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Abstract

The aim of this paper is to propose an adaptation of the well known adaptive conformal
inference (ACI) algorithm to achieve finite-sample coverage guarantees in multi-step ahead
time-series forecasting in the online setting. ACI dynamically adjusts significance levels,
and comes with finite-sample guarantees on coverage, even for non-exchangeable data.
Our multi-step ahead ACI procedure inherits these guarantees at each prediction step, as
well as for the overall error rate. The multi-step ahead ACI algorithm can be used with
different target error and learning rates at different prediction steps, which is illustrated in
our numerical examples, where we employ a version of the confromalised ridge regression
algorithm, adapted to multi-input multi-output forecasting. The examples serve to show
how the method works in practice, illustrating the effect of variable target error and learning
rates for different prediction steps, which suggests that a balance may be struck between
efficiency (interval width) and coverage.
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1. Introduction

Conformal prediction (CP), described in detail in Shafer and Vovk (2008) and Vovk et al.
(2022), is a general method for distribution-free uncertainty quantification, using past ex-
perience to determine precise levels of confidence in a new prediction. It can be applied
to essentially any machine learning method, and has guaranteed properties of validity, pro-
vided that the data is drawn from a probability distribution that is exchangeable (see
Vovk et al. (2022), Section 2.1.1 for details), meaning essentially that any permutation is
equally probable. In the online setting, where Reality presents us with successive examples
zt := (xt, yt) ∈ Z := X×Y , each one consisting of an object xt ∈ X and its associated label
yt ∈ Y , CP produces prediction sets, Γε

t (typically intervals), at a user specified significance
level ε, using z1, . . . , zt−1 and xt as input. They are valid in the sense that the true label,
yt, is contained in the prediction set with probability at least 1 − ε, and the error events
are independent.1 While powerful and highly general, the validity guarantees are lost if the
exchangeability assumption is violated. This means in particular that CP comes with no
guarantees for most time-series forecasting problems.

Adaptive conformal inference (ACI), introduced in Gibbs and Candes (2021), is a
method designed to achieve a desired coverage frequency 1 − ε even in cases when the
data is not exchangeable. Because ACI does not require data to be exchangeable, it has

1. “at least” can be replaced by “exactly” by using smoothed CP, which we do not consider here.
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been suggested as a good candidate for producing prediction intervals in time-series fore-
casting (Zaffran et al., 2022). It achieves, at least asymptotically, a user specified target
error rate ε, by using a simple online update of the significance level

εt+1 = εt + γ(ε− errεt )

where

errεt =

(
1 if yt /∈ Γεt

t

0 otherwise.

The theoretical guarantees of ACI are somewhat different from CP, which guarantees
that errors are independent and happen with at most a user specified probability ε. What
ACI promises is weaker, but still useful, in that it provides finite sample guarantees on the
coverage frequency: For any positive integer T , and learning rate γ > 0, we have that���� 1T PT

t=1 errt − ε

���� ≤ max{ε1,1−ε1}+γ
γT (a.s.) (1)

In words, the absolute deviation from the desired error-rate, for a finite sample size T will
almost surely not exceed ε1+γ

γT (assuming ϵ1 ≤ 1/2), which in particular converges to 0 as
T → ∞. Thus, ACI ensures that a conformal predictor Γ is asymptotically valid, even if
the data is not exchangeable.

In time-series forecasting, we are often interested in predicting more than just one step
ahead, which is known as multi-step ahead forecasting. In this situation, we can not use
ACI directly because the online update requires knowledge of the errors immediately, but
if we predict h steps ahead, we only learn whether our prediction was correct after h time
steps have passed.

The main contribution of this paper is to adapt the ACI algorithm to multi-step ahead
forecasts in the online setting. To the best of my knowledge, this has not been done
before. ACI has been suggested as part of the adaptive ensemble batch multi-input multi-
output conformalised quantile regression (AEnbMIMOCQR) in Sousa et al. (2022) which
uses bootstrapping, similar to the ensemble batch prediction intervals (EnbPI) algorithm
introduced by Xu and Xie (2021). Another approach to conformal multi-step ahead fore-
casting, taken in Schlembach et al. (2022), uses the weighted quantiles method of Barber
et al. (2023) together with an inductive conformal predictor in the offline mode. Empirical
validation supports the method, but no theoretical guarantees are presented. The Copu-
laCPTS method of Sun and Yu (2022) comes with finite sample coverage guarantees, but
their focus is on the setting where data consists of many independent time series, which is
different from our aim.

