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Abstract

Conformal prediction (CP) is a framework for constructing confidence sets around predic-
tions from machine learning models with finite sample guarantees with few assumptions on
both the prediction model and the data. In practice, the construction of CP sets typically
relies on quantile estimates from an empirical distribution of non-conformity scores. When
the data set consists of predefined, non-overlapping classes such as geographical regions, a
common technique for improving the confidence sets is to calculate a different quantile for
each class. However, the classwise quantile estimate suffers from high variance when the
number of observations in each class is low. To circumvent this, one can share calibration
data between classes with similar empirical distributions of non-conformity scores to reduce
the variance of the quantile estimate. We study this approach for the application of house
price prediction in the Norwegian housing market, where 286 different municipalities serve
as the initial classes of the data. We find that clustering together municipalities based on
non-conformity score distributions, agnostic of the spatial distance between them, leads to
CP sets that achieve, on average, a lower coverage gap in each municipality, in particular
for the municipalities with few observations.

Keywords: Mondrian Conformal Prediction, Automated Valuation Models, Real Estate,
Prediction Intervals

1. Introduction

Non-parametric machine learning methods like random forests and gradient-boosted trees
are increasingly popular for prediction tasks with tabular data due to their flexibility and
accuracy. To increase the trustworthiness and usefulness of the predictions in practical
applications, it is often desirable to provide not only a point prediction but also a set of
possible values with a confidence level, referred to as a confidence set. Conformal prediction
(CP; Vovk et al. [2005]) is a distribution-free uncertainty quantification tool to construct
such confidence sets with finite sample guarantees with very few assumptions on the un-
derlying prediction model. The CP framework uses a non-conformity measure to quantify
how unusual (or non-conforming) a data point is compared to a set of previously made
observations. Quantiles of an empirical distribution of non-conformity scores are then used
to construct confidence sets for test observations. Under the assumption of exchangeability
between previously observed data and a new test instance, the CP sets are theoretically
valid, i.e., for any user-specified confidence level (1 − α) ∈ (0, 1) the probability of a new
observation being excluded from the CP set is upper bounded by α.
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The exchangeability assumption might be violated in many real-world scenarios due to,
for instance, distributional drifts over time, spatial trends in the data, or because the non-
conformity scores behave differently in different subsets of the feature space. In particular,
when the data set of interest consists of several classes or categories, for instance, different
age groups or geographical regions, it might be reasonable to assume exchangeability within
a given class but not necessarily globally. To account for this, class-conditional approaches
have been suggested (Vovk et al. [2005]; Vovk [2012]). In these approaches, the prediction
sets are calibrated per class rather than globally, leading to more adaptive confidence sets
with theoretical guarantees also within each class.

A challenge with the direct applications of classwise approaches occurs when the number
of observations in some or all of the classes is low, making it necessary to share data
between similar classes to reduce the variance of the estimated quantile used to calibrate
the confidence sets. At the same time, sharing data between classes with different empirical
distributions of non-conformity scores induces a bias in the estimator, making it desirable to
cluster classes with a similar distribution of non-conformity scores. This approach, referred
to as Clustered CP in Ding et al. (2023), allows us to share data between classes with
the distributional similarity between the empirical non-conformity scores being used as the
similarity measure guiding the clustering.

In this work, we study the Clustered CP approach in the realm of the housing market,
where the classes are municipalities in Norway. The overarching goal is to use CP to
construct a confidence set for a sale price, given a set of features describing the dwelling. It
is known that both the nominal level of house prices and also the number of transactions vary
significantly between different geographical regions. These factors make the construction
of CP sets challenging, as regular CP tends to struggle to capture the complex spatial
patterns in the prices, whereas classwise approaches, on the other hand, fail in regions with
few observations.

The sparsity of data in certain parts of the considered region also makes locally weighted
quantile estimates (Guan [2022]; Tibshirani et al. [2019]; Mao et al. [2023]) less robust, even
though it is shown to work well on housing data exclusively from urban areas in Hjort et al.
(2023). Furthermore, in the study of an entire national housing market, it is not obvious
that a locally weighted CP version is the optimal choice, as it discards data from regions
that are geographically far away, albeit still similar in many ways due to economic, cultural,
or demographic reasons. For instance, the housing market dynamics might be similar in two
university towns, even if they are spatially far apart. Patterns like this will be overlooked by
a locally weighted CP but might be captured by a more data-driven approach based on the
distribution of non-conformity scores in each class. The rest of the paper is structured as
follows. We introduce the CP framework in Section 2. In Section 3, we conduct a simulation
study, and in Section 4, we study a data set collected from the Norwegian housing market.
In Section 5 we provide some concluding remarks.

