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Abstract

This preliminary study introduces a Conformal Prediction method for Multi-label Classifi-
cation with a nonconformity measure based on the Mahalanobis distance. The Mahalanobis
measure incorporates a covariance matrix considering correlations between the errors of the
underlying classifier on each label. Our experimental results show that this approach re-
sults in a significant informational efficiency improvement over the previously proposed
Euclidean Norm nonconformity measure.
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1. Introduction

Multi-label classification is a problem category in which each instance can belong to multiple
classes simultaneously, resulting in the formation of label-sets. The complexity of such
tasks arises from the need to consider numerous or all possible combinations of classes.
Multi-label learning algorithms use various techniques to predict these label-sets. The
primary categories of these techniques include Problem Transformation (PT) and Algorithm
Adaptation (AA) methods. Transformation methods, such as binary relevance or classifier
chains, decompose the multi-label classification problem into binary classification tasks for
each class. Conversely, algorithm adaptation methods correspond to modified versions of
multi-class machine learning techniques for predicting sets of labels, see (Tsoumakas and
Katakis, 2007) and (Zhang and Zhou, 2013) for comprehensive reviews.

The focus of this work is on the reliable quantification of uncertainty of Multi-label
learning through Conformal Prediction (CP). Specially, we propose an Inductive (or Split)
Conformal Prediction (ICP) approach that can be combined with any classifier that pro-
duces a score for each class. The proposed approach provides prediction regions of label-sets
with guaranteed 1− ε coverage of the true label-set, for any required significance level ε.

A number of CP techniques have been proposed so far for multi-label classification.
One such technique, referred to as Label Power-set (LP) CP, was proposed by Papadopou-
los (2014). As its name suggests, this technique assigns a p-value to each possible label-set.
This is done through a nonconformity measure that calculates the sum of absolute differ-
ences between the probabilistic outputs of the underlying model and the actual labels. An
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extension to this nonconformity measure is also defined that considers the co-occurrences
of labels in label-sets, leading to tighter prediction regions. The LP approach was recently
extended in (Maltoudoglou et al., 2022) with the proposal of an approach for the efficient
computation of the prediction regions based on a Euclidean Norm nonconformity measure.

Another technique is Instance Reproduction (IR), as presented in the work by Wang
et al. (2014). The authors utilize a problem transformation algorithm to create a new
single-label dataset. They then apply single-label machine learning algorithms to measure
the confidence level of each label and select multiple labels whose p-values are greater than
the significance level. Additionally, Wang et al. (2015), use the Binary Relevance (BR)
technique to provide prediction regions based on separate binary classifiers for each class.
This method guarantees the composition of valid prediction regions using the Bonferroni
inequality. Similarly, Lambrou and Papadopoulos (2016) propose a generalization of the
Binary Relevance CP based on Hamming loss metric.

A recent work in this field by Tyagi and Guo (2023) introduces a method for constructing
a hierarchical tree for multi-label classification using the technique of multiple hypothesis
testing. In this hierarchical testing procedure, confidence evaluation occurs by applying
Bonferroni correction at each tree layer.

Our study extends the work of Maltoudoglou et al. (2022) and is inspired by the work
of Messoudi et al. (2022) who proposed a Mahalanobis distance nonconformity measure
for Multi-target Regression tasks. Mahalanobis distance represents a transformation of
Euclidean distance through a covariance matrix, derived from the proper-training data,
considering correlations between error vectors. By employing the Mahalanobis nonconfor-
mity measure, we observe that the predicted sets are smaller compared to those obtained
using the Euclidean norm. This improvement is evident in our experimental results.

The rest of this paper starts with an overview of ICP in Section 2. This is followed by
the definition of the proposed approach in Section 3. Section 4 details the experimental
evaluation of our approach and its comparison with the previously proposed Euclidean
Norm approach. Finally, Section 5 gives our conclusions and plans for future work.