Common for these works is that they apply some form of inductive conformal predictor,
which requires data splitting. Our approach differs by being entirely online, avoiding data
splitting, and can thus be used together with any online conformal predictor that produces
multi-step ahead forecasts. As we shall see, our proposed method is able to use different
target miss-coverage levels for different prediction steps, allowing a user to balance between
high coverage and tight prediction sets when predicting far ahead, which to the best of my
knowledge has not been a feature of any previous conformal method.
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To illustrate the method in practice, we provide numerical examples in Section 4. The
examples provided are not intended as experimental results, but merely serve to illustrate
the proposed method in practice. Almost any machine learning method can be made into
a conformal predictor, and any online conformal predictor is compatible with the proposed
multi-step ahead ACI. In our examples, we use an adapted version of the conformalised
ridge regression (CRR) algorithm (see Algorithm 1) to produce multi-step ahead predictions
online in a computationally efficient manner. We make no claim that this adaptation is
particularly well suited for multi-step ahead time-series forecasting, but it serves to illustrate
the multi-step ahead ACI procedure.

The rest of the paper is organised as follows. We briefly discuss different strategies for
multi-step ahead forecasting, and introduce a modified version of the confromalised ridge
regression algorithm in Section 2. Our main contribution, the multi-step ahead ACI algo-
rithm, is introduced in Section 3, where we also discuss its finite sample coverage guarantees
and asymptotic properties, both at individual forecast steps and overall. The numerical ex-
amples, using a publicly available electricity demand dataset, in Section 4 serve to illustrate
the method in practice. We show the effect of using different target miss-coverage rates
and/or learning rates at different time-steps, which could be useful in practice. Section 5
concludes.

2. Multi-step ahead time-series forecasting

In a multi-step ahead forecasting situation, we must take care to choose an effective forecast
strategy. Suppose we have a time series (w1, w2, . . . , wn), and want to estimate a function
Rp → Rh to predict the next h values based on p lagged values. We could include exogenous
variables as well, which increases the dimension of the domain, but for simplicity, let us
ignore this possibility here. The multi-input multi-output (MIMO) strategy converts the
forecasting problem to a supervised learning problem with multiple targets:

0BBB@
w1 w2 . . . wp wp+1 . . . wp+h

w2 w3 . . . wp+1 wp+2 . . . wp+h+1
...

...
. . .

...
...

. . .
...

wn−h−p wn−h−p+1 . . . wn−h−1 wn−h . . . wn

1CCCA
with the lagged values on the left-hand side of the matrix, and the targets on the right-
hand side. We will refer to the tth row at the left-hand side of the matrix as the object
xt, and the tth row at the right-hand side as the label yt. Empirical studies (Taieb et al.,
2012; Xiong et al., 2013) have shown that MIMO strategies tend to outperform recursive
strategies that use one-step ahead forecasts to produce the next forecast, which tends to
accumulate prediction errors. This is however not an absolute rule, and there are situations
where recursive strategies may be a better option.

The choice of strategy will thus depend on the particular problem at hand. For the
numerical examples in Section 4, we have chosen to use the MIMO strategy. In particular,
a MIMO version of ridge regression to be defined below.

3



Szabadváry

2.1. MIMO conformalised ridge regression

We adapt the conformalised ridge regression (CRR) algorithm (Algorithm 2.4 Vovk et al.,
2022) to handle multi-step ahead predictions, resulting in the MIMO-CRR algorithm, which
is described in Algorithm 1. The adaptation is simple, but I was unable to find any online
MIMO conformal predictor in the literature, so it seems useful to present the algorithm in
full. Recall that (aij) is a convenient shorthand notation for the matrix whose elements are
aij and that Ip is the p× p identity matrix.

Algorithm 1: MIMO-CRR

Data: Ridge parameter a ≥ 0, vector of significance levels " = (εi)
h
i=1 ∈ (0, 1)h,

training set (xi, yi) ∈ Rp × Rh, i = 1, . . . n− 1 and a test object xn ∈ Rp.
Set Xn := (x1, . . . , xn)

T ;
set Hn := Xn(X

T
nXn + aIp)

−1XT
n ;

set C := In −Hn;
set A := (aij) := C(y1, . . . , yn−1, 0)

T and B := (bij) := C(0, . . . , 0, 1)T , with 0, 1
understood as vectors of length h whose elements are all zeros and ones respectively;
for i = 1, . . . , h do

for j = 1, . . . , n− 1 do
if bni > bji then

set uj := lj := (aji − ani)/(bni − bji)
else

set lj = −∞ and uj = ∞
end

end
sort u1, . . . , un−1 in the ascending order obtaining u(1) ≤ · · · ≤ u(n−1);

sort l1, . . . , ln−1 in the ascending order obtaining l(1) ≤ · · · ≤ l(n−1);

set Γ
(εi)
i := [l(⌊(εi/2)n⌋), u(⌈(1−εi/2)n⌉)];

end

output (Γ
(ε1)
1 , . . . ,Γ

(εh)
h ) as prediction set.

