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Abstract

Active learning has received considerable attention as an approach to obtain high predic-
tive performance while minimizing the labeling effort. A central component of the active
learning framework concerns the selection of objects for labeling, which are used for itera-
tively updating the underlying model. In this work, an algorithm called CoPAL (Conformal
Prediction for Active Learning) is proposed, which makes the selection of objects within
active learning based on the uncertainty as quantified by conformal prediction. The effi-
cacy of CoPAL is investigated by considering the task of estimating the remaining useful
life (RUL) of assets in the domain of predictive maintenance (PdM). Experimental results
are presented, encompassing diverse setups, including different models, sample selection
criteria, conformal predictors, and datasets, using root mean squared error (RMSE) as the
primary evaluation metric while also reporting prediction interval sizes over the iterations.
The comprehensive analysis confirms the positive effect of using CoPAL for improving
predictive performance.

Keywords: Conformal Prediction, Active Learning, Machine Learning, Regression, Pre-
dictive Maintenance, Remaining Useful Life prediction, and Time Series.

1. Introduction

In decision-making processes, humans have the ability to adapt and optimize their decisions
based on new information, allowing them to refine their decisions over time iteratively. In
contrast, machine learning algorithms typically do not have this flexibility; their decision
is based on the dataset on which they are trained. This inherent limitation of machine
learning highlights the need to include human intervention and supervision in machine
learning decision-making processes. Human-in-the-loop approaches provide the opportunity
for machine learning models to enhance their decisions under the supervision of humans.
Active learning is a methodology that employs the human-in-the-loop strategy in machine
learning (Settles, 2009). It refines the model’s predictive efficiency by retraining iteratively
and incorporating the feedback loops from human experts. It is also known for its power to
optimize the labeling process through strategic sample selection and annotation, especially
in scenarios where labeled data is limited or costly to obtain. Active learning works on
the assumption that not all of the samples in the dataset are equally informative for model
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improvement. To select the most informative ones for annotation or label correction, there
are various query strategies. Among all, uncertainty-based query strategies are significant
for their ability to effectively use the uncertainty level in the model’s prediction for selecting
and querying informative samples to oracle in active learning. To quantify the uncertainty
level in predictions, many approaches have been considered (Settles, 2009), e.g., Shannon’s
Entropy (Shannon, 1948), decision trees (Lewis and Catlett, 1994), and nearest-neighbor
classifiers (Fujii et al., 1999). More recently, Conformal Prediction has emerged as a highly
beneficial approach for obtaining uncertainty scores for data samples. Conformal prediction
is particularly useful as it offers reliable uncertainty measures in prediction tasks instead of
point predictions. While conformal prediction has been widely utilized for different tasks,
only a few studies investigate the effect of using techniques from this area for active learning,
e.g., (Matiz and Barner, 2019, 2020). However, these studies considered active learning for
classification tasks. To the best of our knowledge, this work is the first to investigate the
benefits of using conformal prediction for active learning on regression tasks. The main
contributions of this paper are summarized as follows:

• We propose the CoPAL algorithm, the first model-agnostic algorithm that integrates
Conformal Prediction in the Active Learning framework for regression tasks.

• We demonstrate the efficacy of our CoPAL algorithm in enhancing performance in
time-series regression problems.

• We illustrate the benefits of the CoPAL algorithm on Predictive Maintenance problems
using real-world data.

One specific use case of this algorithm is enhancing the Remaining Useful Life (RUL)
estimation in Predictive Maintenance (PdM). Original Equipment Manufacturers (OEMs)
and vehicular companies aim to implement an optimized maintenance strategy to enhance
operational efficiency and reduce operational costs for their customers. Predicting the RUL
of components using PdM techniques emerges as a crucial solution to achieving this objec-
tive. However, the effectiveness of RUL prediction relies heavily on access to a large volume
of data with corresponding labels and true RUL, which may not always be readily available
in real-world applications. Moreover, the practicality of sending all vehicles to workshops
for RUL estimation is limited due to logistical constraints and resource considerations. Con-
ducting comprehensive checks on every vehicle within a large fleet is time-consuming and
resource-intensive. Furthermore, not all vehicles may require immediate attention or ex-
tensive maintenance interventions. In such scenarios, there is a clear need to implement a
more strategic approach for selecting vehicles for RUL estimation that optimizes resource
utilization and maximizes the effectiveness of predictive maintenance efforts. This research
uses the proposed CoPAL methodology to tackle such challenges in PdM since it is based
on active learning and conformal prediction.

