular set-valued prediction is made, no
assertion about the probability of containing the ground truth label can be stated. It is
well known that achieving such per-sample guarantees is impossible without making further
distributional assumptions (Vovk, 2013).

However, conformal predictors offer an interesting property in classification tasks: they
are able to estimate error rates with guarantees in a batch of new test samples. This
is achieved by means of the confidence-credibility measures (Saunders et al., 1999; Gam-
merman and Vovk, 2007), which accompany the most plausible predicted label with two
additional values that represent the model’s belief in such prediction. Specifically, recent
works have shown that the confidence measure can be employed as a basis to induce bi-
nary classifiers with accuracy and precision guarantees for different rejection rates (Linusson
et al., 2018; Johansson et al., 2023a,b). However, in classification problems where a false
negative can have critical consequences (e.g., an undetected disease), these guarantees may
not be sufficient.

Contribution: Our work draws inspiration from Johansson et al. (2023b), which pro-
posed the use of conformal prediction to build binary classifiers with reject option. Specifi-
cally, they suggested employing a rejection mechanism based on the confidence score, result-
ing in classifiers with both accuracy and precision guarantees for different abstention rates.
In this paper, we formalize such approach and extend it to multi-class classification with
reject option. Our study presents procedures that accurately estimate the performance of
any black-box rejection-based classifier grounded on conformal prediction. We also propose
a novel procedure aiming to control the per-class true positive rate, particularly useful in
classification problems where a class-specific false negative have critical consequences.

Outline: The rest of the paper is organized as follows. Section 2 introduces the clas-
sification with reject option task, probabilistic classification, the Platt scaling method, and
the conformal prediction framework. In Section 3, we describe the proposed method to
induce multi-class classifiers with reliable accuracy and recall estimates. Section 4 covers
the empirical experimentation, including results and discussion. Finally, Section 5 presents
the main conclusions and provides potential lines for future research.



MuULTI-CLASS CLASSIFICATION WITH REJECT OPTION AND PERFORMANCE (GUARANTEES

2. Background

2.1. Classification with reject option

For the sake of this study, we consider a general multi-class classification task. Let X the
input feature space, and Y = {c1,ca,...,cs} the target space with J € N possible classes.
Let us assume that the inputs and targets are generated by a data generating process with
Pyy. In the classification with reject option setting, the target space is augmented to
allow an abstention alternative, i.e., not making a prediction, that is Y’ = {c1,co,...,cs}U
{reject}. Diverging from the usual classification problem, we introduce a classifier with reject
option (h,g) (Geifman and El-Yaniv, 2017), which is composed of a standard classification
model h: X — A’ where

AJ:{WjE[O,l]‘ZJjﬁjzl} (1)

is the J-dimensional probability simplex, and a selection function g : X — {0,1}, formally:

argmax; m; if g(z) =1 @)

reject if g(x) =0

(h,g)(x) = {

For a given fixed classifier h, the central task when constructing a classifier with reject
option lies in defining a suitable selection function g. Intuitively, a suitable selection function
should rank samples based on how challenging they are to predict accurately. In practice,
the performance of a classifier with reject option is quantified using prediction coverage'
and selective risk. The prediction coverage Ex[g(x)] is defined as the expected rate of the
non-rejected samples, whereas, for a given real-valued loss function ¢ : Y x Y — Ry, the
selective risk is the expected loss for the non-rejected samples, formally:

| Eaylt(h(e), 9)g(x)]
= )] )

For the remainder of this paper, the loss function we consider is taken to be the standard
misclassification loss function: ¢(h(z),y) = I(h(z) # y), where I is the indicator function
that is 1 when its argument is true and 0 otherwise. In practice, the risk of a selective
classifier trades off for prediction coverage: the higher the number of rejected samples
is, the lower the selective risk is. In that sense, it becomes interesting to evaluate the
performance of a classifier with reject option for different abstention rates, which is usually
done by means of the risk-coverage curve.

R(h, g)

2.2. Probabilistic classification and calibration

Most ML classifiers are probabilistic predictors, as they are able to produce a posterior
score 7rj2 for each label ¢; € {c1,...,c;s}. In this way, a probabilistic predictor can be used

1. The reader should note that this notion of coverage differs from the ground truth coverage definition
usually employed to refer to the validity guarantees of a conformal predictor.

