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Abstract

A regressor with reject option may refrain from making predictions expected to be inac-
curate. In this paper, we introduce and evaluate conformal regression with reject option.
Consistent with standard conformal regression, non-rejected predictions are valid predic-
tion intervals. The suggested approach utilizes Mondrian conformal regression, where the
categories are dynamically created from difficulty estimations of individual instances and
requested rejection levels. As shown in the experiments, using 16 publicly available data
sets and random forests as underlying models, the conformal regressors produced progres-
sively tighter intervals for higher rejection levels, thus demonstrating the trade-off between
coverage and informativeness targeted when adding a reject option. A key property of the
novel method is the fact that the informativeness, i.e., the interval sizes, resulting from
any combination of significance and rejection levels is known to the user before making any
test predictions. While all four different difficulty estimators evaluated led to consistently
tighter intervals for higher rejection levels, the one producing the most efficient conformal
regressors utilized the disagreement between the trees in the Random forest.

Keywords: Conformal prediction, Regression, Regression with reject option

1. Introduction.

Many AI systems for decision support in high-stakes domains, such as medicine or finance,
include a human-in-the-loop, where a predictive model is used for easy instances, whilst more
difficult instances are referred to a human expert. To achieve a trustworthy and efficient AI
solution in these situations, it is essential to accurately determine which instances to predict
using the model, and which to refer to the human. In addition, it is desirable to know the
human workload in advance. The prediction with reject option framework, developed by
(Chow, 1957, 1970), introduces the option for a model to refrain from making predictions
for instances where uncertainty is high. The underlying assumption is that the error on
predictions made should decrease as the proportion of rejected instances increases, so that
predictive quality can be increased by decreasing coverage, i.e. the proportion of instances
for which predictions are delivered. The prediction with reject option framework thus offers
a methodological framework for formalizing the trade-off between predictive performance
and coverage, allowing the design of human-in-the-loop systems with shared workload.

In this paper we introduce and present conformal regression with reject option. Since
the models are conformal regression models, the non-rejected predictions come in the form
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of intervals with validity guarantees. With the suggested approach, it becomes possible for
a user to, directly after the calibration step, assess and compare the resulting test prediction
interval sizes from any combination of rejection and significance levels, thus controlling the
trade-off between human workload, model informativeness and error rate.

2. Background.

2.1. Regression with reject option

In predictive regression, the task is to estimate a function f(X)→ R, mapping each input
vector xi to a real-valued target value yi. Many different machine learning techniques, such
as decision trees, random forests, support vector machines, and neural networks, handle
regression tasks by building a model, hereafter called a regressor, to represent the function
f , capable of producing a predicted value ŷ when provided with an input vector xi.

Regressors with a reject option may refrain from making predictions that are likely to
be inaccurate, thus increasing the trustworthiness of the model. The choice of whether
to accept or reject a prediction is made on the basis of the estimated uncertainty of the
prediction, defined by an uncertainty function g(xi) and a threshold τ (Shah et al., 2022).
Formally, a regressor with reject option includes an additional output:

m(xi) =

{
® if g(xi) ≥ τ

h(xi) if g(xi) < τ .
(1)

where m(xi) is the output from the regressor with reject option and h(xi) is the prediction
from the underlying model. The threshold τ is used to control the trade-off between error,
e.g. measured as MAE, and prediction coverage.

2.2. Conformal regression

Conformal prediction (Vovk et al., 2005) produces prediction regions and all conformal
predictors are valid, i.e., given a significance level ϵ ∈ [0, 1], the error rate of a confor-
mal predictor will, in the long run, be exactly ϵ. Conformal regressors output prediction
intervals, and an error is committed when the target value is outside the interval.

Conformal prediction was introduced in a transductive setting, but this and most other
recent studies use inductive or split conformal prediction. Inductive conformal prediction
(ICP) can be applied on top of any predictive model (called the underlying model), to create
a conformal predictor. ICP requires a labeled data set (the calibration set) that was not
used for training the underlying model. Formally, the validity guarantees of ICP rely on
only one assumption; that the calibration and test sets are exchangeable, which is slightly
weaker than i.i.d.