1.1. Related methods and contributions

The seminal work on CP is the book by Vovk et al. (2005), which was complemented in
Shafer et al. (2008). Split CP was introduced in Papadopoulos et al. (2002) to reduce the
computational complexity of the method. Several methodological advances have been made
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to adjust the CP framework for breaches of the exchangeability assumptions, including
Mondrian CP (Vovk et al. [2005]), classwise CP (Vovk [2012]), approaches that account
for known covariate shift (Tibshirani et al. [2019]), unspecified distribution drift (Foygel
Barber et al. [2023]), spatial trends (Mao et al. [2023]), and for a time series setting (Xu
et al. [2023]). Clustered CP was proposed in Ding et al. (2023) for classification tasks with
many classes and limited data per class and serves as the starting point for our research.

An application of CP to the housing market is presented in Bellotti (2017), which
demonstrates that the CP sets are calibrated when applied to a data set from the London
housing market. Furthermore, Lim et al. (2021) build upon this work and develop several
non-conformity scores tailored to account for the strong correlation between the sale price
and absolute residuals that is often observed in housing data. It is also demonstrated that
combining multiple prediction models yields narrower CP sets, as the absolute residuals are,
on average, lower. A case study from the San Francisco (US) area is conducted in Bastos
et al. (2024), where conformal methods based on quantile regression is found to perform
best. In Hjort et al. (2023), the focus is on applying various versions of weighted CP to
a data set from Oslo, Norway. The primary motivation for this is to account for spatial
trends in the non-conformity scores to ensure a low coverage gap in various geographical
subsets.

Our main contribution is to adopt the Clustered CP approach to a new setting, namely
a regression setting where the initial classes are geographical regions rather than an image
recognition task, as studied in Ding et al. (2023). We demonstrate on a data set from
the Norwegian housing market that Clustered CP, in many scenarios, constructs confidence
sets that yield a lower Mean Absolute Coverage Gap per municipality, effectively making
the confidence sets more trustworthy. Although the clustering in this research is merely a
means to achieve better-calibrated confidence sets, the clustering itself can be of independent
interest to the housing market literature, in particular, related to the literature on housing
markets segmentation and identification of homogeneous submarkets (Å. Sommervoll et al.
[2019]; D. E. Sommervoll [2023]; Goodman et al. [1998]).

2. Conformal prediction

We consider a supervised regression setting with features X ∈ X and response Y ∈ Y,
where X ⊂ Rd and Y ⊂ R. Furthermore, we assume that we have access to a (pre-trained)
prediction model f̂ : X → Y that can be used to make predictions about Y given X.

Conformal prediction (CP; Vovk et al. [2005]) is a distribution-free method to construct
a confidence set around the point prediction f̂(X) with limited assumptions on the choice of
the prediction model. We will present Split CP, a computationally efficient version proposed
in Papadopoulos et al. (2002). We refer to Shafer et al. (2008) for a tutorial on Full CP,
which is the initial formulation of the CP idea. CP uses a non-conformity function that
quantifies any data point’s strangeness or non-conformity compared with a bag of already
observed examples. The non-conformity score can be used to calibrate the expectations for
a new unobserved example and, in turn, construct a prediction set.

While many choices of non-conformity functions can be made depending on the par-
ticular problem, an intuitive and widely used choice of non-conformity score for regression
is simply the absolute residual, i.e., Ψ(X,Y ) = |f̂(X) − Y | or the normalized residual,
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Ψ(X,Y ) = |f̂(X)−Y |/σ̂(X) for some suitable normalization function σ̂(X). Another pop-
ular choice, presented in Romano et al. (2019), is to construct the non-conformity score
based on quantile estimates from a quantile regression model. In particular, they suggest

Ψ(X,Y ) = max{q̂α/2(X)− Y, Y − q̂1−α/2(X)},

where q̂α/2(X) and q̂1−α/2(X) are estimates of the (α/2):th and (1 − α/2):th quantiles of
Y |X.