Note that l(⌊(εi/2)n⌋), u(⌈(1−εi/2)n⌉) is defined only when εi ≥ 2/n for all i. The MIMO-
CRR can use lagged values together with exogenous variables to produce prediction sets
online. It should be remarked that the output set is a h-tuple whose ith element is a
prediction interval for yn+i−1. It is also worth noting that the matrix (XT

nXn + aIp)
−1 can

be updated efficiently online as new examples arrive by the Sherman–Morrison formula, see
e.g. (Bartlett, 1951), to avoid the costly matrix inversion at each step.

3. Multi-step ahead adaptive conformal inference

The ACI algorithm was introduced in Gibbs and Candes (2021). It works in the online
setting by a simple update of the significance level. Here we adapt it to handle multi-
step ahead forecasts, allowing for different confidence levels and learning rate at different
prediction steps.

First, because there is in general a trade-off to be made between high confidence and
tight prediction intervals, it may be advantageous to allow for forecasts that lie further in
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the future to have lower confidence. Of course, we would like to be very confident, but if the
prediction intervals are too wide, they may not be useful. Similarly, we may wish to set the
learning rate of ACI at different levels depending on the forecast step. There is a trade-off
between stability and adaptability when choosing learning rate, with large learning rates
enabling more adaptability at the cost of decreased stability. Gibbs and Candès suggest that
in environments with large distribution shifts, the learning rate should be chosen higher,
which makes intuitive sense. In a multi-step ahead setting, it would therefore seem natural
to set the learning rates successively larger the further ahead we predict. Thus, a vector of
desired miss-coverage rates

" = (ε1, . . . , εh) (2)

is specified by the user, together with a vector of learning rates

 = (γ1, . . . , γh). (3)

From now on, a bold symbol denotes a vector. At time t, after we have made our
prediction, and the true label is revealed, we have access to the values yt−h+1,1, . . . , yt,1, we
can then fully observe the correctness of our predictions made at time t − h + 1, but also
partially the correctness of the predictions made since. Denote by lt,i and ut,i the lower and
upper bounds of our prediction intervals, with i = 1, . . . , h. Consider the matrices,

Ut =

0BBB@
ut,1 ut,2 . . . ut,h
ut−1,1 ut−1,2 . . . ut−1,h

...
...

. . .
...

ut−h+1,1 ut−h+1,2 . . . ut−h+1,h

1CCCA (4)

and

Lt =

0BBB@
lt,1 lt,2 . . . lt,h
lt−1,1 lt−1,2 . . . lt−1,h
...

...
. . .

...
lt−h+1,1 lt−h+1,2 . . . lt−h+1,h

1CCCA . (5)

The diagonal elements are the lower and upper bounds of the predictions made at time
t− h+ 1, . . . t for the value yt. Thus, the vector of errors

errt = (errt,1, errt−1,2, . . . errt−h+1,h) (6)

can be evaluated as

¬
�
diag(Lt) ≤ yt,1 ≤ diag(Ut)

�
where “¬” denotes logical negation, and the comparisons are made element-wise. We can
then update our control input vector

"t = (εt,1, . . . , εt,h) (7)

by

"t+1 = "t + ("− errt) (8)
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with the vector multiplication understood as element-wise multiplication. Initially, we have
an issue. For t = 1, . . . , h, we do not yet know the entire error vector. To get around
this, we initialise the error vector as err1 = ", which is a fixed point for the ACI update
Equation (8), so that the significance level at hour i is kept fixed until the first relevant error
arrives. When errors arrive, they are added in their respective places until we have observed
an entire error vector, which can then be used in Equation (8) without any modification.
This means that e.g. εt,h is kept fixed for t = 1, . . . , h, and is only then adaptively updated.

Because the multi-step ahead forecasting protocol here described is simply applying ACI
independently at each prediction step, using the incoming errors to update as they arrive,
it inherits all theoretical guarantees of ACI. In particular, for each forecast step, assuming
γi > 0: ���� 1T PT

t=i errt,i − εi

���� ≤ max{εi;i,1−εi;i}+γi

γiT
, i = 1, . . . , h (a.s.). (9)

Note that the summation begins at t = i, which reflects that εt,i is kept fixed until we

observe the relevant error. The overall error rate is 1
hT

PT
t=1

Ph
i=1 errt,i, and combining the

above inequalities, yields the finite sample bound

���� 1T
TX

t=h

(
1

h

hX
i=1

errt,i)−
1

h

hX
i=1

εi

���� = 1

h

���� hX
i=1

(
1

T

TX
t=h

errt,i)−
hX

i=1

εi

����
=

1

h

���� hX
i=1

(
1

T

TX
t=h

errt,i − εi)

����
≤ 1

h

hX
i=1

���� 1T
TX

t=h

errt,i − εi

����
≤ 1

h

hX
i=1

max{εh,i, 1− εh,i}+ γi
γiT

(a.s.)