2. Inductive Conformal Prediction (ICP)

Inductive Conformal Prediction (ICP) was introduced in (Papadopoulos et al., 2002a) and
(Papadopoulos et al., 2002b) to address the computational inefficiency issue of Full CP. Let
X denote the feature space and Ψ denote a set of labels. The inputs to the feature space are
represented as vectors of the form, xi = (xi1 , ..., xik , ..., xis), for k = 1, ..., s, where X ∼= Rs

and s is the number of attributes. Pairing the elements of the feature space X and the set
Ψ forms the example space, Z =

{
(xi, ψi) : xi ∈ X,ψi ∈ Ψ

}
, for i = 1, ..., n.

The training set is split in two parts, the proper-training set {(x1, ψ1), ..., (xq, ψq)},
where q ≤ n, and the calibration set {(xq+1, ψq+1), ..., (xn, ψn)}. Additionally, we define
a nonconformity measure A : Z → R which assigns a score that describing how different
an instance xn+m is from the instances in the proper-training set. The underlying model
is trained on the proper-training set, and the training results are used to calculate the
nonconformity scores of the calibration instances as,

ai = A
({

(x1, ψ1), ..., (xq, ψq)
}
, (xi, ψi)

)
, i = q + 1, ..., n. (1)
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The objective is to produce a set-prediction Γε
n+m ⊆ Ψ that contains the true targets

with probability 1 − ε, where ε is the significance level, for every test instance xn+m. The
nonconformity score for every assumed label Yj is given by,

a
Yj

n+m = A
({

(x1, ψ1), ..., (xq, ψq)
}
, (xn+m,Yj)

)
. (2)

The nonconformity scores of calibration instances are used to calculate the p-value p of each
possible label Yj ,

p(Yj) =

∣∣i = q + 1, ..., n : ai ≥ a
Yj

n+m

∣∣+ 1

n− q + 1
(3)

The conformal prediction regions for every test instance xn+m are defined as,

Γε
xn+m

=
{
Yj : p(Yj) > ε

}
. (4)

Instead of calculating the p-value for every possible label Yj , we can find a threshold on
the test instance nonconformity score, below which the p-value will be greater than a given
significance level. We sort the calibration scores in descending order and we denote the
ordered calibration scores as adesck , for k = 1, ..., n− q, where adesc1 < ... < adescn−q. Therefore,
for any given significance level ε, we find the minimum integer kε ∈ {1, ..., n − q} that
satisfies, ∣∣∣∣{i = q + 1, ..., n : adesci ≥ adesckε

}∣∣∣∣ > ε(n− q + 1)− 1. (5)

Since the calibration scores are sorted in descending order, the number of scores satisfying
the inequality (5) is,

kε =

∣∣∣∣{i = 1, ..., n− q : adesci ≥ adesckε

}∣∣∣∣, (6)

and the inequality can be written as,

kε > ε(n− q + 1)− 1. (7)

Lemma 1 For any significance level ε ∈ [0, 1] and the numbers n, q ∈ Z, we have,

⌊ε(n− q + 1)⌋ =

{
⌈ε(n− q + 1)⌉, if ε(n− q + 1) ∈ Z
⌈ε(n− q + 1)− 1⌉, if ε(n− q + 1) /∈ Z

(8)

Proof Based on the definitions of the floor and ceil functions, it implies that,

⌈ε(n− q + 1)⌉ − ⌊ε(n− q + 1)⌋ =

{
0, if ε(n− q + 1) ∈ Z
1, if ε(n− q + 1) /∈ Z.

The first case of equality (8) is clear. The second case is proven by using the property,

⌈ε(n− q + 1)⌉ − 1 = ⌈ε(n− q + 1)− 1⌉.
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Proposition 2 For some value ε of the significance level, the minimum integer of which
the inequality (5) holds is,

kε = ⌊ε(n− q + 1)⌋. (9)

Proof The integer kε is the minimum that satisfies inequality (9). From the definition of
ceil function, it follows that,

⌈ε(n− q + 1)− 1⌉ = min{kε ∈ Z : kε > ε(n− q + 1)− 1}.