We assume that we have access to a calibration set consisting of (Xi, Yi), i = 1, ..., N that
have not been used to train the prediction model, and have calculated the corresponding
non-conformity scores ŝ1, ..., ŝN , where ŝi = Ψ(Xi, Yi). Our goal is to use this to construct
a confidence set for predictions on a test set Dtest. For concreteness, consider a test data
point (XN+1, YN+1) ∈ Dtest. If the test data is exchangeable with the calibration set,
the rank of the corresponding non-conformity score ŝN+1 is uniformly distributed among
{1, 2, ..., N,N + 1}. We can use this to construct a CP set in the following way. Let q̂1−α

be the empirical (1− α)th percentile of ŝ1, ..., ŝN , then

C1−α(XN+1) = {y ∈ Y : Ψ(XN+1, y) ≤ q̂1−α},

for any confidence level 1−α ∈ (0, 1). If we construct the CP set in this fashion, they come
with marginal coverage guarantees,

P
(
YN+1 ∈ C1−α(XN+1)

)
≥ 1− α, (1)

for any α ∈ (0, 1) (Papadopoulos et al. [2002]; Vovk [2012]) as long as we assume exchange-
ability between the test data and calibration data.

The CP sets are evaluated by their empirical coverage on a test set. While the expected
coverage is (1 − α), as per (1), it is known (Vovk [2012]; Angelopoulos et al. [2023]) that
the empirical coverage on a test set of size Ntest given a calibration set of size N follows a
beta-binomial distribution,

Cov(Dtest) ∼
1

Ntest
Binom(Ntest, µ)

µ ∼ Beta(N + 1− l, l)

(2)

where l = ⌊(N + 1)α)⌋. This is important since it highlights the direct link between the
calibration set size and the expected variation in coverage: when Ntest and N is low, the
variance in the observed coverage increases.

2.1. Mondrian conformal prediction

It is often desirable to make stronger statements than the marginal coverage guarantee.
Mondrian CP (MCP) is proposed in Vovk et al. (2005) for scenarios where the data consists
of several known categories. It is assumed that each data point belongs to a specific class,
which is known and specified through a Mondrian taxonomy. In practice, the Mondrian
taxonomy can be a function of the feature space X , the label space Y, or both. The
motivation behind MCP is to achieve correct coverage on average but also conditioned on
class membership.
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Let gi denote the class membership of observation i, and let gi ∈ {1, ...,K} for every
i. In other words, there are K different non-overlapping classes. Let Nk be the number of
calibration observations in class k. Furthermore, assume that the non-conformity scores in
class k are sampled from a distribution Fk. We denote F̂k to be the Empirical Cumulative
Distribution Function (ECDF) of the scores in class k, defined to be

F̂k(t) =
1

Nk

∑
ŝi∈k

I(ŝi ≤ t).

The principal idea behind MCP is to estimate the empirical quantile separately in each
class. Thus, for any new XN+1 with known class membership gN+1, we construct the CP
set as

Ck
1−α(XN+1) = {y ∈ Y : Ψ(XN+1, y) ≤ q̂k1−α},

where q̂k1−α is the (1−α)th percentile of F̂k. It is known (Vovk et al. [2005]) that the MCP
sets are valid within each class, that is,

P
(
YN+1 ∈ Ck

1−α(XN+1)|gN+1 = k
)
≥ 1− α

for every k, although it is noted in Ding et al. (2023) that this requires Nk > 1/α− 1.

2.2. Clustered conformal prediction

A challenge with the MCP approach arises when Nk is low for some or all of the classes.
A direct application of MCP might then lead to significant variance in the observed cover-
age, as evident from the distribution of coverage described in (2). In order to reduce the
variance, we can enrich the calibration set, for example, by sharing data between classes.
For this purpose, Clustered CP is introduced in Ding et al. (2023) in the context of image
classification, where the classes were defined by the image labels. Clustered CP aims to
map the K classes to a set of M << K clusters. Let

h : {1, ...,K} → {1, ...,M}

be a mapping function that performs this clustering, such that h(k) = m means that class k
belongs to cluster m. Importantly, many classes will be mapped to the same cluster. For a
test point belonging to class k, Clustered CP constructs confidence sets in the same manner
as MCP, but using the empirical distribution of cluster h(k), i.e., of the cluster that class k
belongs to.