While all conformal regressors are guaranteed to be valid, the informativeness varies.
Specifically, we want the prediction intervals to be as tight as possible, a property which in
conformal prediction is referred to as efficiency. But, in most applications, we also want the
predictions to be specific (or sharp), i.e., for conformal regressors, the interval sizes should
differ between instances. Using basic ICP, however, all prediction intervals produced by a
conformal regressor will have the same size.
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The standard way of making conformal regressors sharp is to apply a procedure called
normalization. Here, the key idea is to estimate the difficulty of every instance, and adjust
the interval sizes accordingly. As confirmed in many previous studies, e.g., (Papadopoulos
et al., 2002; Papadopoulos and Haralambous, 2010, 2011; Johansson et al., 2014; Boström
et al., 2017) normalization will lead to tighter prediction intervals on average, i.e., normal-
ized conformal regressors are generally more efficient. In addition, since instances deemed
to be easier will have smaller intervals than harder instances, the model also provides addi-
tional information on a per-instance basis, thus making it more informative.

It should be noted that individual intervals from normalized conformal regression can
become very large. This is in sharp contrast to the basic version, where the intervals cannot
be larger than twice the biggest absolute error in the calibration set, see (Boström and
Johansson, 2020).

An alternative to using normalization is to instead employ Mondrian conformal regres-
sion. In the Mondrian setup, instances are partitioned into categories, and then ICP is
applied to each category separately. This means that every category requires its own cali-
bration set, but also that the validity guarantees apply to each category independently. In
principle, normalization could be applied to each category in a Mondrian setup, but this
is normally not the case. However, even without normalization, the Mondrian approach
makes the conformal regressor more sharp since the interval sizes are identical only within
each category, but differ between categories.

A key part of conformal prediction is the so-called nonconformity functions which are
real-valued functions measuring the strangeness of instances in the form of attribute-target
pairs (zi = xi, yi). While all nonconformity functions will produce valid conformal pre-
dictors, efficiency is highly affected by both the underlying model and the nonconformity
function. For basic conformal regressors, the nonconformity of an instance (xi, yi) is the
absolute error

A (xi, yi, h) = |yi − h (xi)| , (2)

where h is the underlying predictive model providing real-valued point predictions. For-
mally, an inductive conformal regressor is generated as follows:

1. Divide the training data Ztr into a proper training set Zt and a calibration set Zc.

2. Train the underlying model h on Zt.

3. Apply the nonconformity function, e.g., Eq. 2, to the calibration instances in Zc,
obtaining a list of calibration scores S = α1, ..., αq where q = |Zc| and S is sorted in
descending order.

A prediction interval containing the true target value for a test instance xl+1, with the
probability 1 − ϵ and using the absolute error in Eq. 2 as the nonconformity function, is
constructed as follows:

1. Obtain a point prediction h(xl+1).

2. Find the calibration score αp where p = ⌊ϵ(q + 1)⌋.

3. Let s = ⌊ϵ(q + 1)⌋. This is the index of the (1− ϵ)-percentile nonconformity score, αs.

3



Johansson Sönströd Boström

4. Let the prediction interval for xl+1 be ŷϵl+1 = h (xl+1)± αp

Using this procedure, prediction interval sizes will be identical, i.e., 2αp, for all test
instances. In practice, every instance is assumed to be equally hard to predict. When
adding normalization, the nonconformity of an instance is instead defined as

A (xi, yi, h) =
|yi − h (xi)|

σi + β
, (3)

where σi is a difficulty estimation of the instance xi, and β is a sensitivity parameter. Using
a normalized nonconformity function the prediction intervals become:

ŷϵl+1 = h (xl+1)± αp (σl+1 + β) (4)

A Mondrian inductive conformal regressor without normalization and using the absolute
error as nonconformity function is constructed as follows:

1. Divide the training data Ztr into two disjoint subsets: the proper training set Zt and
the calibration set Zc = {(x1, y1), . . . , (xq, yq))}.