The equality (9) is proven by applying Lemma (1).

Given kε, the prediction sets for each instance xn+m at the ε significance level are written
in the equivalent form,

Γε
xn+m

=
{
Yj : a

Yj

n+m ≤ adesckε

}
. (10)

3. Multi-label ICP using Mahalanobis measure

This section outlines the inductive conformal prediction approach, focusing on the intro-
duction of the Mahalanobis nonconformity measure for multi-label classification defined in
a vector space. First, we describe the multi-hot vector representation used in our notation.
Next, we define the vector error space in which the ICP is to be performed. Finally, we
define the Mahalanobis nonconformity measure and our algorithm.

3.1. Multi-hot label representation

Let C = {c1, ..., cd} denote the set of d individual classes, with each class indexed corre-
sponding to an element of C. A label-set Yj is a subset of C. Hence, we define the power-set
as,

P(C) =
{
Yj : Yj ⊆ C

}
which contains all possible label-sets Yj , j = 1, ..., w, generated by all combinations of class
indices C, where w represents the total number of possible label-sets for d different classes
and is calculated as w = 2d.

In the subsequent sections we define Mahalanobis nonconformity measure in terms of
the vector of errors between predicted probabilities and target label-sets in Euclidean vector
space. To maintain consistency with vector space terminology, we convert the label-sets ψj

into multi-hot vectors. For every label-set Yj ∈ P(C), we construct a multi-hot vector
yj = (yj1 , ..., yjc , ..., yjd) as follows,

yjc =

{
0, if c /∈ Yj

1, if c ∈ Yj

, for every c ∈ C.

Note that the empty set in P(C) corresponds to the zero vector. Consequently, we create
a bijection, σ : P(C) → Y , between the power-set P(C) and the formed subspace Y ⊆ Rd

of the vectors yj . The number of possible multi-hot vectors in Y equals the number w of
possible label-sets in P(C). Moreover, the true label of an instance i is included in the
power-set P(C) and consequently in space Y . To distinguish it from the possible multi-hot
vectors yj , we represent it as the multi-hot vector ti = (ti1 , ..., tid).
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3.2. Error space

In the Euclidean vector space Rd we represent the predicted probabilities of classifier, for an
instance x, and the multi-hot representation of the label-sets with vector structure, denoted
as o = o(x) and y respectively. We define the linear transformation r : Rd × {o(x)} → Rd

with,

r(y,o(x)) = |y − o(x)|, (11)

where we calculate the difference between predicted probabilities of the classifier and label-
sets in vector form. We then give the definition of the error vectors r

yj
i referring to a

label-set yj , for an instance i.

Definition 3 We define r
yj
i =

(
ri1 , ..., rid

)
as the error vector for instance i related to

label-set yj, such that

r
yj
i = (|yj1 − oi1 |, ..., |yjd − oid |), (12)

where oi = (oi1 , ..., oid), with oik ∈ [0, 1] and k = 1, ..., d.

The error vectors constitute a subspace R of Rd. Given the predicted probabilities of an
instance x, the linear map is defined as r : Y ×{o(x)} → R. The map is injective, and thus
the label-space Y and the error space R are isomorphic.

3.3. Mahalanobis nonconformity measure

In multi-label classification, each instance belongs to multiple classes. Thus, the true classi-
fication ψn+m of an instance xn+m is contained in the power-set P(C). According to vector
space representation, the true label-set for the instance xn+m is denoted as tn+m. The
conformal prediction approach provides the guarantee for an instance xn+m that

P
(
tn+m ∈ Γε

xn+m
: p(tn+m) > ε

)
≥ 1− ε (13)

This guarantee is provided by the approaches proposed in (Lambrou and Papadopoulos,
2016) and (Papadopoulos, 2014). Based on the one-to-one correspondence between P(C)
and subspace Y , it therefore holds that Γε

xn+m
⊆ P(C).