The cluster function is related to the expected coverage gap in the following way. Let
Im be the set of classes that are mapped to cluster m, that is, h(k) = m for every class
k ∈ Im. Define εm to be the largest Kolmogorov-Smirnov-distance (Kolmogorov [1933])
between the ECDFs of any two classes that are mapped to cluster m:

εm = max
i,j∈Im

DKS(F̂i, F̂j),
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where

DKS(F̂i, F̂j) = sup
t
|F̂i(t)− F̂j(t)|.

The expected coverage gap in any class in cluster m is then

P
(
YN+1 ∈ C(XN+1)|gN+1 = k

)
≥ 1− α− εm, ∀k ∈ Im. (3)

We refer to Ding et al. (2023) for a proof of this (Appendix A, Proof of Proposition 3).
The coverage guarantee in (3) should be interpreted as follows. If the mapping function h
clusters together two classes where the corresponding distribution of non-conformity scores
are similar (measured by the Kolmogorov-Smirnov distance between the ECDFs in each
class), then the coverage gap is close to (1−α). The bias in the expected coverage of cluster
m is thus of magnitude at most εm.

Some practical matters must be considered when applying the Clustered CP approach.
The first, and perhaps most important, is the choice of clustering function h. To reduce
the bias εm, classes with similar ECDFs should be clustered together. The approach pro-
posed in Ding et al. (2023) is to run a k-means clustering with Euclidean distance between
discretized representations of the ECDFs, for instance, the 50th, 60th, ..., 90th percentile.
Outside of Clustered CP, other distance measures have also been proposed for the task of
clustering ECDFs. Examples include EP-Means (Empirical Probability-Means; Henderson
et al. [2015]), which is based on Earth Movers distance, and an approach presented in Zhu
et al. (2021) based on Kolmogorov-Smirnov. Furthermore, the calibration set should be
split into two parts: one part to train the clustering function h and another part to esti-
mate the quantile of interest, with neither of these two data sets being used during model
training. Another technical detail proposed in Ding et al. (2023) is to use a special rule for
handling classes with very few observations. These classes are automatically assigned to a
NULL cluster, in which the globally calculated q̂1−α is utilized to construct the CP sets.

2.3. Evaluation Metrics

The coverage gap over Ntest test observations quantifies the deviance between the empirical
coverage and the expected coverage, i.e.,

CovGap(Dtest) = (1− α)− Ĉov(Dtest),

where Ĉov(Dtest) is the empirical coverage. We also study the Mean Absolute Coverage
Gap (MACG) over the classes 1, ...,K,

MACG(Dtest) =
1

K

K∑
k=1

|CovGap(Dk
test)|,

where Dk
test is the subset of Dtest that belongs to class k. This is a more informative

performance measure for the considered context, as a low value indicates low coverage gaps
not only marginally but also conditionally across the given classes.
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2.4. Determining the optimal number of clusters

Determining the optimal number of clusters for a given data set has been the subject of
much research in the statistical literature ??. One widely used tool is the Caliński-Harabasz
(CH) index ?, which scores a clustering based on an adjusted ratio of the between-cluster
sum-of-squares (BCSS) and within-cluster sum-of-squares (WCSS).

In this context, we consider the ECDF of a single class to be one data point represented
by qk, the vector consisting of the 10th, 20th, ..., 90th quantile of the ECDF F̂k. To calculate
the sum-of-squares between two classes j and k, we thus use the quantity ∥qj − qk∥2. For
a proposed clustering of the K initial classes into M clusters, the CH index thus becomes

CH(M) =
BCSS/(M − 1)

WCSS/(K −M)
,

with

BCSS =
M∑

m=1

Nm∥q(m) − q∥2 and WCSS =
M∑

m=1

∑
k∈Im

∥qk − q(m)∥2,

where q(m) is the mean of the individual classes in cluster m, Nm is the number of classes
in cluster m, and q is the mean of the entire data set. The BCSS calculates the average
distance from each cluster center to the global centroid, whereas the WCSS calculates the
distance from each individual class ECDF to the cluster centroids. The optimal number of
clusters, Mopt, is the number that yields the highest CH index.

A heuristic that is more specific to the Clustered CP method is proposed in Ding et al.
(2023). They suggest deriving both the clustering fraction γ and the number of clusters M
from ñ, which denotes the maximum of 1/α−1 and the number of calibration points in the

smallest class. They then set M = ⌊ñ · γ/2⌋. Furthermore, they suggest to set γ = K̃
K̃+75

,

where K̃ is the number of classes with Nk > ñ. Their motivation is to ensure that there
are at least 150 observations per cluster.