2. Train the underlying model h using Zt.

3. Partition Zc into k subsets Zc1 , . . . , Zck , following a Mondrian taxonomy κ with cat-
egories κ1, . . . , κk

4. Apply the nonconformity function Eq. 2 to the instances in Zci , for each i = 1, . . . , k,
producing a list of calibration scores Si = α1, ..., αqi where qi = |Zci | and Si is sorted
in descending order.

A valid prediction interval for a test instance xl+1 at the significance level ϵ is obtained
from a Mondrian conformal regressor by following these steps:

1. Make a point prediction h(xl+1).

2. Find the category κi ∈ {κ1, . . . , κk} for xl+1

3. Find the calibration score αip where p = ⌊ϵ(qi + 1)⌋.

4. Let the prediction interval for xl+1 be ŷϵl+1 = h (xl+1)± αip

When using a Mondrian approach, each category, as described above, needs its own cali-
bration set. For smaller data sets, this can be a problem, leading to fewer training instances
or tiny calibration sets. One solution, applicable to Random forests and originally suggested
by Johansson et al. (2014), is to perform the calibration on the out-of-bag instances. This
approach, which is also employed in this study, makes it possible to use all instances for
both model training and calibration, i.e., q = |Zc| = |Ztr|. It should be noted that this
procedure does not come with the theoretical validity guarantees of inductive conformal
regression, simply because calibration and test instances are not treated in an identical
way, see (Boström et al., 2017). Still, many previous studies, e.g., (Johansson et al., 2014,
2015; Boström et al., 2017; Linusson et al., 2020) have shown excellent empirical validity.
If anything, the conformal regressors were slightly conservative.
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2.3. Related Work

Classification with reject option has been studied extensively, since being introduced by
(Chow, 1957, 1970), see e.g. (Hanczar and Dougherty, 2008; Li and Sethi, 2006; Geifman
and El-Yaniv, 2017). The use of a reject option in combination with conformal prediction
has previously been studied for classification, see e.g. (Johansson et al., 2023a,b).

Regression with reject option has only been studied in recent years, and in a few papers.
Several authors (Zaoui et al., 2020; Shah et al., 2022) note that adapting classification with
reject option to a regression setting relies on formulating suitable uncertainty measures
for regressors, to define the rejection function. Two notable approaches using deep neural
networks are (Geifman and El-Yaniv, 2019) and (Jiang et al., 2020). Geifman and El-Yaniv
(2019) proposed a neural network architecture, optimizing both the prediction and rejection
functions in one deep neural network, whereas Jiang et al. (2020) used deep neural networks
as regressors and uncertainty estimation functions that depend on this architecture on two
regression problems with image data as inputs.

In (Zaoui et al., 2020), a model-agnostic framework for regression with reject option,
using a conditional variance function to control rejection rate, was introduced. In (Shah
et al., 2022), regression with reject option was employed with subgroup fairness criteria,
which requires that error not only decreases overall when decreasing coverage, but does so
monotonically for a set of defined subgroups of instances.

In a recent preprint, Sokol et al. (2024) studied regression with reject option, using
conformalized quantile regression with interval size as the difficulty estimation of an in-
stance. Here, the conformal prediction was used as a tool for rejecting instances with high
uncertainty, in contrast to the suggested approach in our paper, which equips a standard
conformal regressor with a reject option.

3. Method.

As described in the Introduction, the overall purpose of this paper is to introduce and
evaluate conformal regression with reject option. Specifically, the method should have the
following properties:

1. A test prediction should be either a prediction interval or ® (reject).

2. The non-rejected predictions should be valid in the standard conformal sense, i.e., the
error rate of the predicted intervals should be ϵ.

3. The efficiency of the non-rejected intervals should increase, i.e., the intervals should
be tighter, when the regressor is allowed to reject more instances.

4. It should be possible for a user to know the interval sizes for any combination of
significance and rejection levels after the calibration step, i.e., before making the first
test prediction.