The choice of defining error vectors in Euclidean vector space provides a connection
between the probabilistic outputs of the underlying classifier and the label-sets. Addition-
ally, the Euclidean distance (or norm) establishes a relationship between errors with similar
behavior. Thus, Maltoudoglou et al. (2022) define a nonconformity measure for multi-label
classification using the Euclidean Norm, which for an instance i is expressed as,

α
yj
i =

√
r2i1 + ...+ r2id , (14)

where yj is the true label ti for calibration instances and the assumed label for test instances.
As mentioned, the Mahalanobis distance is a transformation of the Euclidean distance
achieved by using the covariance matrix, denoted as Σ, which is symmetric and positive
definite.

In the following, we define the Mahalanobis nonconformity measure for multi-label clas-
sification.
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Definition 4 Based on the Mahalanobis distance, we define the non-conformity measure
of the error vectors for a calibration instance i as,

αti
i =

√
(rtii )

T
Σ−1 rtii , (15)

where Σ−1 is the inverse covariance matrix which is estimated from error vectors of the
proper training data.

Accordingly, we define the non-conformity measure of the error vectors for a possible label-
set yj of a test instance i as,

α
yj
i =

√
(r

yj
i )

T
Σ−1 r

yj
i . (16)

Lemma 5 Given a fixed covariance matrix Σ and let r
tq+1

q+1 , ..., r
tn
n , r

tn+m
n+m be exchangeable

error vectors. Then, the nonconformity scores a
tq+1

q+1 , ..., a
tn
n , a

tn+m
n+m are also exchangeable.

Proof Since r
tq+1

q+1 , ..., r
tn
n , r

tn+m
n+m are exchangeable, for any permutation function π : [n] →

[n], then for Mahalanobis nonconformity measure we have,

a
tπ(i)

π(i) =

√(
r
tπ(i)

π(i)

)T
Σ−1 r

tπ(i)

π(i) =

√
(rtii )

T
Σ−1 rtii ,

for every i = q + 1, ..., n, n+m. Thus, the measure (15) preserves exchangeability.

By the following theorem we prove the validity of the conformal predictor associated with
the Mahalanobis nonconformity measure.

Theorem 6 Given the exchangeable error vectors rt11 , ..., r
tn
n and significance level ε ∈

[0, 1], then for the Mahalanobis nonconformity measure it holds that,

P
(
tn+m ∈ Γε

xn+m
: p(tn+m) > ε

)
≥ 1− ε,

where xn+m is a new instance.
Proof Let tn+m ∈ Γε

xn+m
. This is true if and only if a

tn+m
n+m ≤ adesckε

, as defined in (10).
Since error vectors are exchangeable, then Mahalanobis nonconformity scores inherit the
exchangeability property (see Lemma 5). The probability function is given by,

P
(
tn+m ∈ Γε

xn+m
: a

tn+m
n+m ≤ adesckε

)
≥ 1− ε.

Since all permutations are equiprobable, then

P
(
tn+m ∈ Γε

xn+m
: p(tn+m) > ε

)
≥ 1− ε.

The next algorithm outlines the steps involved in using the Mahalanobis nonconformity
measure for Multi-label ICP.
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Algorithm 1: Multi-label ICP using Mahalanobis measure

Input:

• Classifier’ s predicted probabilities for proper-training data o(xi), i = 1, ..., q, for
calibration data o(xi) , i = q + 1, ..., n, for each test instance o(xn+m).

• Label-sets of proper-training data ti, i = 1, ..., q, of calibration data ti,
i = q + 1, ..., n.

• Required significance level ε.

1. Preprocessing on proper-training data:

• Calculate the error vectors ri = |oi − ti|, i = 1, ..., q.

• Form the covariance matrix Σ.

2. Preprocessing on calibration data:

• Calculate the calibration nonconformity scores ai, i = q + 1, ..., n, using (15).