2. We assume without loss of generality that 7; € [0,1]. If this is not the case, each m; should be properly
scaled.
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not only to produce a point prediction, but also accompany this prediction with a measure
of confidence, specially useful in the reject option scenario. However, to be valuable in
decision-making, these posterior scores need to be calibrated, i.e., reflect true probabilities.
A probabilistic predictor is considered well calibrated if, given a predicted score for a certain
label, the probability of that label matches the predicted score, formally:

Py = ¢j|mj) =7 (4)

It should be noted that calibrated predictors present an interesting property when con-
structing classifiers with reject option. If a classifier is well calibrated, and we evaluate, for
example, a set of predictions whose highest posterior score among all the classes is around
0.8, we would expect an 80% accuracy in such predictions. Hence, we could define an
abstention mechanism which ranks samples according to their highest posterior score, and
induce a rejection model.

However, despite the fact that the majority of classification algorithms output posterior
scores, these are normally poorly calibrated and do not represent true probabilities, in-
cluding tree-based models (Provost and Domingos, 2003; Bostrém, 2008; Johansson et al.,
2021), support vector machines (Acevedo et al., 2007), logistic regression (Bai et al., 2021),
and neural networks (Guo et al., 2017; Minderer et al., 2021).

In the literature, the induction of well-calibrated probabilistic classifiers has been ap-
proached through post-hoc procedures that modify the posterior score distribution to com-
pute more accurate probability estimates, usually employing a hold-out dataset, namely
the calibration set. Some of the most well-known standard methods for calibrating trained
classifiers include Platt scaling (Platt et al., 1999), isotonic regression (Zadrozny and Elkan,
2002), and Venn (-Abers) predictors (Vovk et al., 2005; Vovk and Petej, 2014), the latter
being the only alternative with strong theoretical guarantees. In this work, we use the Platt
scaling method as a standard benchmark for comparing our methodological proposal.

2.3. Platt scaling

Platt scaling (Platt et al., 1999), originally proposed in the context of support vector ma-
chines, is a calibration technique that modifies the posterior scores m; from a classifier by
fitting a parametric sigmoid function to these 7; on the calibration dataset. Formally:

« 1
P(?J:Cﬂﬂj)zm (5)

where If”(y = ¢j | ;) is the estimated probability that a sample belongs to class c; given
the posterior score 7;, and wp and w; are parameters learned using maximum likelihood
estimation.

2.4. Conformal Prediction

Given a supervised learning task, the conformal prediction framework provides statistical
procedures to quantify reliable levels of individual uncertainty by means of valid set-valued
predictions (Vovk et al., 2005; Shafer and Vovk, 2008; Angelopoulos and Bates, 2023).

Let us initially assume a multi-class classification setting and an available set of training
samples {z}", = {(x;,y:)}I"; € & x Y drawn exchangeably from Pyy. The general
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goal of conformal prediction is to construct a conformal predictor I'set : X — 2Y with
ground truth coverage guarantees at a desired confidence level 1 — v € [0, 1]. To this end,
a central component of conformal prediction is the definition of a non-conformity measure
S: X xY — R, used to quantify the degree of relative strangeness of a new sample z with
respect to a collection of samples {z1,...,2r}. The non-conformity measure is a design
choice and, although it can be any measurable function, it is usually based on the output
(in fact, the posterior scores ;) of a predictive model, formally:

S(z {21, z}) = E(y, h(@)), (6)

where h : X — ) is, in our case, a multi-class classifier learned on {z1,...,2;} and = :
Y x Y — R is a function of dissimilarity between the true class y and the prediction h(x).
In this way, how strange is a sample z is quantified through the ability of a model learned
on {z1,..., 2} to precisely predict its true class.

Despite being initially proposed within a transductive scheme, learning a conformal pre-
dictor using this approach is frequently computationally infeasible since it requires fitting
the classifier for each new sample. To address this challenge, inductive (or split) conformal
prediction (Papadopoulos et al., 2002; Lei et al., 2018) was devised to offer a more efficient
variant for conformal calibration. As with classical calibration algorithms, the inductive
conformal prediction procedure makes use of a hold-out dataset to calibrate a trained clas-
sifier. For this reason, the original training samples {z;}/", are typically partitioned into a
proper training set {z;};;, used to learn a single classifier h, and a calibration set {z;}i%, 1,
on which to compute the non-conformity scores. For a new test sample zpew, conformal pre-
diction mainly relies on comparing the strangeness (i.e., the non-conformity) of a tentative
label ¢; € Y with respect to the calibration set and computes a p-value to evaluate the
hypothesis that ¢; is the actual label ynew. Hence, given

si=38(zi,{z1,-..,zn}) i=n+1,....m
Snew = S(Znews {21, -+, 2n}),

(7)

we can compute the p-value for ¢; as follows:

_ ’{i:n—i—l,...,misiZSnew}’"i_l
- m—n+1

pj (8)

This process is repeated for each possible label ¢; € ), thus producing a set of p-
values (p1, ..., ps) which reflects the model’s uncertainty for the new sample. At this point,
the set of p-values is usually employed to define, given a user-specified significance level
1 —a € ]0,1], a set predictor T'set : X — 2V that, for a new test sample Znew, outputs all
the classes whose p-value is greater than «, formally:

Fset(xnew) = {Cj ey ’pj > 04} (9)

This set predictor is guaranteed to contain the true class with 1 — « probability as long
as Pyy is exchangeable:

]P)(ynew € I‘set(mnew)) =1- Q, ac [07 1] (10)



GARCIA-GALINDO LOPEZ-DE-CASTRO ARMANANZAS

In this work, we focus on a less typical output choice to produce a confidence prediction:
the confidence-credibility measures (Saunders et al., 1999; Gammerman and Vovk, 2007).
This type of output from a conformal classifier is also based on the set of p-values generated
by a conformal predictor, but is better suited for scenarios where a point prediction is
required. Let p;y > p) > -+ > p(y) the order statistics of (p1,...,ps) (i.e., the set of
p-values sorted in decreasing order). Specifically, three different values are reported for a
particular sample:

- The forced prediction f(x), which is given by the most likely classification (i.e., the
tentative class with the largest p-value).

f(z) = argmaxp; (11)
Ejey

- The confidence \(z), defined as one minus the second highest p-value.
AMz) =1-Dp) (12)
- The credibility vy(x), defined as the highest p-value.
(@) = pa) (13)

In this way, a confidence-credibility predictor I'cc : X — Y x [0, 1] x [0, 1] is defined. For
a new test sample ZTnpew, L'cc Outputs the combination of these three values, formally:

Fcc(xnew) = (f(xnew)7 )\(xnew)y 7($new)) (14)

The confidence and credibility measures present a suitable way to augment a point
prediction with additional information, serving as indicators of reliability. Intuitively, the
higher the values of both confidence and credibility are, the more reliable the prediction is.
Additionally, these two measures can be interpreted in the context of set prediction with
interesting properties: the confidence corresponds to the highest significance level where
the conformal predictor outputs a singleton prediction, whereas the credibility represents
the significance level from which all classes are rejected.

Note that the properties of the confidence measure provide a convenient background for
the induction of reliable classifiers in the reject option scenario. Specifically, for a given
confidence A € [0,1], a confidence-credibility predictor I'cc is guaranteed to achieve an
expected correct classification rate A for all the forced predictions whose related confidence
is greater or equal to A, formally:

P(f(z) =yl A(z) = A) = A, A€0,1] (15)

In other words, I'cc can be used as a classifier with reject option. It is worth mentioning
that, although the guarantees are theoretically granted for any A, in practice the accuracy
level that I'cc is able to achieve will depend on several factors, such as its efficiency or the
prediction task difficulty.



MuULTI-CLASS CLASSIFICATION WITH REJECT OPTION AND PERFORMANCE (GUARANTEES

Both coverage and accuracy guarantees considered so far are only satisfied on average.
However, an extension of the standard conformal prediction procedure, the so-called Mon-
drian conformal prediction (Vovk et al., 2005), was proposed to mitigate this limitation
and construct confidence predictors with guarantees in a group-wise style. The main dif-
ference relies on splitting the calibration dataset into categories predefined by a taxonomy
and separately running the calibration step on each category. Formally, a taxonomy is a
measurable function x : X x Y — K that maps each sample z; to a specific category k; € K,
where I is normally a discrete space.