The way to achieve this, which is a key contribution of this paper, is to employ Mondrian
conformal regression, where the categories are determined from a difficulty estimator. For
a chosen rejection level ρ, e.g., 0.1, the Mondrian taxonomy dictates that all test instances
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with a higher difficulty than the calibration instance corresponding to the (1−ρ)-percentile
difficulty estimate in the calibration set should belong to Category ® and the remaining
to Category P . Obviously, all test instances belonging to Category ® are rejected, while
the ones belonging to Category P are predicted. The prediction intervals for the predicted
instances are generated using standard ICP, i.e., without normalization. Using this setup,
the interval sizes resulting from any combination of significance (ϵ) and rejection (ρ) levels
can be found from absolute errors and difficulty estimates of the calibration instances, see
Algorithm 1.

Algorithm 1 Conformal Regression with Reject Option - calibration step

Input: Underlying regressor h, Difficulty estimations of calibration instances σ1, · · · , σq,
Significance level ϵ, Rejection level ρ

Output: Difficulty threshold for rejection: σρ, Interval size for non-rejected instances: αP

σρ ← ⌊ρ(q + 1)⌋
ZP ← {zj ∈ Zc : σj ≤ σρ}
qP ← |ZP |
S ← {|yi − h (xi)| : (xi, yi) ∈ ZP }
Sort S in descending order
p← ⌊ϵ(qP + 1)⌋
αP ← Sp

When performing the actual prediction, see Algorithm 2, the difficulty estimate of the
test instance σk+1 is compared to the difficulty threshold for rejection. If the difficulty is
higher, the prediction is rejected; if not, the prediction interval is h(xl+1)± αP .

Algorithm 2 Conformal Regression with Reject Option - prediction step

Input: Test instance xl+1, Underlying regressor h, Difficulty estimator δ, Difficulty thresh-
old for rejection σρ, Interval size for non-rejected instances αP

Output: Prediction: either a prediction interval or ® (reject)
σl+1 ← δ(xl+1)
if σl+1 > σρ then

return ®
else

return h(xl+1)± αP

end

The regressors used were random forests (Breiman, 2001), as implemented in scikit
learn. Parameters were left at default values, except using 300 trees in the forests. For
the conformal regressors, the Crepes package (Boström, 2022) was used, and out-of-bag
calibration was employed. Regarding difficulty estimators, four options, all readily available
in Crepes, were evaluated:

• kNN distance: The average distance to the 25 nearest neighbors. The motivation
is that less populated parts of feature space should be harder.
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• kNN variance: The standard deviation of the target values of the 25 nearest neigh-
bors. We expect instances where the target values of the neighbors vary more to be
harder.

• kNN residuals: The mean of the absolute residuals of the 25 nearest neighbors.
Instances where the model is less accurate on their neighbors are expected to be
harder.

• Tree variance: The variance of the individual tree predictions. Instances are esti-
mated to be harder the more the trees disagree.

The testing protocol employed was standard 10-fold cross-validation. In the experiments,
16 publicly available medium-sized data sets ranging from approximately 4200 to 9500
instances were used. All data sets are from the UCI (Bache and Lichman, 2013), Delve
(Rasmussen et al., 1996) or KEEL (Alcalá-Fdez et al., 2011) repositories. The data sets
are listed in Table 1 below, where #inst. is the number of instances and #attrib. is the
number of features.

Table 1: Data sets

Name #inst. #attrib. Origin Name #inst. #attrib. Origin
abalone 4177 8 UCI kin8fh 8192 8 Delve
bank8fh 8192 8 Delve kin8fm 8192 8 Delve
bank8fm 8192 8 Delve kin8nh 8192 8 Delve
bank8nh 8192 8 Delve kin8nm 8192 8 Delve
bank8nm 8192 8 Delve puma8fh 8192 8 Delve
comp 8192 12 Delve puma8fm 8192 8 Delve
deltaA 7129 5 KEEL puma8nh 8192 8 Delve
deltaE 9517 6 KEEL puma8nm 8192 8 Delve

4. Results.

We first present detailed results for the four kin data sets. These data sets are all variations
on the same model; a realistic simulation of the forward dynamics of an eight link all-revolute
robot arm. The task is to predict the distance of the end-effector from a target. The inputs
include joint positions, twist angles, etc. The four data sets differ in two ways: (i) they are
either “fairly linear” (identified by the letter f in the data set name) or “non-linear” (letter
n in data set name) and (ii) the noise level is either “medium unpredictability/noise” (letter
m in data set name) or “high unpredictability/noise” (letter h in data set name).