• Sort calibration scores in descending order adesck , k = 1, ..., n− q.

• Calculate kε using (9).

3. Calculate scores a
yj
n+m, for every possible label-set yj ∈ Y , using (16).

Output: Predicted set, Γε
xn+m

=
{
yj ∈ Y : a

yj
n+m ≤ adesckε

}
.

4. Experiments

4.1. Datasets and Underlying Classifier

To evaluate the efficiency of the Mahalanobis nonconformity measure relative to the Eu-
clidean Norm nonconformity measure, we employ two datasets with distinct properties.
The size of a power-set affects the computational cost and time for producing all label-sets
combinations. The Emotions and Yeast dataset are widely recognized for multi-label classi-
fication tasks. Table 1 provides detailed information on the datasets, including the number
of instances, attributes, labels, and cardinality.

Table 1: Datasets for multi-label classification

Dataset Instances Attributes Labels Cardinality
Emotions 593 72 6 1.868
Yeast 2417 103 14 4.237

The underlying classifier is a Multi-layer Perceptron (MLP) model, with multiple five
fully connected layers, a single dropout layer and batch normalization layer. Activation
function relu is defined in each layer and the sigmoid activation function is set up for the
probabilistic outputs.

Our experiments were performed following a 10-fold cross-validation process, which was
repeated 10 times. The results were calculated as the average over all folds and repetitions.
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The training set of each fold was further partitioned into a proper training set, validation
set, and calibration set. The validation set was used for early stopping. Table 2 shows the
number of instances allocated to each of these sets for each dataset.

Table 2: Dataset partitioning

Proper train Validation Calibration Test

Emotions 354 81 99 59
Yeast 1293 327 555 242

4.2. Forced prediction

In order to allow the comparison of the performance of the proposed approach with that
of the underlying model using the typical multi-label classification metrics, we employ the
forced prediction mode of CP. In this mode the CP outputs a single label-set prediction,
corresponding to the highest p-value. This prediction is associated with a confidence score,
indicating how likely is the predicted classification compared to all other possible classifica-
tions and a credibility value, measuring how common the test instance is compared to the
proper-training set. A low credibility value indicates the instance is strange for all classes
and differs from calibration instances. Let zi = (zi1 , ..., zid) be the multi-hot representation
of the forced predicted label-set, the typical multi-label classification metrics we use defined
as follows:

• Classification accuracy (CA) is calculated for the whole test set. It is a strict metric,
since a correct prediction is given if the forced prediction matches with the true label
represented as multi-hot vector ti = (ti1 , ..., tid), for every test instance i = 1, ..., g.
The CA is defined as,

CA =
1

g

g∑
i=1

I(ti = zi), (17)

where I(true) = 1 and 0 otherwise.

• The F1-measure corresponds to the harmonic mean of precision and recall and its
value is in the range [0, 1]. In the multi-label case, the combined F1-measure over the
labels can be calculated in two ways:

– F1-micro is averaged over the complete set of test instances, which means that
frequent labels weight more than infrequent ones. It is given by,

F1−micro =

2
d∑

j=1

g∑
i=1

tijzij

d∑
j=1

g∑
i=1

tij +
d∑

j=1

g∑
i=1

zij

(18)
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– F1-macro is averaged first per instance and the results are then averaged over the
total number of labels. Consequently, Fmacro gives equal weights to all labels and
it therefore tends to be lower than Fmicro when poorer performance is observed
for the more infrequent ones. It is written as,

F1−macro =
1

d

d∑
j=1

g∑
i=1

tijzij

g∑
i=1

tij +
g∑

i=1
zij

(19)

• Hamming Loss (HL) averages the number of wrong labels over the total number of
labels. It is defined as,

HL =
1

gd

d∑
j=1

g∑
i=1

tij ⊕ zij , (20)

where ⊕ indicates xor operator.