(10)

for the overall error rate beyond time h, assuming  > 0 (elementwise). The second last
line follows from the triangle inequality, and the last line follows from Equation (9). Note
that the summation begins at t = h, since before this point, εt,h is kept fixed, so we can not
apply Equation (9).

In particular, both the inequalities in Equation (9) and that in Equation (10) imply
that the error rate at each prediction step as well as the overall error rate converges to
the desired ones as T → ∞. To put it in the terminology of Vovk et al. (2022), the
resulting confidence predictor is asymptotically valid at each prediction step (considered as
a confidence predictor of just that step) as well as overall.

Note that nothing prevents εt,i < 0 which would result in an infinite prediction interval
for yt,i. This can however be avoided by enforcing a lower bound for each control input. If we
use the MIMO-CRR algorithm, we have to enforce εt,i ≥ 2/n to ensure that the prediction
sets are defined. This also ensures that the prediction sets are finite unless bni > bji. It
is important to note that the finite-sample bounds Equation (9) and Equation (10) may
be violated if we do this, but in practice it may be prudent to avoid infinite prediction
intervals. It may however depend on the use case.
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Note that the multi-step ahead ACI algorithm is agnostic to the forecast strategy em-
ployed. Our numerical illustrations use the MIMO strategy, but it would work equally well
to employ the recursive strategy described in Section 2.

4. Example: electricity demand forecast

We illustrate the multi-step ahead ACI wrapped around MIMO-CRR on the Victoria elec-
tricity demand dataset, which is available through the MAPIE GitHub repository2 (Taquet
et al., 2022). The dataset consists of hourly electricity demands together with the tem-
perature at each time step. We enrich the dataset with date information (week of year,
weekday, hour of day). Each object xt consists of this information and 24 lagged values of
the demand. The forecast horizon h is set to 5, so each label yt = (yt,1, . . . , yt,5), where yt,i
is the demand at time t+ i−1. We use 477 historical values as initial training set, and tune
the ridge parameter with generalised cross-validation (Golub et al., 1979). We set "1 = "
in all examples, that is, our first vector of significance levels, is set to be equal to the vector
of target error rates.

We present three cases. First, the target error and learning rates are kept the same over
the entire forecast horizon. Second, the target error rate is different for different forecast
hours, allowing for a more casual prediction when we predict far ahead, which should keep
the prediction sets narrower. In our last example, we also set the learning rate higher for
further ahead forecasts; the intuition being that greater adaptability may be required when
we predict far ahead.

It should be noted that these examples are not meant as experimental results, but
merely serve to illustrate the proposed method in action. As noted in the introduction,
there are other algorithms for conformal multi-step ahead forecasting, some of which could
be adapted to the online setting to facilitate comparison, but this is left as future work for
now.

4.1. Same target coverage and learning rate for all

Our first example illustrates the potential issue with using the same confidence level at all
prediction steps. We set εi = 0.1 and γi = 0.005 for i = 1, . . . , 5. Figure 1(a) shows the
prediction intervals for hour 1 and hour 5. The average width of the intervals together
with the empirical miss-coverage rate for each hour are presented in Table 1. The control
inputs εt,i for i = 1, . . . , 5 together with the width of the prediction intervals for each hour
are shown in Figure 1(b). Overall, we see that the further ahead predictions are rather
conservative, and the prediction sets tend to be quite large.

2. https://raw.githubusercontent.com/scikit-learn-contrib/MAPIE/master/
examples/data/demand temperature.csv
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(a) Prediction sets for hour 1 and 5.

(b) Control inputs for ACI and the interval width at each hour.

Figure 1: Example 1. Same target coverage rate and learning rate for all predictions.
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4.2. Different target coverage but same learning rate

Our second example illustrates the effect of setting the target coverage rate to differ-
ent values while keeping the learning rates fixed. We keep γi = 0.005 but set " =
(0.1, 0.15, 0.2, 0.25, 0.3). Figures 2(a) and 2(b) together with Table 2 summarise the re-
sult. The target miss-coverage rate is approximately achieved. Because we decrease the
confidence level for further ahead predictions, the prediction sets are much narrower than
when we kept the confidence level fixed.

(a) Prediction sets for hour 1 and 5.

(b) Control inputs for ACI and the interval width at each hour.

Figure 2: Example 2. Different target error rates for different forecast hours, but same
learning rate. Note the difference in scale on the y-axis compared to Figure 1(b).
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