We start with the kin8fh data set, i.e., fairly linear but high noise level. Here, each part
of Figure 1 shows the results for one difficulty estimator, with the top part giving mean
interval sizes and the bottom part presenting empirical error rates and rejection rates for
the different rejection and significance levels. Looking first at the interval sizes, we want
these to decrease for higher rejection rates. For this data set, we do indeed observe this
pattern for all difficulty estimators and significance levels, possibly with the exception of
kNN distance. When it comes to the empirical error rates, these are most often very close
to the significance levels. As expected, there are some fluctuations, especially for the higher
rejection rates. The reason is of course the smaller calibration sets, that should result in
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slightly conservative conformal regressors, but also the fact that relatively few instances are
predicted. Comparing the empirical rejection rates to the rejection levels, most differences
are very small, often not even noticeable in these plots. This is of course reassuring, telling
us that the out-of-bag calibration procedure, using these difficulty estimators, works very
well in practice.

Figure 2 presents the same results, but focusing on providing an outright comparison
between the four estimators. Here, it is obvious that kNN distance is the worst option,
leading to not only larger intervals, but also smaller differences between the rejection levels.
The other three options, on the other hand, produce tighter and tighter intervals as more
instances are rejected. For this particular data set, there are only small differences in interval
sizes between these three difficulty estimators for all rejection and significance levels. The
lower plots again show that all conformal regressors are well-calibrated, and that they obtain
an almost perfect match between the required rejection level and the actual rejection rate.

Next, we look at the results for the kin8fm (fairly linear medium noise) data set. Com-
paring Figure 3 to Figure 1, the interval sizes are, as expected since the data set is easier,
tighter for all difficulty estimators and significance levels. In addition, all difficulty esti-
mators are able to produce smaller intervals when the rejection level goes up. Regarding
empirical error and rejection rates, they are almost perfect, again with the exception of
slightly conservative results for the highest rejection levels and ϵ = 0.01. Interestingly
enough, as seen in Figure 4, the best estimator for this data set is clearly kNN residuals,
despite also being the most conservative, at all but the highest rejection levels for ϵ = 0.01.
Again, kNN distance is the worst, while Tree variance and kNN variance obtain very similar
results.

The third data set is kin8nm, i.e., non linear but moderate noise. The overview in
Figure 5 shows that all difficulty estimators produce tighter intervals for higher rejection
levels. As for the other data sets, both error rates and rejection rates are close to the
required. The larger intervals compared to kin8fh indicate that the nonlinearity affects
the difficulty of the problem more than the added noise. Figure 6 shows the comparison
between the estimators. For this data set, there is actually a clear ordering; kNN residuals
is the most efficient, closely followed by Tree variance. The third best is kNN variance,
which is clearly worse than the two best, but at the same time substantially better than
kNN distance. Again, there are small differences regarding error and rejection rates, that
for all setups are very close to the required.

Looking finally at the hardest version of the data set, i.e., kin8nh, the overview in
Figure 7 shows, as expected, generally larger intervals. Still, all difficulty estimators are
able to produce tighter intervals for higher rejection levels. When comparing the setups in
Figure 8, kNN distance is again the least efficient for all rejection levels. The other three
difficulty estimators produce very similar intervals for the lower rejection levels, but for the
higher, i.e., rejecting 80% or 90%, Tree variance is the best, followed by kNN residuals.