The Average-Confidence (Conf) and Average-Credibility Cred are indicative of the perfor-
mance in the set-prediction mode of Conformal Prediction:

• Average-Confidence (Conf) is intended as an overall indication of how likely predic-
tions are compared to all other possible classifications. It is written as,

Conf =
1

g

g∑
i=1

1− max
yj ̸=argmax pi(yj)

pi(yj) (21)

where we compute the average value of all confidence scores (i.e. 1−the second largest
p-value, over all considered label-sets yj) over g number of test instances.

• Average-Credibility (Cred) is an overall metric which indicates how suitable is the
training dataset for each test instance. It is defined as,

Cred =
1

g

g∑
1

max
yj

pi(yj) (22)

where the credibility of example i is the largest p-value out of all considered label-sets
yj .

Tables 3 and 4, for the emotions and yeast dataset respectively, present the scoring
results of the underlying classifier for the Accuracy, F1-micro, F1-macro, Hamming loss
metrics and compare them with the performance metrics of the forced predictions Average-
Confidence and Average-Credibility using the Mahalanobis and Euclidean norm nonconfor-
mity measure. F1-micro is the average of true positives and false negative and positives
predicted label-sets. Also, does not consider the proportion of each class in the dataset. So,
it reflect the accuracy on imbalanced data. In opposite, the F1-macro does to take label
imbalance into account.

For the emotions dataset, we observe that the Hamming loss is 0.329, Accuracy is 0.04,
F1-micro score is 0.226 and F1-macro is 0.103. Despite having a relatively small number of
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classes (six), the underlying classifier performed poorly, with a low F1-micro score indicating
worse performance on frequent label sets than on infrequent ones. Also, the size of predicted
regions is affected by the classifier’s performance, as indicated by the low accuracy score.
The results of ICP are very close to the ones of the original MLP-classifier, while also
providing the additional confidence and credibility information.

Table 3: Emotions dataset - Performance metrics

MLP-classifier ICP-Mahalanobis ICP-Norm

Hamming loss 0.329 0.343 0.343
Accuracy 0.040 0.039 0.039
F1 Micro 0.226 0.246 0.246
F1 Macro 0.103 0.123 0.123
Average confidence - 0.080 0.067
Average credibility - 0.948 0.958

For the yeast dataset we report Hamming loss 0.198, Accuracy 0.186, F1-micro score
0.644 and F1-macro 0.38. The classifier performs better on this dataset, which has 14 classes
and a significantly larger power-set. Moreover, the performance of forced-prediction was
negligibly different from that of the underlying classifier.

Table 4: Yeast dataset - Performance metrics

MLP-classifier ICP-Mahalanobis ICP-Norm

Hamming loss 0.198 0.200 0.200
Accuracy 0.186 0.158 0.158
F1 Micro 0.644 0.628 0.628
F1 Macro 0.380 0.336 0.336
Average confidence - 0.203 0.205
Average credibility - 0.851 0.822

The underlying classifier is trained on the whole training set and the ICP algorithm on
the proper-training set. The performance results indicate that no substantial classification
performance is sacrificed by the use of ICP. We conclude that, for the two datasets, the
confidence information given by Conf is high. The Average-Confidence metric provides
the probabilities that the predicted label-set is the true target. In addition, the high Cred
points out that the proper-training data are suitable for classifying the test instances.

4.3. Statistical efficiency

In this Section we evaluate the statistical efficiency of the p-values and prediction regions
produced by CP. For this, we use two of the probabilistic efficiency criteria proposed in
(Vovk et al., 2016):
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• S − criterion is applicable on all possible p-values, (p
yj

i : yj ∈ Y ), for every test
instance,

1

g

g∑
i=1

∑
yj

p
yj

i . (23)

It is independent of significance level ε. Small values are preferable in efficiency
comparison.

• N−criterion calculates the average number of predicted label-sets of all test instances,
for significance level ε. It is defined as,

1

g

g∑
i=1

|Γε
i |, (24)

where |Γε
i | is the size of the predicted region for each instance i at a significant level

ε. Small values are preferable.