Similarly to its standard version, a Mondrian conformal predictor can be learned by
induction. Hence, given a taxonomy &, for a new test sample xnew belonging to the category
Knew, the p-value for each of the tentative class ¢; € Y is given by:

o Hi=n-+1,...,m: K= Knew;Si > Snew}| + 1
J Hi=1,...,m+1:K; = Knew}|

where s; and k; are the non-conformity score and the category related to the i-th calibration
sample, respectively. When using a Mondrian conformal predictor, both guarantees (10)
and (15) are satisfied for each category individually. For the sake of this study, we consider
the Mondrian taxonomy k : X x Y — ), where the categories are given by the actual
label y; € Y of each sample z;. This particular case is often referred to as class-conditional
conformal prediction, and provides a useful extension to induce classifiers with reliable
per-class recall estimates.

7 (16)

3. Methods

In this section, we propose a general procedure to induce multi-class classifiers with a
reject option whose abstention mechanism is based on conformal prediction. The proposed
methodology seeks reliable performance estimates for accuracy or recall on a batch of non-
rejected test samples. For comparison purposes, we also examine a benchmark abstention
mechanism derived from the posterior scores of a probabilistic classifier.

3.1. Score-based rejection

Let us assume a multi-class probabilistic classifier h : X — A” which generates a posterior
score 7; for each label ¢; € {c1,...,c}. Since the posterior scores can be seen as a measure
of confidence for each of the possible labels, it makes sense to propose rejection mechanisms
based on them. Specifically, for a rejection threshold 6 € [0, 1], we define the mazimum
score selection function g : X — {0,1} as follows:

1, if max;m; > 0,
x) = - 17
9(@) {0, otherwise. (7

Hence, given g, the classifier with reject option (h, g.) produces a prediction only for
those cases where the maximum posterior score is above the rejection threshold. If h is
perfectly-calibrated, the selective risk of (h, g,) is guaranteed to be

Exy|l j -
R(h, gr) = Xy[ (argmaxm; # y)g (x)] -1 —Exy[maij| max ; > 9} (18)

EX [g7r (517)]
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i.e., (h, gr) achieves accuracy guarantees of Eyy[maxm;| maxm; > 6].

We also propose a similar rejection mechanism based on the posterior score of a specific
label. For a given label c;, we define the class score selection function gr;, : X — {0,1} as
follows:

0, otherwise.

1, ifwm; >0
gﬂ'j(‘r) = { ’ (19)

When considering only the samples belonging to the label c;, if h is perfectly calibrated,
the selective risk of (h, gr,) on such samples is guaranteed to be

Exy[l (arg max mj # y)gx, () |y = ¢;]
Ex[gr, (z) |y = ¢j]

R(h, gn; |y = ¢j) = =1-Exylm[7m; 20,y = ¢j]

(20)
i.e., (h, gr;) achieves recall guarantees for the class ¢; of Exy[m;|m; > 0,y = ¢;].

3.2. Conformal-based rejection

Let us now assume a confidence-credibility predictor I'ec : X — Y x [0, 1] x [0, 1]. In this case,
a rejection mechanism specified by the confidence score A(z) is proposed. Thus, for a given
rejection threshold 6 € [0, 1], we define the conformal selection function gy : X — {0,1} as
follows:

(@) = {1, if A(z) > 0, (1)

0, otherwise.

Through this mechanism, only the samples whose confidence is above 6 are predicted.
In this case, 0 is reported as the expected error rate of the predicted samples. Using this
method, we expect to observe an average accuracy rate of 1 — 6 in a batch of test samples.

When seeking reliable recall estimates, we propose a similar procedure that is also based
on the confidence measure, but instead the Mondrian taxonomy k : X x ) — ) is now used
to calibrate the underlying classifier. Here, 6 is again reported as the expected error rate,
but this time only considering the target class. Hence, we now expect to observe an average
recall of 1 — 6 in a batch of test samples belonging to this specific class.

4. Empirical experimentation
4.1. Experimental setup

In the experimental phase, we compared the two abstention mechanisms with the goal of
developing multi-class classifiers with reject option and performance guarantees. For the
score-based rejection, we considered off-the-shelf uncalibrated multi-class classifiers (Uncal)
and the Platt scaling method (Platt). In both cases, the posterior scores were used as
a basis for refraining from making a prediction. Alternatively, for the conformal-based
rejection (Conf), the confidence measure was used to filter uncertain samples. We propose
a performance evaluation scheme by setting different rejection rates, ranging from 7 €
{0.1,0.2,...,0.9}.
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- For the Uncal and Platt strategies, given a batch of test samples, an initial ranking
according to the posterior scores was performed. In the case of the accuracy estimation
experiment, the maximum posterior score was used. In the case of the recall estimation
experiment, the score for a selected specific class was used. Then, the bottom (1 —
7)% of the test samples are rejected, leaving the remaining top 7% to be predicted
and evaluated. In this way, the posterior score averaged across the 7% samples was
reported as the correct classifications rate that the rejection-based classifier, if well-
calibrated, should guarantee.