The subsequent sections of this paper are organized as follows: Section 2 reviews work
related to this study. Section 3 presents the problem formulation and describes CoPAL.
The use case of this algorithm on a time series dataset in the PdM domain is provided in
Section 4. Experiments and results are demonstrated in Section 5. Finally, in Section 6,
the conclusion of this study is discussed together with possible directions for future work.
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2. Background

2.1. Active Learning

Active learning is a paradigm in machine learning that iteratively selects the most infor-
mative samples from an unlabeled pool of data and sends them as a query to the oracle (a
supervisor or an expert) to label or correct the label of the selected samples with the goal
of improving the model’s performance by experiencing and retraining (Settles, 2009, 2012).
One of the important aspects that underpin active learning is having a model-agnostic na-
ture. This principle creates flexibility in freely choosing the desired model. One application
of active learning is the efficient use of labeling resources. This paradigm reduces the need
for manually labeling the whole dataset. Instead, it focuses on selecting the most infor-
mative samples. This is beneficial in terms of saving time and resources, especially when
labeling large datasets. Some examples of this application can be seen in (Kharazian et al.,
2023; Barata et al., 2021; Chen and Mani, 2011; Gissin and Shalev-Shwartz, 2019), where
active learning helped annotate a highly imbalanced and large dataset more efficiently and
refined the model’s performance. In general, an active learning strategy can be summarized
in the following steps: 1) Initialization: Selecting a small labeled training set and a large
unlabeled pool. 2) Model training: Training a naive model on the selected samples. 3)
Sample selection: Predicting the pool instances’ labels using the trained model and select-
ing the most informative samples based on the desired query strategy. 4) Feedback: Label
or correct the selected samples’ labels. 5) Model update: re-train the model with newly
added samples.

In this paradigm, various sample selection strategies, a.k.a, query strategies, can be used
to select the most informative samples according to the desired application. Uncertainty
sampling (Lewis, 1995), Diversity Sampling, and Query-by-Committee Sampling (Seung
et al., 1992) are among the existing common query strategies. Uncertainty sampling is one
of the most popular methods that select the samples based on their uncertainty scores,
which measures the model’s uncertainty or confidence in its predictions. Consequently,
shows how reliable the model prediction for a given instance is. The higher the uncertainty
score, the lower the confidence level in the prediction.

In this study, we estimate the remaining useful life of components, making the task
regression-oriented. For this purpose, uncertainty sampling is selected as the query strategy,
which selects samples based on their uncertainty score in prediction. In other words, the
active learner queries samples with the model’s confidence level in their prediction from the
unlabelled pool.

2.2. Conformal Prediction

Conformal prediction, introduced in (Gammerman et al., 1998; Vovk et al., 2005; Pa-
padopoulos et al., 2002) is a powerful framework that allows the error rate of any predictive
model to be controlled. This is achieved by turning a point prediction into a prediction set
with a guaranteed coverage rate; the user specifies a level of confidence, which gives a lower
bound for the probability that the true target is included in the output prediction set. The
framework is model-agnostic and can be used with any classification or regression model.
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Since the coverage rate is guaranteed by the framework, under the assumption of ex-
changeability, conformal predictors are often evaluated with respect to the informativeness,
e.g., the size of the prediction sets. The size of a prediction set may also give an indication
of the uncertainty of the underlying model’s point prediction. For regression problems, a
larger (smaller) prediction interval indicates a higher (smaller) expected deviation between
the predicted and actual value. It should be noted, however, that for standard (non-
normalized) conformal regressors, all prediction intervals are of the same size, and they do
hence not provide any specific information on the uncertainty of the point predictions.

To make these intervals more informative, normalization (Papadopoulos et al., 2008)
may be employed by using some difficulty estimator. However, as pointed out in (Boström
and Johansson, 2020), normalization has the drawback that the resulting prediction intervals
may not reflect actual errors; the intervals may be many times larger (or smaller) than the
largest (smallest) observed error. As a remedy, so-called Mondrian conformal regressors
were proposed in (Boström and Johansson, 2020), by which a standard conformal regressor
is formed for each Mondrian category, which in turn can be formed by, e.g., binning the
difficulty estimates.

It should, however, be noted that for both Mondrian and normalized conformal regres-
sors, the correlation between the size of the prediction interval and the (absolute) error
of the prediction is determined by the employed difficulty estimator; for a non-informative
(random) estimator, the correlation coefficient can be expected to be close to zero. This also
holds for both normalized and Mondrian conformal predictive systems (Vovk et al., 2020;
Boström et al., 2021), where the prediction intervals may be extracted from the output
conformal predictive distributions.