First, we report the values of the S criterion to measure efficiency by the average sum of the
p-values obtained from the Mahalanobis and Norm nonconformity measures for both the
Emotions and Yeast datasets. The results are presented in the Table 5. For the Emotions
dataset, the S− criterion value provided by the p-values using the Mahalanobis measure is
slightly smaller than the value associated with the Norm measure. However, for the Yeast
dataset the S−criterion values are significantly different. The Mahalanobis nonconformity
measure generates significantly smaller p-values overall.

Table 5: Mahalanobis and Norm S-criterion comparison

Mahalanobis Norm

Emotions 547.005 560.869
Yeast 30922.511 81839.323

Figure 1 presents the comparison of prediction region size on average per significance
level ε between the Mahalanobis and Norm nonconformity measures. Particularly, we focus
on significance levels in the range [0, 40]. For both datasets, the conformal predictor as-
sociated with the Mahalanobis nonconformity measure gives on average smaller prediction
regions than the ones associated with the Norm measure.

We note that the number of possible label-sets is 64 and 16.384 for the Emotions
and Yeast dataset, respectively. In Table 6, we focus on four significance level values:
0.01, 0.05, 0.1, 0.2 and report the prediction region size as a percentage of the number
of possible label-sets. In all cases the Mahalanobis measure produces smaller regions, with
the values for the Yeast dataset demonstrating an impressive reduction. In the best case,
of the 0.2 significance level, the mean prediction region size of the Mahalanobis measure is
five times smaller.
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(a) (b)

Figure 1: Mahalanobis and Norm N-Criterion - Graph comparison.

Table 6: Mean Prediction Region size as a percentage of the number of possible label-sets

Emotions dataset

Level Mahala (%) Norm (%)

0.01 77 83
0.05 62 70
0.10 53 59
0.20 42 47

Yeast dataset

Level Mahala (%) Norm (%)

0.01 17 42
0.05 6 21
0.10 3 12
0.20 1 5

4.4. Empirical coverage

Figures 2 and 3 display the correct-rate of the predicted sets (percentage that covers the
true label-set) obtained per significance level in the range of [0, 1] for the two datasets. For
the both datasets, the correct-rate closely aligns with the diagonal line, indicating a strong
correspondence between the nominal and empirical coverage rates.

5. Conclusions and future work

This work proposes a multi-label ICP with Mahalanobis distance nonconformity measure.
In particular, the Mahalanobis transformation is defined by a covariance matrix formed by
error vectors in the proper-training set. These vectors in the error space are injectively
mapped to the label-sets space, rendering the conformal predictor associated with the Ma-
halanobis measure valid.

The covariance matrix considers correlations between error vectors and thus results is
higher informational efficiency compared to the Euclidean Norm nonconformity measure.
To assess the efficiency of Mahalanobis measure against Norm measure, we calculate the S-
criterion and N-criterion. The predicted region sizes per significance level using the action of
Mahalanobis measure is significantly smaller than that of the Norm measure. Additionally,
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(a) Mahalanobis Correct-rate per level ε (b) Norm Correct-rate per level ε

Figure 2: Mahalanobis and Norm Correct-rate for Emotions dataset.

(a) Mahalanobis Correct-rate per level ε (b) Norm Correct-rate per level ε

Figure 3: Mahalanobis and Norm Correct-rate for Yeast dataset.

there is a notable difference in the average sum of the p-values obtained from the two
measures.

Our immediate future direction involves developing a method for efficiently generating
the power set of labels based on the idea proposed by Maltoudoglou et al. (2022). The size of
the power set depends on the number of classes, and by reducing computational complexity,
particularly for datasets with numerous classes, we can further explore the application of
the Mahalanobis nonconformity measure. Moreover, we plan to examine the formulation of
a more informative approach for displaying the predicted region results.
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