3. Simulation study

We now study a toy example where F̂1, ..., F̂K are drawn from known distributions with
different mean values. This ensures that the non-conformity scores are exchangeable within
each class but with clear differences between classes. We study the following data-generating
mechanism,

G ∼ U(1, ...,K)

µk ∼ U(1, 2, ...,
√
K)

S|G = k ∼ N (µk, σ
2).

The simulation setup first draws one of K classes with equal probability and then draws the
non-conformity scores from N (µk, σ

2). The mean µk takes one of
√
K values, ensuring that

multiple classes will indeed be drawn from the same distribution despite being assigned a
different class. We are interested in studying if Clustered CP is able to recognize which
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classes are drawn from the same distribution. We set K = 100, yielding 10 different possible
values for µk. The σ parameter effectively determines the between-class differences. We
perform simulations with Nk varying in (10, 25, 50) for every k, and also vary σ in (0.1, 1, 3)
to study the sensitivity to changes in between-class differences. We set aside a fraction
γ ∈ (0, 1) of the calibration data for the clustering task, while the rest is used for calibration.
In this simulation, we omit a NULL cluster since we keep Nk the same for each class.

We run Clustered CP with M = 1, ..., 100 clusters. We use a k-means clustering to
conduct the clustering, where the distance metric is the Euclidean distance between the
10th, 20th, ..., 90th percentile of the ECDFs.1 The quantiles are calculated based on the
native quantile function in R, which applies interpolation if necessary. We also tested
using the EP-Means algorithm (Henderson et al. [2015]) for the clustering and found that
the results were highly similar to the results when using the k-means.

All the results reported are the mean of 50 simulations with the synthetic data redrawn
each time. A benchmark for our experiments is MCP and a regular CP approach with
γ = 0, i.e., we use the entire calibration set for calibration since no clustering is required.
Furthermore, we also compare with an Oracle method that knows which classes are drawn
with the same µk and uses this as a clustering function.

Figure 1 displays the results for γ = 0.5 for different combinations of Nk and σ. Each
figure displays MACG per class as a function of the number of clusters. All the figures
display a similar pattern, with MACG decreasing quickly when we increase the number of
clusters up to a certain point before increasing, or in some cases, being relatively flat if the
number of clusters is increased further. When Nk is high, the performance of MCP is better
than when Nk is low, which is intuitive: calibrating completely classwise without sharing
data between classes is sufficient when Nk in each class is high. When σ increases, the
CP benchmark improves relative to the other benchmarks, as the distributions N (µk, σ

2)
with different µk effectively become more similar. In Appendix 1 we repeat the analysis
for γ = 0.25 and γ = 0.75. The results display a similar “hockey stick” trend as those
presented here, with MACG quickly decreasing when the number of groups is increased to
around M ≈ 20 before slowly increasing with higher M . The increase with higher M is most
notable when γ = 0.75, that is, when we set aside fewer data points for calibration. The
results indicate some sensitivity to the choice of γ, as setting a too high γ is unfavorable,
particularly when the number of calibration points per class is already low.

Figure 2 displays the ECDFs from the original classes (in grey) overlayed with the
identified clusters with M = 10 for one simulation. The plot indicates whether or not the
clustering function can correctly identify the clusters among the classwise ECDFs. For
σ = 0.1, the ECDFs for the original classes are very distinct, making it relatively easy for
the Clustered CP to identify the different clusters. It should, however, be pointed out that
the Clustered CP is not perfect, as some clusters display saddle points in their ECDFs,
indicating that classes have been clustered together despite being drawn from different
underlying distributions. As σ increases, the ECDFs of the initial classes become less
distinct.

1. The k here is not the same as previously used to denote class membership. To be consistent with our
notation of forming M clusters, we should refer to the method as M -means clustering but use the term
k-means clustering since this is the established term in the literature.
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Figure 1: Mean Absolute Coverage Gap per class when half of the data is used for clustering
and half for calibration. We vary σ ∈ (0.1, 1, 3) and Nk ∈ (10, 25, 50). The plots show the
average of 50 simulations.
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Figure 2: The ECDF identified by Clustered CP for σ ∈ (0.1, 1, 3) and Nk ∈ (10, 25, 50).
Each color represents one of the M = 10 clusters identified. Each grey line represents one
of the initial K = 100 classes.