2.3. Predictive maintenance (PdM)

Predictive maintenance (PdM) represents a transformative part of the industry as a whole
(often referred to as Industry 4.0) for improving efficiency, and reliability, together with cost
savings (Achouch et al., 2022; Revanur et al., 2020). PdM utilizes data analytics, machine
learning algorithms, and Internet of Things (IoT) technologies to anticipate maintenance
needs before they become critical issues. This proactive strategy is particularly important
in the automotive sector, where vehicle performance and safety are of great importance. In
the automotive industry, PdM is used for optimizing maintenance strategies (de Jonge and
Scarf, 2020; Karlsson et al., 2023; Lindgren et al., 2013), minimizing downtime (Pavlopoulos
et al., 2024; Rylander, 2023), and reducing repair costs (Biteus and Lindgren, 2017). The
importance of maintenance planning will most probably increase even more with the advent
of autonomous or semi-autonomous heavy vehicles. Here we refer to semi-autonomous
vehicles as vehicles that have a driver that can interact with the vehicle if the autonomous
driving system, for any reason, cannot cope with the traffic situation and hands over control
to the human. In the near future, this would probably mean having a driver onboard a
vehicle, but further ahead, human drivers could remotely take control of the truck(s), similar
to drone operators of today. One key element here is that humans onboard a vehicle can
act as very sensitive sensors, feel vibrations, smell exhaust gases, etc. This type of sensor
feedback from onboard humans will not be available for autonomous vehicles, which need to
be equipped with more sensors for handling autonomous driving but also for monitoring and
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predicting the health status of each vehicle. Thus, both introduce more complexity and the
ability to create better data-driven PdM models. In preparation for such a scenario, there
has been a fair bit of research for creating frameworks for handling both fully autonomous
vehicles and semi-autonomous vehicles from a PdM perspective, for example, (Jones et al.,
2024; Tao et al., 2022). Traditionally, maintenance strategies come in two main different
types, see (Swanson, 2001): Corrective maintenance - where the asset runs until failure
occurs, and Preventive maintenance - where parts of an asset are serviced or changed before
failure. Both strategies often lead to inefficiencies, unexpected downtime, and increased
costs. In contrast, predictive maintenance leverages statistical and data-driven insights
and machine learning techniques to detect early signs of potential issues and predict asset
failures before they occur preemptively, see (Rahat et al., 2020, 2022). This allows OEMs
and industrial organizations to estimate future failures and schedule their maintenance
activities at optimal times. The RUL prediction of components using regression models is a
critical aspect of PdM that predicts the amount of time a component has left before it fails.
The regression models in the PdM strategy can detect the time of failure by monitoring
real-time equipment conditions and analyzing the historical data from that equipment, see
(Rahat et al., 2023). Such data usually includes sensor readings, operating conditions,
maintenance history, environmental variables, and component specifications.

3. Problem Formulation and Methodology

The overall workflow of the CoPAL approach is illustrated in Figure 1 and can be expressed
by three layers: 1) Initialization, 2) Model training and sample selection, and 3) Model
update. Algorithm 1 states the steps of CoPAL, and the subsequent section elaborates on
these procedures in alignment with the objectives of this study.

Figure 1: CoPAL workflow
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Algorithm 1: CoPAL (Conformal Prediction for Active Learning)

Input: D,model, n iterations, n rounds
1 for round← 1 to n rounds do

// Initialization

2 Separate D into DL and DU;
3 DL = Dproper train ∪ Dcalibration;
4 DU = Dpool ∪ Dtest;

// Model training & sample selection

5 for iter ← 1 to n iterations do
6 learner = model.fit(Dproper train);
7 evaluate(learner,Dtest);
8 for i← 1 to len(Dpool) do
9 prediction interval←

Conformal Prediction(learner, calibration,Dpool[i]);
10 Dpool[i].interval length =

prediction interval.max− prediction interval.min;

11 end
12 Dpool.sort(by = interval length);
13 if policy = most uncertain then
14 selected samples← select head(Dpool, n samples)

15 end
16 else if policy = most certain then
17 selected samples← select tail(Dpool, n samples)
18 end
19 else if policy = random then
20 selected samples← select random(Dpool, n samples);
21 end

// Model Update

22 corrected selected samples← Query(selected samples);
23 Dpool ← Dpool \ selected samples;
24 Dproper train ← Dproper train ∪ corrected selected samples;

25 end

26 end

3.1. Initialization

Let D represent the available dataset. According to the definition of active learning, during
the initialization layer, the CoPAL algorithm first separates the dataset into two parts (see
also steps 2 to 4 of the Algorithm 1):

1. The labeled subset DL = {(Xi, yi) : i ∈ IL} where IL is the set of indices corresponding
to instances that have been labeled, and for each Xi, its corresponding label yi is
known. This DL is then split into two disjoint parts of Dproper train and Dcalibration.
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2. The unlabeled subset DU = {(Xi, ) : i ∈ IU}, where IU denotes the set of indices for
which instances remain unlabeled, and hence, only the feature vectors Xi are available
without their corresponding labels. This DU is then split into two disjoint parts of
Dpool and Dtest.

It is assumed that D constitutes a disjoint union of DL and DU, formalized as D = DL∪DU

and DL ∩DU = ∅, ensuring that each instance in D is exclusively a member of either DL or
DU.

3.2. Model Training and Sample Selection

In the model training and sample selection layer (steps 5 to 21 of the Algorithm 1), a learner
(initial model: f) is trained on the initial labeled proper train set (Dproper train) (step 6).
Since CoPAL is a model-agnostic framework, any machine learning regressor model can be
used for target prediction. In the next steps (8 to 11), a conformal predictor constructs the
prediction intervals for the predicted target using a conformal prediction method like Mon-
drian regressor or a conformal predictive system. These conformal regressors use the trained
model to make predictions on the calibration data (ŷi = h (xi) where xi ∈ Dcalibration). They
also calculate the difficulty score of the samples in the calibration set using difficulty es-
timators. Then, the trained model is calibrated using the calibration set. Afterward, the
difficulty score and the point prediction are also calculated for all samples in the pool set.
Using this information, the model provides the prediction distribution of the pool set. We
can get the prediction intervals from this distribution for the model’s prediction depending
on the desired confidence level. For instance, given 95% confidence, the prediction inter-
vals are obtained from a CPS by setting the lower and higher percentiles to 2.5 and 97.5,
respectively. The length of the predicted intervals for each sample is calculated, and these
values are sorted in descending order in step 12. Now that these intervals are ready and
sorted, in steps 13 to 21, the algorithm selects some instances (n samples) using the desired
query strategy Q or policy from Dpool for labeling or label correction.