- For the Conf strategy, a similar policy was adopted. However, in this case, the ranking
of the test samples was carried out based on the confidence measure. Hence, the
confidence score A\ from which the 7% predictions were evaluated was reported as the
correct classifications rate that the confidence-credibility predictor estimates. In the
case of accuracy estimation, a standard conformal classifier was used, whereas in the
case of recall estimation, a Mondrian conformal classifier was used.

We restricted the experimental study to inherently multi-class classifiers (i.e., models
that automatically produce a probability score of each of the class labels by construction.
Specifically, decision tree (tree) (Breiman et al., 1984) and random forest (rfc) (Breiman,
2001) algorithms were tested. The multi-class classifiers were induced using the scikit-learn
library (Pedregosa et al., 2011) with default hyperparameter configurations, except for the
number of minimum samples required in a leaf node of the decision trees, which was set to
10. The Platt scaling calibration was carried out using the CalibratedClassifierC'V method
from the same library. The conformal calibration was conducted out using the crepes library
(Bostrom, 2022), setting the hinge loss function (also known as least ambiguous set-valued
classifier (Sadinle et al., 2019)) as the non-conformity measure. Formally:

E (yi, h(@i)) = 1 = h(@i)y,, (22)

where h(x;),, is the estimated posterior score provided by the multi-class classifier h for the
sample x; and the label y;.

To evaluate the rejection classifiers, the testing protocol was a repeated hold-out proce-
dure with 100 repetitions of a 75/25 % random split into training and test sets, respectively.
For calibration purposes, each training set was further partitioned into 2/3 of proper train-
ing samples and 1/3 of calibration samples. For the uncalibrated models, the multi-class
classifiers were induced using the complete training set. Each split was class stratified. To
assess the quality of the estimates, we computed the absolute estimation error between
expected and observed accuracy or recall for the subset of non-rejected test samples.

4.2. Datasets

We tested our method on six different multi-class classification datasets, including one
synthetic dataset and five publicly available real-world datasets (see Table 1). Each dataset
varies in complexity, from the number of samples and features to the cardinality of the label
space, providing a diverse test bed.

For the estimation of recall, we only considered one predetermined class within each
dataset (see Table 2).
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Table 1: Description of datasets, including number of samples (n), number of features (p),
cardinality of the label space (])|) and source.

Dataset n p |Y| Source

synthetic 1,000 8 3

adult 49,531 10 3  (Ding et al., 2021)

beans 13,611 16 6 UCI Machine Learning
ocr 5,620 64 9 UCI Machine Learning
cars 1,728 6 4 UCI Machine Learning
scikit-learn (make_classification)
glass 214 9 6 UCI Machine Learning

Table 2: Target class information for each dataset.

Dataset Class description Proportion
adult Income < $20K 0.399
beans Sira dry bean type 0.194
ocr Digit nine 0.100
cars Car with an acceptable evaluation 0.222
synthetic Synthetic class (y = 1) 0.333
glass Headlamp 0.136

4.3. Baseline performance

We conducted an initial experiment to set a baseline for the rejection scenarios by predicting
all the available test samples (i.e., standard classification) using each strategy. The baseline
predictive performance, measured in terms of overall accuracy and recall, is presented in

Table 3.
Table 3: Baseline predictive performance.
tree rfc

Dataset Accuracy Recall Accuracy Recall

Uncal Platt Conf Uncal Platt Conf|Uncal Platt Conf Uncal Platt Conf
adult 675 764 .671 .758 .671 .760| .677 .758 .675 .762 .674 .756
beans 909 .906 .905 .845 .846 .844| .923 921 .921 .861 .862 .862
ocr 878 .892 .858 872 .853 .875| .982 .979 .978 .944 942 .944
cars 938 926 .924 872 .876 .883| .980 .969 .967 .975 .951 .958
synthetic .755 .734 .734 .734 .717 .708 | .863 .850 .852 .849 .842 .835
glass 945 931 935 968 .969 .958 | .974 .967 .966 .921 .910 .904

Note that some datasets were more challenging than others. The uncalibrated classifiers
yielded slightly better accuracy results than the Platt-scaled models and the conformal
predictors. This is likely due to the fact that the uncalibrated models make use of more

10
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training data to induce the classifiers. Additionally, we can observe that, regardless of the
strategy, the random forest outperformed the decision trees for all the datasets.