The simulation study demonstrates the idea behind Clustered CP, namely that sharing
calibration data between similar classes decreases the MACG. As we decrease σ, the MACG
approaches the performance of the Oracle, as expected when the between-class differences
are higher in the data-generating mechanisms. However, even with σ = 3, when the ECDFs
are more challenging to distinguish visually, the Clustered CP performs better than the CP
and MCP benchmarks.

The MACG curves presented in Figure 1 reach a minimum between 10 and 20 clus-
ters. As a comparison, we calculate the CH index for every value of M (see Figure 10 in
Appendix 2). A general trend is that Mopt decreases when σ increases, as a more noisy
data-generating process leads to less distinct clusters. For σ = 0.1, the CH curve increases
steadily until M ≈ 15 and remains stable if M increases beyond this. We observe the same
trend for σ = 1, albeit with a clearer decrease in the CH index if M is increased past the
peak around 15 clusters. Finally, for σ = 3, we see a peak around three or four clusters,
with a steeper decline in the CH index after this. In conclusion, higher σ leads to a lower
estimated Mopt based on the CH index, and a higher Nk leads to a more defined peak in
the CH index.
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In comparison, the heuristics developed in Ding et al. (2023) with γ = 0.5 yields Mopt =
2, Mopt = 6, and Mopt = 12 when Nk = 10, Nk = 25, and Nk = 50, respectively. This is a
somewhat lower value than the CH index and the MACG curves.

4. Norwegian housing data

We now turn to a real-world data set consisting of transactions from the Norwegian housing
market. Predicting the value of a dwelling, given the location and additional characteristics,
is of interest to banks, homeowners, and other financial institutions. The models used
for this purpose are referred to as automated valuation models (AVMs). Several studies
demonstrate the accuracy of non-parametric machine learning models as AVMs, including
in the US (Park et al. [2015]), South-Korea (Ho et al. [2020]), and Australia (Gao et al.
[2022]). For a thorough review of the use of AVMs, we refer to d’Amato et al. (2017) or
Steurer et al. (2021).

We study a data set of N = 84 975 transactions conducted in the open housing market
in 2015. The response variable is a sale price measured in million NOK that a seller and
buyer have agreed upon after an open auction. Each sale contains features that are known
to correlate with the sale price, such as the size of each dwelling in square meters, the
number of bedrooms, and, importantly, the location of the dwelling. The location is encoded
both through coordinates and via a municipality dummy variable. The data contains sales
from K = 286 in different municipalities, which will serve as our initial classes. Summary
statistics are presented in Table 1.

Variable Unit Mean St. Dev. Min Max Type

Sale Price NOK (mill.) 3.07 1.72 0.02 28.7 Numerical
Size m2 100 54 0 819 Numerical
Gross Size m2 112.42 67.48 0 1131 Numerical
Longitude degrees 9.82 2.90 4.79 30.47 Numerical
Latitude degrees 60.71 2.37 57.99 70.72 Numerical
Altitude m 101.69 136.49 0 1151 Numerical
Bedrooms - 2.56 1.20 0 15 Numerical
Municipality - - - - - Categorical

Table 1: The variables in the data set with summary statistics for the numerical variables.

The number of observations per municipality varies from Nk = 10 to Nk = 18 028 in
Oslo, the largest city in Norway. Among the K = 286 municipalities there are 167 that
have Nk < 100 and 16 municipalities with Nk > 1 000. A histogram of Nk is displayed in
Figure 3

4.1. Experimental setup

We split the data set into three parts: 25% of the data is used to train the prediction model,
25% as a test set, and 50% of the data is used for calibration, including the clustering
task. We vary γ, the proportion of the calibration data used for clustering, in the range
(0.25, 0.5, 0.75).
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Figure 3: A histogram of Nk on log scale for the K = 286 municipalities considered in this
study. The three largest municipalities are Oslo (NOslo = 18 028), Bergen (NBergen = 5890),
and Trondheim (NTrondheim = 4735).

We employ three non-conformity scores: Conformalized Quantile Regression (Romano
et al. [2019]), the absolute residuals |Yi − f̂(Xi)|, and the normalized absolute residuals,
|Yi − f̂(Xi)|/f̂(Xi), as suggested in Lim et al. (2021) when studying house prices. We refer
to the three scores as CQR, CP, and Normalized CP, respectively. We use a random
forest model (Breiman [2001]) as our point predictor f̂ for the latter two scores and a
Quantile Regression Forest (Meinshausen [2006]) when constructing the CQR scores. We
assign all classes with Nk < 10 to a NULL cluster, which uses the globally calculated q̂1−α

in the construction of the confidence sets.