It is worth noting that the selection process hinges on a query strategy Q, which eval-
uates the unlabeled instances’ potential informativeness or value based on criteria such
as uncertainty, representativeness, or a combination thereof. The selected samples would
be different depending on the desired policy for sample selection. This study chooses five
policies to evaluate their influence on model performance in predicting the samples’ target.
Most uncertain, most certain, and random selection are the main policies, and two more
policies based on the Roulette Wheel Selection (a.k.a Fitness proportionate selection) from
the first two main policies are considered for selecting samples. These policies are referred
to as Most uncertain roulette and Most certain roulette. Most uncertain policy selects the
first n samples (an arbitrary number) samples from the sorted pool having the highest pre-
diction interval length. While the Most certain policy selects n samples with the smallest
prediction interval length. The random policy is considered a baseline policy and selects
random samples from the pool. Moreover, the two other policies (Most uncertain roulette
and Most certain roulette) use a stochastic technique in genetic algorithms that selects sam-
ples for reproduction. Given a population, each sample gets a fitness score, and the roulette
wheel selection calculates the total fitness of the population together with the probability
of each sample being selected. This method simulates the spin of a roulette wheel, with
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each portion proportional to the samples’ selection probability. This method ensures that
the samples with higher fitness scores contribute more to the selection process while still
allowing the selection of less informative samples to maintain the diversity of the population.

3.3. Model Update

After the sample selection step, the selected samples can be used to provide feedback to
the model. According to Algorithm 1, in step 22, the selected samples are queried to oracle
for checking and correcting the model’s decision. Then, in steps 23 and 24, these samples
will be removed from the Dpool and incorporated into the Dproper train with their correct
labels, making the training set larger (This is showed with dotted dataset in Figure 1) and
potentially more informative for the next model training. For the next iterations, all the
steps from 5 to 25 will be repeated. In each iteration, the performance of the trained model
will be evaluated on the test set (step 7). Finally, to have a stable evaluation of the CoPAL,
the whole algorithm is repeated for n rounds (here 5 rounds) based on n rounds data splits
and is evaluated by averaging the performance metrics across these rounds.

4. Application of CoPAL in Time Series Regression and Predictive
Maintenance

This section illustrates and models one possible application of the CoPAL algorithm in
enhancing the RUL prediction in PdM when the dataset is a multivariate time series.

Given D is a multivariate time series dataset. Xv
t ∈ RN and yvt are a feature vector and

target variable (true RUL), respectively for vehicle v at time t. Where N is the number of
covariants, t ∈ T indicates the time step, and v ∈ V represents the vehicle number.

This type of dataset includes temporal information, meaning that each vehicle has mul-
tiple readouts in its history until it fails. To include this temporal information in the model,
we treat the temporal data from a vehicle as individual observations. Hence, each readout of
a vehicle is considered an independent data point for that vehicle. Now the task is to train
a predictive regressor model f that accurately estimates the remaining useful life (RUL) of
components using the multivariate time series data. Formally, we seek to learn a mapping
f : X → Y , where X is the input space (multivariate time series feature space) and Y is
the output space (RUL values). For the sake of simplicity and without restricting the scope
of our analysis, we can redefine each data point in the dataset as a pair consisting of input
features (Xi) and corresponding output or target value (yi), where i represents the index

of that specific data point within the dataset and yi = tlifetime
i where:

tlifetime
i = tfailurei − treadouti (1)

treadouti and tfailurei representing the readout time and failure time for the ith sample, re-
spectively.

Upon dataset preparation, it undergoes processing within Algorithm 1, as detailed earlier
in Section 3. The only difference lies in incorporating the dataset’s temporal aspect within
this algorithm. In this case, we calculate the prediction intervals (steps 8 to 11) for all
the readouts of each vehicle in the pool set. Finally, the average of the calculated intervals
for each vehicle will be reported as the prediction interval of that vehicle. Considering
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the temporal information of the dataset in a real-world setting, allows the model to take
into account the history of the vehicles when selecting informative vehicles as feedback to
workshops for further assessment more robustly.

This approach also allows us to handle the inherent non-exchangeability of the time
series data. In our study, individual samples were treated separately, and the prediction
intervals were averaged for each vehicle to manage this non-exchangeability. Furthermore,
it is crucial to keep observations from the same vehicles within the same split and not share
them between different splits to avoid information leakage between data splits. By splitting
the data based on vehicles rather than individual observations, we ensure that there is
no such leakage and maintain the integrity of our model training and evaluation process.
In other words, in this research, we have adopted vehicle-based exchangeability rather
than sample-based exchangeability. This approach helps us better manage the inherent
correlations within the time series data.

5. Experiments and Results

5.1. Experimental setup

This section delineates the experimental setup employed to investigate the performance of
CoPAL in a regression task, specifically in RUL prediction. To achieve this goal, multiple
experiments with different setups are designed. Table 1 summarizes the setup utilized in this
study. These setups differ in the choice of machine learning models for training, conformal
prediction technique for finding conformal intervals, following different policies for sample
selection, the choice of the dataset, and finally, the evaluation method.