Summarizing the results for the four kin data sets, the main observation is that, for
these data sets, all setups consistently deliver the required rejection and error rates, whilst
also achieving increased efficiency for higher rejection levels. Thus, these detailed results
demonstrate that the method works, with respect to properties 1-4 stated in section 3 above.
Overall comparison of difficulty estimators shows that kNN distance clearly performs the
worst on all four data sets, with kNN residuals and Tree variance performing best overall.

8



Conformal Regression with Reject Option

kin8fh data set
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Figure 1: Kin8fh - overview
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Figure 2: Kin8fh - estimator comparison

9



Johansson Sönströd Boström

kin8fm data set
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Figure 3: Kin8fm - overview
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Figure 4: Kin8fm - estimator comparison
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kin8nm data set
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Figure 5: Kin8nm - overview

kin8nm data set
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Figure 6: Kin8nm - estimator comparison
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kin8nh data set
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Figure 7: Kin8nh - overview

kin8nh data set
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Figure 8: Kin8nh - estimator comparison

12



Conformal Regression with Reject Option

Next, we turn to aggregated results over all data sets. As described above, each test
instance is compared to the difficulty threshold found from the calibration (out-of-bag)
instances in order to determine if it should be rejected or not. With this in mind, it
becomes important to ensure that the actual rejection level is close to the requested. As
seen in Table 2 below, the empirical rejection levels are, for all four difficulty estimation
functions, almost identical to the requested.

Table 2: Empirical rejection rates per rejection level

Rejection level
10% 20% 30% 40% 50% 60% 70% 80% 90%

Tree variance .100 .201 .300 .400 .499 .600 .700 .800 .900
kNN distance .102 .202 .303 .401 .501 .602 .701 .801 .900
kNN variance .100 .199 .300 .400 .500 .600 .700 .800 .900
kNN residuals .100 .199 .300 .400 .499 .600 .700 .800 .899

While the purpose of the suggested method is to produce prediction intervals, successful
ordering functions should also lead to lower point prediction errors for higher rejection
levels. Looking at the mean absolute errors in Table 3 below, all four difficulty estimators
exhibit this pattern. Comparing the setups, Tree variance is the best, followed by kNN
residuals and kNN variance.

Table 3: Mean absolute errors per rejection level

Rejection level
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Tree variance .057 .054 .052 .049 .047 .044 .042 .039 .036 .033
kNN distance .057 .056 .055 .054 .053 .052 .052 .051 .050 .049
kNN variance .057 .055 .052 .051 .049 .047 .045 .044 .041 .038
kNN residuals .057 .054 .052 .050 .048 .047 .045 .043 .041 .038

Table 4 shows the empirical error rates. As expected, these are very close to the sig-
nificance levels. If anything, there is a small tendency that the conformal regressors are
conservative. This is, as described above, to be expected when using out-of-bag calibration.
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Table 4: Conformal error rates per rejection level

Rejection level
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

ϵ = 0.2 Tree variance .199 .199 .200 .198 .198 .199 .198 .200 .200 .203
kNN distance .199 .199 .199 .199 .198 .198 .197 .198 .199 .198
kNN variance .199 .199 .198 .198 .198 .197 .196 .199 .198 .201
kNN residuals .199 .198 .198 .197 .196 .197 .197 .198 .203 .204

ϵ = 0.1 Tree variance .099 .099 .100 .099 .099 .099 .098 .098 .100 .100
kNN distance .099 .099 .099 .099 .099 .100 .098 .099 .098 .096
kNN variance .099 .099 .099 .099 .099 .098 .098 .100 .100 .100
kNN residuals .099 .098 .098 .099 .098 .099 .099 .100 .101 .100

ϵ = 0.05 Tree variance .049 .049 .050 .049 .049 .049 .049 .049 .050 .051
kNN distance .049 .049 .049 .049 .049 .049 .049 .050 .049 .050
kNN variance .049 .049 .049 .050 .049 .048 .048 .050 .050 .051
kNN residuals .049 .049 .049 .050 .049 .049 .049 .050 .050 .050