We calculate all the CP sets at confidence level α = 0.1 and report the mean MACG
over 50 simulations, each time with a new split into training, calibration, and test set.
MCP and CP with γ = 0 serve as benchmarks, but we also compare compare with a spatial
clustering, where we employ a k-means clustering based on the geographical centroid of the
municipalities.

4.2. Results on Norway housing data

Figure 4 displays the MACG for Clustered CP with M = 1, ..., 50 clusters based on the
ECDFs of the municipalities. The results are fairly similar for the CP and Normalized
CP score functions, with Clustered CP achieving significantly better than spatial clustering.
Interestingly, Clustered CP also performs better than the benchmarks, indicating that there
is indeed room for improvement over both CP and MCP for the right number of clusters
M .

The results are not as clear for the CQR, although we see a slight improvement for
Clustered CP over the spatial clustering. The nominal level of MACG is also much lower
for the CP benchmark with CQR. This indicates that CQR does better at constructing
exchangeable non-conformity scores than the other choices of non-conformity measure. Still,
the Clustered CP improves over CQR with M ≈ 15.

In the simulation study, we had an idealized setting with the same Nk for every class,
whereas there is a significant imbalance in the housing data set. It is reasonable to assume
that the most significant improvement in the coverage gap with Clustered CP comes from
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Figure 4: Results of Clustered CP for M = 1, ..., 50, compared against a Spatial k-means
clustering. We run the analysis for different non-conformity scores (vertical) and γ values
(horizontal). The dotted line is MCP, and the straight line is CP, with γ = 0, i.e., all of the
calibration data used to estimate the empirical quantile. Note that the range of MACG is
different for the different non-conformity scores.
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classes where Nk is low. In Figure 5, we study the coverage gap as a function of Nk, where
Clustered CP with M = 10 is compared with MCP and CP.

Regardless of the calibration method, the variance of the observed coverage gap is higher
when Nk is low, as expected. As Nk increases, most box plots are centered closer to a cover-
age gap of zero. As expected, the most significant improvement of Clustered CP compared
with CP and MCP comes from the bins with the fewest observations. Interestingly, the
largest bins, containing the bigger cities, exert slightly wider variance with Clustered CP
than for MCP, albeit the Clustered CP improves upon the CP approach, where the coverage
gap in the larger cities (where prices are higher) is lower when q̂90 is calculated based on
non-conformity scores from outside the urban areas (where prices are lower).
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Figure 5: Coverage gap for different bins of Nk for MCP, CP, and Clustered CP with
M = 10. The results are for confidence level α = 0.1 with a fraction γ = 0.5 set aside for
clustering in Clustered CP.

Finally, we briefly consider the question of identifying the optimal number of clusters
in the Norwegian housing data. The MACG curves imply an Mopt between 10 and 20 for
most combinations of non-conformity scores and simulation parameters. For comparison,
we display the CH index in Figure 11 in Appendix 2. The CH index indicates an Mopt

value between four and six for most combinations of γ and non-conformity score, with a
slightly higher value when γ = 0.25. This estimate of Mopt is somewhat lower than what
we get using the MACG as a criterion. Using the Clustered CP heuristic from Ding et al.
(2023), we obtain an Mopt between two and three, depending on the choice of γ. Both the
CH index and the heuristic yield a slightly lower number compared with the MACG curves
in Figure 4.

4.3. A closer look at the identified clusters

The identified clusters can be of independent interest to real estate practitioners. For
concreteness, we study some properties of the clusters constructed by the Clustered CP
method when M = 6 for one particular simulation. A map of the identified clusters is
seen in Figure 6 with corresponding cluster-wise ECDFs in Figure 7. The grey areas in
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the map belong to the NULL cluster, i.e., municipalities with Nk < 10. This also includes
municipalities without any observations in the data set. The coloring of the clusters in the
map does not carry any significance other than the fact that municipalities with the same
color are assigned to the same cluster.

Extracting information from the maps alone is not trivial, indicating that the identi-
fied clusters do not follow any clear patterns in space. This observation is noteworthy, as
empirical evidence exists that real estate prices exhibit spatial autocorrelation (Basu et al.
[1998]; Ismail [2006]). If this were also true about the non-conformity scores, we would ex-
pect neighboring municipalities to be clustered more frequently, given a sufficiently effective
clustering function. However, spatial autocorrelation might be present on a smaller scale
but not necessarily between adjacent municipalities.