Table 1: Experimental setups

Model Query strategy Conformal predictor Data Evaluation

XGBoost Most-uncertain norm Mond CPS Component X RMSE
Random Forest Most-uncertain-roulette std Mond CPS C-MAPSS Test interval

Most-certain Mond reg
Most-certain-roulette
Random

5.1.1. Dataset

To assess the effect of the CoPAL framework on the regressor model’s performance, two
multivariate time series datasets in the field of PdM are selected; One real-world data from
an engine component called Component X of SCANIA trucks and one synthetic data from
the turbofan jet engines from NASA. Both of these datasets are publically available, which
makes this study reproducible.

Component X data This real-world time series dataset is collected from an engine com-
ponent from SCANIA trucks (Lindgren et al., 2024; Kharazian et al., 2024) and is available
at the Swedish National Data Service 1. It contains three sources of information about

1. See https://doi.org/10.58141/1w9m-yz81
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the Component X of trucks. Operational data, time-to-event information, and specification
of trucks. The operational data includes sensor readings collected from various onboard
sensors producing more than one million readouts and 107 columns collected from around
23000 vehicles. Time-to-event data contains the time of the event, which is the time of
repair of Component X on the trucks for the first time. It also includes the label for the
component that shows whether it has been repaired (repaired=1) or has not (repaired=0).
Moreover, the time-to-event data is skewed toward the class 0. The specification data in-
cludes categorical variables that provide detailed specifications of the trucks. This research
uses only the operational and time-to-event information to evaluate the CoPAL algorithm.
To prepare this data for the experiments, we need to merge the information from the time-
to-event data with the operational data. The true target (actual RUL) is calculated by
subtracting the start time from the repair time according to Equation (1). Furthermore,
for the RUL prediction task, only the readouts corresponding to repaired instances in the
dataset are considered for analysis, while the healthy components are excluded. Finally,
the rows with missing values are removed from the dataset, justified by their infrequent
occurrence, composing less than 1% per variable.

C-MAPSS data The next dataset contains the operational and run-to-failure data from
turbofan engines synthesized using the Commercial Modular Aero-Propulsion System Sim-
ulation (C-MAPSS). This is also publicly available and contains four different sets of data
with different experimental setups, such as different types of fault modes. For simplicity,
we used the first set called ”train FD001.txt”, which considers only one type of failure. In
total, it contains 21 numerical sensor measurements for each unit’s operation time cycle.
Moreover, this set includes 20631 readouts from 100 units, all of which have experienced
failure, and each unit has multiple readouts for all of its operating cycles. The actual RUL
for each unit is calculated using Equation (1) by subtracting the readout time from the last
time in cycles for that unit in the dataset.

Thereupon, both datasets are split following the active learning paradigm. The initial
percentage of samples in each set are as follows: proper train (1%), calibration (14%), pool
(60%), and test set (25%). Each set contains complete readouts of the selected unique
vehicles.

5.1.2. Model

In this study, XGBoost (XGB) and Random Forest (RF) regressors with their default hy-
perparameters are chosen as training models due to their ability to handle complex datasets,
high predictive accuracy, and faster training times.

5.1.3. Conformal Prediction method

For this study, three conformal predictors for regression tasks, including the Mondrian re-
gressor (Mond reg), normalized Mondrian conformal predictive system (norm Mond CPS),
and standard Mondrian conformal predictive system (std Mond CPS) from the Crepes pack-
age (Boström, 2022) are used to obtain the prediction intervals and assess the uncertainty of
the model in prediction. Furthermore, these conformal predictors typically involve hyper-
parameters like the confidence level, number of bins, and difficulty estimator that impact
the conformal predictor’s performance. In this study, since we focus on the order of the

10



CoPAL

intervals’ sizes for sample selection, changing the confidence level might not affect the result,
so the confidence level is selected as the default value (95%). Also, the number of bins for
Mond reg, norm Mond CPS, and std Mond CPS is selected as 10, 5, and 5, respectively.
Furthermore, the difficulty estimator from crepes.extra module is employed to estimate the
difficulty of samples in the calibration set based on the standard deviation of the target
variables of the k nearest neighbors (default k=25) in the training set.

5.1.4. Query Strategies

Uncertainty sampling is chosen as the query strategy in the active learning setup of the
CoPAL. In general, the choice of query strategy may vary depending on the application.
Here, since estimating the RUL of components is of interest, Uncertainty sampling for the
regression task is chosen to provide the uncertainty of the model’s decision in prediction.
Accordingly, five policies in sample selection are implemented to scrutinize the efficacy
of CoPAL when choosing different samples to query the oracle for prediction correction.
Most Uncertain, Most Uncertain roulette, Most Certain, Most Certain roulette, and Ran-
dom selection are these policies in this study, which are explained in Section 3.2. Regarding
choosing the number of vehicles to query the oracle in each iteration, 226 vehicles for
Component X and 9 units for the C-MAPSS dataset are considered in this study. These
numbers are chosen according to several considerations: the total number of samples in the
dataset, the number of iterations (here is 7), and the feasibility for expert review. Please
note that the model was trained using the entirety of readouts obtained from each vehicle,
encompassing multiple data points, rather than relying solely on individual readouts.