ϵ = 0.01 Tree variance .010 .010 .010 .010 .010 .009 .009 .010 .009 .010
kNN distance .010 .010 .010 .010 .010 .010 .010 .010 .009 .009
kNN variance .010 .010 .010 .010 .010 .009 .010 .010 .009 .009
kNN residuals .010 .010 .010 .010 .010 .010 .010 .010 .009 .009

A key component of the suggested method is the possibility for a user to know the
interval sizes of future test set predictions for different significance and rejection levels.
Table 5 below shows these numbers. First of all, it should be noted that all setups do indeed
lead to tighter intervals for higher rejection levels. Starting with no rejected instances, and
remembering that all target values were scaled to the interval [0, 1], we see that the mean
interval size varies from approximately 0.41 for ϵ = 0.01 to 0.18 for ϵ = 0.2. If the procedure
is allowed to reject 50% of all instances, the interval sizes are reduced by approximately
20% for these two significance levels. Rejecting 90%, the corresponding reduction in interval
size is 44% for ϵ = 0.2 and 36% for ϵ = 0.01. Ranking the four difficulty estimators, Tree
variance produces the tightest intervals for almost all significance and rejection levels. The
results for the two setups kNN variance and kNN residuals are quite similar, although kNN
residuals perform slightly better overall. Both kNN variance and kNN residuals are clearly
worse than Tree variance, but substantially better than kNN distance.

As a complement to the results in Table 5, we also look at the corresponding interval
sizes for the rejected instances in Table 6 below. Again, the results follow the expected
behavior. Specifically, as seen by the very large intervals when only rejecting rather few
instances, i.e., rejection levels 10% - 30%, many data sets contain some instances that are
found to be very difficult, and thus rejected, by the difficulty estimators.

Summarizing the aggregated results, it is seen that also over all data sets the method
works well, with empirical error and rejection rates matching requested levels. Furthermore,
interval sizes invariably decrease overall, as the rejection level is increased, empirically
demonstrating that this desired efficiency property holds.
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Table 5: Interval sizes of non-rejected instances per rejection level

Rejection level
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

ϵ = 0.2 Tree variance .178 .167 .158 .150 .142 .134 .125 .116 .106 .095
kNN distance .178 .173 .170 .167 .164 .162 .159 .156 .153 .150
kNN variance .178 .169 .162 .156 .150 .144 .138 .131 .124 .113
kNN residuals .178 .168 .161 .155 .149 .143 .137 .131 .123 .112

ϵ = 0.1 Tree variance .238 .223 .211 .200 .189 .179 .168 .157 .144 .131
kNN distance .238 .231 .227 .222 .218 .214 .211 .207 .203 .197
kNN variance .238 .225 .215 .207 .199 .192 .185 .176 .166 .153
kNN residuals .238 .224 .214 .206 .198 .190 .183 .174 .164 .152

ϵ = 0.05 Tree variance .292 .274 .260 .248 .236 .224 .211 .198 .184 .169
kNN distance .292 .284 .278 .273 .268 .264 .259 .254 .249 .243
kNN variance .292 .276 .264 .254 .245 .237 .229 .219 .207 .191
kNN residuals .292 .274 .262 .252 .243 .234 .226 .215 .204 .192

ϵ = 0.01 Tree variance .407 .384 .368 .352 .339 .326 .309 .291 .273 .252
kNN distance .407 .394 .388 .382 .376 .372 .363 .356 .357 .347
kNN variance .407 .385 .370 .359 .345 .336 .324 .313 .299 .278
kNN residuals .407 .380 .365 .351 .338 .328 .317 .305 .292 .277

Table 6: Interval sizes of rejected instances per rejection level

Rejection level
0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

ϵ = 0.2 Tree variance .271 .254 .241 .230 .221 .212 .203 .195 .187 .095
kNN distance .224 .212 .206 .201 .196 .191 .188 .185 .181 .150
kNN variance .262 .244 .231 .221 .213 .205 .198 .192 .185 .113
kNN residuals .269 .247 .233 .223 .214 .206 .199 .192 .185 .112