4.4. Accuracy estimation

The quality of the accuracy estimates using decision tree as the underlying classifier is
visually presented in Figure 1. Each point represents a certain rejection rate, with lines
connecting these points to illustrate the performance progression across successive rates.
The estimated accuracy is plotted along the z-axis, whereas the empirical accuracy in the
non-rejected samples is plotted along the y-axis. The conformal predictors achieved the
best results, showing better accuracy estimates than both the Platt-scaled probabilities
and the uncalibrated models. The uncalibrated models tended to be over-confident in
their predictions, whereas the Platt scaling method seemed to be excessively cautious when
estimating the confidence. The conformal predictors estimates’ lied somewhere between
those of the uncalibrated models and the Platt scaling method, for all the datasets. It can
be noted that, in some cases such as the beans and cars datasets, the accuracy estimates
by the conformal classifiers practically matched the empirical rates, achieving the desired
statistical guarantees. However, in other cases, namely the adult and the ocr datasets,
the accuracy estimates were systematically over-confident and under-confident, respectively.
The accuracy improvement achieved from the rejection of the most uncertain samples varied
across classification tasks. For example, in the case of the synthetic dataset (Figure 1(e)),
the accuracy progressively increased to 90%, which corresponded to abstaining from making
a prediction for 60% of the samples. Beyond this rejection rate, there was no additional
improvement regardless of the rejection stress. On the other hand, other datasets, e.g., cars
(Figure 1(d)), only showed an accuracy improvement up to the rejection of the most 30%
uncertain samples.

The Platt scaling method failed to provide a suitable confidence ranking for some
datasets. This was particularly noteworthy in the beans dataset (Figure 1(b)), where from
the 30% rejection rate onwards, the accuracy of the evaluated samples began to decrease.
However, this method performed well on the adult dataset (Figure 1(a)), specially for lower
rejection rates, where the conformal classifier over-estimated the accuracy levels.

The accuracy estimation results using the random forest as the underlying classifier are
presented in Figure 2. As with the decision tree, the conformal classifiers also outperformed
both the Platt scaling method and the uncalibrated models, except for the adult dataset,
where the Platt-scaled probabilities provided the best estimates. In the remaining datasets,
the conformal classifiers produced near perfect accuracy estimates for all the rejection levels.
Conversely, the uncalibrated models and the Platt-scaled classifiers showed very different
behaviors depending on the dataset. In general terms, they tended to under-estimate the
actual accuracy rates although, in very specific cases, their estimates were similar to those
of the conformal models (see the uncalibrated classifiers in the beans (Figure 2(b)) and in
the glass (Figure 2(f)) datasets).

The accuracy estimation errors made by each strategy confirm that the conformal clas-
sifiers were the best alternative on average (see Table 4).
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Figure 1: Accuracy estimation using the decision tree as the underlying classifier for each
dataset. The dotted gray line represents a perfectly calibrated classifier.
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Figure 2: Accuracy estimation using the random forest as the underlying classifier for each
dataset. The dotted gray line represents a perfectly calibrated classifier.
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Table 4: Accuracy estimation error averaged over all rejection rates for each dataset. Bold
numbers highlight estimation errors from the conformal classifiers that were significantly
lower with respect to those from both the uncalibrated and the Platt-scaled models (Fried-
man test of differences (o = 5%) and Nemenyi test to assess pairwise differences).

tree ‘ rfc
Dataset Uncal Platt Conf‘Uneal Platt Conf
adult .085 .037 .044 | .089 .032 .045
beans .029 .022 .002| .003 .025 .002
ocr .038 .053 .019| .049 .015 .001
cars .003 .029 .001| .015 .009 .001
synthetic .094 .037 .025| .042 .026 .004
glass .015 .105 .010| .047 .097 .005

4.5. Recall estimation

The performance of the different strategies for the recall estimation task in each dataset
using the decision tree and the random forest as the underlying classifiers is presented in
Figures 3 and 4, respectively. The uncalibrated and the Platt-scaled probabilistic models
consistently under-estimated the number of correctly classified samples belonging to the
targeted class in all datasets. In fact, it is interesting to observe that both strategies yielded
a 100% recall for rejection levels beyond the 30%, even when the estimates were under 85%
(see, for example, the uncalibrated classifiers in Figure 4(e) and the Platt method in Figure

4(a)).