5.1.5. Evaluation

To evaluate the performance of the regressor model in RUL prediction during iterations,
the Root Mean Squared Error (RMSE) is selected. This metric measures the average of
the residuals or errors between the predicted values and the actual values in each iteration
of the CoPAL (see Equation (2)). In this study, using RMSE on the test set, the model’s
performance is assessed in every iteration of the active learning setup. The main benefit
of choosing this metric is that the output of this measure has the same unit as the target
variable (here, the time step, RUL). This makes it easy for the end user to interpret.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2)

Another evaluation metric is to investigate the trend of the prediction intervals in the
test set during the iterations. A decrease in interval length could be interpreted as the
increasing power of the model through having more certainty in decision-making as the
iterations progressed.

5.2. Experimental results

The goal of experiments in this study is to assess the performance of the CoPAL algorithm
using different machine learning models, sample selection policies, conformal prediction
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methods, and datasets in predicting the Remaining Useful Life (RUL) of vehicle compo-
nents. In general, we divide the experiments into two main parts: Experiments on the
Component X and experiments on the C-MAPSS dataset. For both datasets, two machine
learning models, three conformal prediction methods, five sample selection policies, and two
evaluation metrics are employed.

5.2.1. Experimental results on Component X

Figure 2 illustrates the trend of RMSE in the CoPAL framework on the Component X
dataset. Figures 2(a), 2(c) and 2(e) demonstrate the performance of the XGB model over
iterations for five policies in sample selection using norm Mond CPS, std Mond CPS, and
Mond reg, respectively. Furthermore, Figures 2(b), 2(d) and 2(f ) make the same com-
parison of choosing different sample selection policies and different conformal prediction
methods while having an RF model. Looking more closely, for instance, Figure 2(b) illus-
trates the RMSE trend in RUL prediction in 7 iterations of active learning. The x-axis
shows the iteration number at the bottom of the figure and the number of vehicles used
for training in that iteration at the top of the figure (Please note that each vehicle includes
multiple (between 5 to 303) readouts in different time steps). The continuous lines represent
the average values, and shaded regions show the variance of RMSE in RUL prediction when
the CoPAL is repeated 5 rounds with different data splits. Different colors correspond to the
sample selection policy. See all these five rounds of CoPAL before averaging for Figure 2(b)
in Figure 7 in the Appendix A. Referring to Figure 2, generally, the error level decreased for
both models and all scenarios after the desired model was retrained iteratively. Moreover,
it is evident that two most uncertain and most uncertain roulette sample selection poli-
cies mostly outperform the random and other policies, especially when norm Mond CPS is
selected for calculating the prediction intervals. While the most certain and most certain
roulette policies showed less contribution to enhance the performance.

A more detailed analysis of the results can be found in Table 2. This table compares the
performance of XGB and RF using the top two policies (most uncertain and most uncertain
roulette) and random policy when choosing different conformal predictors. Overall, the er-
ror level decreased for both models and all scenarios after the desired model was retrained
iteratively. Please note that each numeric cell denotes the mean and variance of RMSE for
5 different test sets (derived from five data splits) repeated in the corresponding iteration.
The best result derived by using each model, is reported in bold and Italics. More specifi-
cally, the RF model could achieve the best results in RUL prediction (59.93 ± 1.6) for the
Component X dataset using norm Mond CPS for prediction interval calculation and the
most uncertain sample selection policy. The second-best result of the RF model (60.34 ±
1.0) showed in bold comes with the std Mond CPS and Mond reg when choosing the most
uncertain policy. We can also conclude that using RF and the best sample selection policy,
on average, the RMSE has decreased 13.68 units from the first iteration (73.61) to the fifth
iteration of active learning (59.93).

When choosing the XGB model, the best results can be achieved by using norm Mond CPS
(63.44 ± 2.1) for prediction interval calculation and the most uncertain sample selection
policy. And the second-best result (63.75 ± 1.3) is obtained through Mond reg and the
most uncertain policy. This shows using the CoPAL algorithm, the RMSE decreased by
13.06 units from the first iteration of active learning (76.05) to the fifth iteration (63.44)
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(a) Model:XGB, CP:norm Mond CPS
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(b) Model:RF, CP:norm Mond CPS
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(c) Model:XGB, CP:std Mond CPS
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(d) Model:RF, CP:std Mond CPS
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(e) Model:XGB, CP:Mondrian-regressor
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(f ) Model:RF, CP:Mondrian-regressor

Figure 2: The RMSE trend on the Component X dataset.
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using the best setups for the Component X dataset. In other words, on average, the model’s
predictions are now closer to the true remaining useful life values by approximately 13.06
time steps.