For the Normalized CP non-conformity score, every municipality with Nk > 1 000
is clustered together in one cluster, revealing that the normalized absolute residuals in the
larger cities display a similar ECDF regardless of spatial distance. Upon closer inspection of
each group’s summary statistics, some interesting patterns are revealed. Studying the size
(in square meters) of the dwellings in each cluster also indicates the clustering. For all the
non-conformity scores, five out of the six clusters have a mean dwelling size that is between
approximately 100 and 120 square meters, while there is one cluster with significantly lower
mean size (87 square meter for CP, 86 square meter for CQR, and 92 square meter for
Normalized CP).

CP CQR Normalized CP

Figure 6: An example of the identified clusters with the Clustered CP methodology for
M = 6 clusters. The grey municipalities either have no observations or are part of the
NULL cluster.
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Figure 7: The ECDF of the identified clusters with Clustered CP for M = 6, overlaying the
individual ECDFs for each municipality.

5. Discussion and conclusion

Achieving class-conditional coverage guarantees in CP is often desirable, but it is challenging
when many classes have few observations. We are thus inclined to share calibration data
between classes to reduce the empirical coverage variance. In this research, we investigate
the use of Clustered CP to identify clusters of municipalities in the Norwegian housing
market and use these clusters to calibrate the CP sets. We show that Clustered CP is a
viable option in the considered context when a classwise calibration approach fails due to
insufficient calibration data, yet a global calibration approach is too simplistic to account
for between-class differences.

The Clustered CP approach does not encode any spatial information when clustering the
municipalities but still improves over both CP and MCP, as well as a clustering approach
based on spatial location. The clusters identified based on the ECDFs can potentially
be used to gain new insights about submarkets in the Norwegian housing market. It is
worth reiterating the role of exchangeability, or lack thereof, in these results. In an ideal
scenario where the non-conformity scores are globally exchangeable regardless of the class
membership, neither MCP nor Clustered CP is necessary, as a global estimate of the quantile
q̂1−α is a reasonable estimate of the quantile of interest also in subsets of the data. We
observe that the CQR method yields the smallest improvement in MACG for Clustered
CP compared with spatial approaches but also a lower nominal level of MACG compared
with the CP and Normalized CP non-conformity scores. This indicates that the CQR
creates non-conformity scores that are closer to exchangeable in space.

While there is extensive literature on identifying the optimal number of clusters in
other statistical frameworks, this remains an open question in the considered context of
distribution-free methods like CP. Our research indicates a slight discrepancy between the
optimal number of clusters found when comparing the popular and conventionally used CH
index against the target coverage metric estimated on the test set. An interesting direction
for future research is to develop novel clustering algorithms that iteratively partition the
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data set until the data in each cluster is internally exchangeable rather than relying on a
user-specified number of clusters.
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1. Additional simulation results

Here, we present additional results for the simulation studies in Section 3. The results are
similar to those presented in Figure 1 but with different choices of γ, the fraction used for
clustering. We display γ = 0.25 in Figure 8 and γ = 0.75 in Figure 9.
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Figure 8: Mean Absolute Coverage Gap for γ = 0.25.

2. Caliński-Harabasz index

Figure 10 displays the Caliński-Harabasz (CH) index for the simulated data with different
number of calibration points (vertically) and σ in the data-generating process (horizontally).
Each plot displays one grey line for each of the 50 simulations with different split into
calibration and clustering. The red lines mark the mean of the simulations, with the highest
CH index marked with a dotted line. The CH values are normalized so that the highest in
each plot is 1.

A similar plot is displayed in Figure 11 for the Norwegian housing data, with different
non-conformity scores (vertically) and cluster proportions γ (horizontally).
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Figure 9: Mean Absolute Coverage Gap for γ = 0.75.
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Figure 10: Caliński-Harabasz index for the simulated data.

20



Clustered Conformal Prediction for the Housing Market

g = 0.25 g = 0.5 g = 0.75

C
P

C
Q

R
N

orm
alized C

P

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Clusters

C
al

iń
sk

i-H
ar

ab
as

z 
In

de
x

Figure 11: Caliński-Harabasz index for the Norwegian housing data.
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