ϵ = 0.1 Tree variance .342 .322 .307 .294 .284 .274 .265 .256 .247 .131
kNN distance .296 .279 .270 .264 .259 .254 .250 .246 .242 .197
kNN variance .334 .314 .298 .287 .277 .268 .260 .253 .246 .153
kNN residuals .341 .316 .300 .288 .277 .268 .261 .253 .246 .152

ϵ = 0.05 Tree variance .407 .382 .366 .353 .341 .331 .321 .312 .303 .169
kNN distance .364 .343 .331 .323 .316 .311 .306 .301 .297 .243
kNN variance .402 .378 .359 .346 .335 .325 .317 .309 .301 .191
kNN residuals .406 .379 .360 .347 .335 .325 .317 .309 .301 .192

ϵ = 0.01 Tree variance .542 .512 .489 .473 .461 .449 .439 .429 .418 .252
kNN distance .501 .469 .451 .442 .436 .428 .423 .418 .412 .347
kNN variance .527 .504 .482 .468 .456 .445 .435 .426 .417 .278
kNN residuals .538 .507 .481 .468 .456 .443 .434 .425 .416 .277

Finally, Table 7 below shows the Spearman correlations between test set difficulty esti-
mations and test set errors. Despite the success of the proposed method, these correlations
are generally rather low and also vary substantially between techniques on some data sets.
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As expected from the other results, Tree variance has the highest mean correlation, but it
could be noted that other options are actually better on some individual data sets. kNN
distance has the lowest correlation of the four setups on a large majority of all data sets.

Table 7: Correlations between difficulty estimates and errors

Tree variance kNN distance kNN variance kNN residuals
abalone .380 .214 .350 .365
bank8fh .279 .122 .188 .141
bank8fm .461 .303 .360 .320
bank8nh .264 .209 .181 .183
bank8nm .599 .478 .553 .574
comp .399 .274 .326 .433
deltaA .413 .324 .409 .425
deltaE .193 .108 .166 .155
kin8fh .177 .035 .192 .194
kin8fm .206 .180 .248 .401
kin8nh .207 .058 .198 .235
kin8nm .333 .115 .165 .431
puma8fh .261 -.035 .266 .249
puma8fm .301 -.045 .297 .276
puma8nh .346 .072 .262 .228
puma8nm .322 .040 .281 .213
Mean .321 .153 .278 .301

5. Concluding remarks.

We have in this paper introduced and evaluated conformal regression with reject option.
The key ideas, consistent with the conformal approach, are that a test prediction should
either be a prediction interval or a reject, and that the non-rejected predictions are valid.
The empirical evaluation demonstrated these properties, as well as the fact that all eval-
uated difficulty estimators produced tighter intervals the more instances the regressor was
allowed to reject. From a practitioner’s perspective, the suggested setup makes it possible
to compare the interval sizes resulting from combinations of significance and rejection levels
before making any predictions.

In the experimentation, four different difficulty estimators were evaluated; three looking
at different properties of neighboring instances, and one, which turned out to be the most
successful, measuring the disagreement between the trees in the Random forest. While all
difficulty estimators worked as intended, i.e., produced orderings that were good enough
to make the intervals tighter for higher rejection levels, it should be noted that the cor-
relation between the difficulty estimates and prediction errors was not very high. So, one
obvious avenue for future work is exploring new and potentially stronger difficulty estima-
tors. Specifically, investigating different, and potentially varying, number of neighbors to
consider would be a straightforward extension.
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Keel data-mining software tool: Data set repository, integration of algorithms and exper-
imental analysis framework. Multiple-Valued Logic and Soft Computing, 17(2-3):255–287,
2011.

Kevin Bache and Moshe Lichman. UCI machine learning repository, 2013.

Henrik Boström. Crepes: a Python package for generating conformal regressors and pre-
dictive systems. In COPA, volume 179 of Proceedings of Machine Learning Research.
PMLR, 2022.

Henrik Boström and Ulf Johansson. Mondrian conformal regressors. In COPA 2020, volume
128 of Proceedings of Machine Learning Research, pages 114–133. PMLR, 2020.
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