Table 2: Data: Component X, policy: all

Model itr
most uncertain most uncertain roulette random

Mond reg norm-Mond-CPS std-Mond-CPS Mond reg norm-Mond-CPS std-Mond-CPS any CPR

XGB

0 76.05 ± 2.1 76.05 ± 2.1 76.05 ± 2.1 76.05 ± 2.1 76.05 ± 2.1 76.05 ± 2.1 76.05 ± 2.1
1 70.03 ± 5.2 68.60 ± 3.5 77.90 ± 6.2 69.71 ± 2.0 68.56 ± 1.6 68.07 ± 0.9 69.78 ± 1.2
2 67.28 ± 3.7 66.45 ± 2.3 71.99 ± 2.9 67.88 ± 0.8 66.30 ± 1.2 67.72 ± 0.7 68.44 ± 1.7
3 65.09 ± 2.8 65.11 ± 1.9 67.09 ± 1.7 66.76 ± 1.3 65.80 ± 0.6 66.68 ± 1.3 67.37 ± 1.5
4 64.53 ± 1.6 63.44 ± 2.1 65.15 ± 1.3 65.85 ± 1.0 64.93 ± 1.2 65.91 ± 1.5 66.46 ± 1.3
5 63.75 ± 1.3 63.85 ± 1.2 64.66 ± 1.3 65.72 ± 1.2 65.74 ± 1.4 65.78 ± 1.5 65.33 ±1.2
6 65.12 ± 1.3 65.12 ± 1.3 64.79 ± 1.1 65.14 ± 1.1 65.00 ± 0.9 64.90 ± 1.1 65.36 ± 1.1

RF

0 73.61 ± 2.0 73.61 ± 2.0 73.61 ± 2.0 73.61 ± 2.0 73.61 ± 2.0 73.61 ± 2.0 73.61 ± 2.0
1 66.46 ± 4.0 64.33 ± 2.7 73.26 ± 5.3 65.39 ± 1.6 63.87 ± 2.2 63.67 ± 1.7 65.16 ±1.2
2 64.35 ± 3.6 60.87 ± 1.8 67.10 ± 3.1 63.63 ± 1.6 62.03 ± 1.6 62.36 ± 1.4 64.17 ± 1.5
3 62.08 ± 2.1 60.00 ± 2.0 62.17 ± 1.5 62.90 ± 1.4 61.59 ± 1.1 62.15 ± 1.0 63.87 ± 1.4
4 60.34 ± 1.0 59.93 ± 1.6 60.34 ± 1.7 62.20 ± 1.7 61.39 ± 1.1 62.06 ± 1.4 62.98 ± 1.6
5 60.40 ± 1.0 60.42 ± 1.5 60.92 ± 1.5 62.10 ± 1.4 61.53 ± 1.3 61.87 ± 1.1 62.11 ± 1.2
6 61.80 ± 1.3 62.00 ± 1.3 61.87 ± 1.2 61.98 ± 1.3 61.82 ± 1.3 61.86 ± 1.4 61.90 ± 1.3

Ultimately, we devised a complementary experiment to assess the model’s uncertainty in
predicting the RUL of the test set and to monitor the length of decision intervals through-
out the iterations of active learning. This was aimed at evaluating whether the intervals
in the test set exhibited a reduction in length over successive iterations. A decrease in
interval length would indicate that active learning facilitated the model in gaining greater
certainty regarding its predictions for the test set as the iterations progressed. Here, we
implemented this experiment on the Component X dataset while having an RF model and
norm Mond CPS and std Mond CPS conformal predictor.
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Figure 3: The size of the prediction intervals for the test set of Component X data in case
the model is RF and the conformal predictor are std Mond CPS and std Mond CPS

The result of this complementary experiment shown in Figure 3 indicates a reduction
in the length of prediction intervals for the test set and approves the improvement of the
model’s certainty in predicting the test set over iterations.
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Delving deeper into the size of prediction intervals for the test set using CoPAL, Figure 4
depicts the prediction values and their corresponding intervals for a selection of random
vehicles (for simplicity, one random readout from each random vehicle is chosen). The RF
model is used in this experiment, along with Mond reg and std Mond CPS as conformal
predictors. Comparing Figure 4(a) with Figure 4(b) and Figure 4(c) with Figure 4(d), we
can see that the prediction interval for these vehicles decreased over 5 iterations, meaning
that the model became more certain in its decision using CoPAL algorithm.

(a) First iteration, CP:Mondrian-regressor (b) Fifth iteration, CP:Mondrian-regressor

(c) First iteration, CP:std Mond CPS (d) Fifth iteration, CP:std Mond CPS

Figure 4: The size of the prediction intervals for the test set of Component X data in
case the using RF as the model and Mondrian-regressor and std Mond CPS as conformal
predictor

5.2.2. Experimental results on C-MAPSS

Figure 5 illustrates the averaged RMSE trend of the CoPAL framework on the C-MAPSS
dataset during iterations over five rounds. In general, we can see a decreasing trend of
averaged RMSE in all scenarios of the CoPAL algorithm.

Looking more closely, Figures 5(a), 5(c) and 5(e) show the results for XGB model
and Figures 5(b), 5(d) and 5(f ) illustrate the result for RF when having norm Mond CPS,
std Mond CPS, and Mond reg as conformal predictors, respectively. Here, in most cases, the
most uncertain, most uncertain roulette, and most uncertain roulette outperformed other
policies. Furthermore, Table 3 contains the detailed analysis of CoPAL on the C-MAPSS
dataset for the three most effective sample selection policies and random selection. The best
result derived by using each model and its corresponding conformal predictor is reported
in bold and italics. The XGB could achieve the best averaged-RMSE (41.85 ± 3.8) when
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(a) Model:XGB, CP:norm Mond CPS
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(b) Model:RF, CP:norm Mond CPS
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(c) Model:XGB, CP:std Mond CPS
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(d) Model:RF, CP:std Mond CPS
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(e) Model:XGB, CP:Mond reg
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(f ) Model:RF, CP:Mond reg