Turning the attention to the Mondrian conformal classifiers, the displayed results clearly
highlight the capability of the method to produce reliable recall estimates for the targeted
classes. In contrast to the uncalibrated and the Platt-scaled predictors, the Mondrian con-
formal classifiers avoided underestimating the observed recall, instead yielding better esti-
mates for all rejection rates. The usefulness of our method with respect to the probabilistic
predictors was particularly evident in the low rejection rates, in which the uncalibrated
models and the Platt-scaled classifiers failed to provide reliable recall by producing large
estimation errors. In fact, the Platt-scaled models produced, in most cases, larger estima-
tion errors than the uncalibrated classifiers. The Mondrian models yielded precise levels of
recall for large-data regime datasets like beans, ocr, or adult, where the estimates practi-
cally matched the empirical rates for all the rejection rates. This was not the case of the
glass dataset (Figure 3(f) and Figure 4(f)), for which the extremely low number of samples
for the targeted class led to a failure when attempting to calibrate the Mondrian conformal
predictors and to properly rank the uncertain samples. In this case, the uncalibrated models
achieved the lowest estimation errors, regardless of the underlying model.

The recall estimation errors made by each strategy are reported in Table 5, demonstrat-
ing that the Mondrian conformal classifiers were the best option.
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Figure 3: Recall estimation using the decision tree as underlying classifier for each of the
considered datasets. The dotted gray line represents a perfectly calibrated classifier.
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Figure 4: Recall estimation using the random forest as underlying classifier for each of the
considered datasets. The dotted gray line represents a perfectly calibrated classifier.

16



MuULTI-CLASS CLASSIFICATION WITH REJECT OPTION AND PERFORMANCE (GUARANTEES

Table 5: Recall estimation error averaged over all rejection rates for each dataset. Bold
numbers highlight estimation errors from the conformal classifiers that were significantly
lower with respect to those from both the uncalibrated and the Platt-scaled models (Fried-
man test of differences (o = 5%) and Nemenyi test to assess pairwise differences).

tree ‘ rfc
Dataset Uncal Platt Conf ‘Uncal Platt Conf
adult .045 .189 .015| .045 .191 .009
beans .011 .060 .010| .011 .060 .006
ocr .009 .110 .008 | .071 .017 .002
cars .019 .067 .031| .080 .023 .022
synthetic .030 .173 .027| .104 .083 .020
glass .000 .119 .165| .031 .104 .072

5. Conclusions

In high risk domains, the reliable quantification of uncertainty becomes a key feature when
assessing whether a prediction from an ML model should be accepted. In this work, we
have extended previous research on the development of confidence classifiers with reject
option grounded on conformal prediction. Our method, based on the confidence measure,
leverages the statistical guarantees of the framework. It enables any multi-class classifier
to estimate with precise levels of confidence the expected accuracy or recall in a set of test
samples. We evaluated our approach in six different multi-class datasets and compared it
with off-the-shelf uncalibrated models and Platt-scaled classifiers. The findings demonstrate
that our approach consistently delivers reliable error rate estimates at various rejection
thresholds, outperforming other alternatives in most scenarios. In some cases, our approach
was able to achieve performance guarantees, particularly when using the random forest as
the underlying algorithm. Understanding the reasons behind the failure of the decision tree
to achieve the desired guarantees in certain datasets is left for future research.

Future empirical experimentation may also involve the comparison of our proposal with
other methods based on the calibration of the posterior scores, such as Dirichlet calibration
(Kull et al., 2019) and Venn-Abers prediction (Vovk and Petej, 2014). The main limitation of
our proposal lies in its application in low-data regime scenarios, when only a few calibration
samples are available and statistical efficiency is sacrificed. An interesting extension in
this case would be the construction of confidence classifiers with rejection based on cross-
conformal predictors (Vovk, 2015). Finally, we would like to mention that, although this
paper is focused on multi-class classification, our method could be easily adapted to tackle
binary classification problems.
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