Figure 5: The RMSE trend on the C-MAPSS dataset

using Mond reg and the most uncertain policy. The second-best result (42.02 ± 1.5) for this
model happens using norm Mond CPS to select the most certain roulette samples selection
policy. This shows using XGB in the CoPAL algorithm, the RMSE could be decreased by
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19.56 units from the first iteration of active learning (61.41) to the third iteration (41.85)
using the best setups for the C-MAPSS dataset. In the case of using RF as the model, the
CoPAL algorithm achieves the best performance (39.08 ± 3.5) using Mond reg to provide the
prediction intervals using the most uncertain sample selection policy. Moreover, the second
best result (39.22 ± 1.0) is achieved by using norm Mond CPS and most uncertain roulette
policies. Ultimately, we can conclude that the averaged RMSE decreased from 60.46 to
39.08 after three iterations using RF, resulting in 21.38 units better in RUL prediction.

Table 3: Data: C-MAPSS, policy: all

Model itr
most uncertain most uncertain roulette most certain roulette random

Mond reg
norm Mond

CPS
std Mond

CPS
Mond reg

norm Mond
CPS

std Mond
CPS

Mond reg
norm Mond

CPS
std Mond

CPS
any CPR

XGB

0 61.41 ± 11.2 61.41 ± 11.2 61.41 ± 11.2 61.41 ± 11.2 61.41 ± 11.2 61.41 ± 11.2 61.41 ± 11.2 61.41 ± 11.2 61.41 ± 11.2 61.41 ± 11.2
1 46.89 ± 8.7 49.63 ± 7.0 45.65 ± 6.0 49.36 ± 9.0 49.30 ± 9.1 48.19 ± 7.4 49.41 ± 7.2 43.61 ± 3.4 43.25 ± 2.2 52.82 ± 5.1
2 41.85 ± 3.8 47.62 ± 5.1 46.43 ± 4.5 45.31 ± 4.0 44.86 ± 3.9 44.33 ± 2.6 46.35 ± 4.5 43.12 ± 1.9 44.58 ± 2.6 48.23 ± 1.6
3 42.31 ± 2.9 44.79 ± 2.1 45.86 ± 4.3 42.97 ± 1.6 42.98 ± 1.7 42.43 ± 1.7 45.53 ± 1.8 43.31 ± 1.6 44.57 ± 1.7 44.84 ± 1.1
4 42.52 ± 2.2 44.43 ± 2.1 45.09 ± 3.7 42.83 ± 1.6 42.62 ± 1.2 42.52 ± 1.4 45.33 ± 1.9 43.40 ± 0.6 45.34 ± 1.5 43.99 ± 1.3
5 42.72 ± 2.8 43.27 ± 2.1 43.59 ± 2.7 42.74 ± 0.6 42.83 ± 0.7 42.63 ± 0.5 43.78 ± 1.6 42.64 ± 0.7 44.10 ± 1.5 43.18 ± 1.0
6 42.37 ± 1.6 42.35 ± 1.5 42.30 ± 1.7 42.21 ± 0.8 42.24 ± 1.4 42.56 ± 0.8 42.39 ± 1.0 42.02 ± 1.5 43.29 ± 1.0 42.19 ± 1.2

RF

0 60.46 ± 16.0 60.46 ± 16.0 60.46 ± 16.0 60.46 ± 16.0 60.46 ± 16.0 60.46 ± 16.0 60.46 ± 16.0 60.46 ± 16.0 60.46 ± 16.0 60.46 ± 16.0
1 45.63 ± 9.3 45.60 ± 7.0 43.54 ± 4.9 44.93 ± 6.9 46.15 ± 10.1 44.56 ± 6.3 45.76 ± 5.5 42.51 ± 2.5 41.51 ± 2.3 49.33 ± 4.7
2 39.08 ± 3.5 42.20 ± 2.6 44.34 ± 4.1 41.45 ± 2.9 40.66 ± 2.3 41.94 ± 3.4 42.40 ± 2.2 41.56 ± 3.1 41.03 ± 1.8 43.97 ± 1.6
3 39.68 ± 2.8 42.20 ± 2.2 43.15 ± 3.0 39.50 ± 1.4 39.38 ± 1.8 39.66 ± 1.1 41.97 ± 1.3 40.92 ± 1.6 42.28 ± 1.1 41.28 ± 1.0
4 39.81 ± 1.6 40.98 ± 1.3 41.47 ± 2.8 39.69 ± 1.1 39.22 ± 1.0 39.40 ± 0.9 40.38 ± 0.7 41.17 ± 1.4 41.87 ± 0.9 40.24 ± 1.1
5 40.12 ± 2.18 40.26 ± 1.9 40.20 ± 1.8 39.75 ± 0.7 39.30 ± 0.9 39.74 ± 0.5 40.31 ± 0.9 40.56 ± 1.0 41.94 ± 1.0 40.06 ± 1.0
6 39.62 ± 1.4 39.43 ± 1.5 39.51 ± 1.4 39.64 ± 0.7 39.77 ±1.0 39.67 ± 0.8 40.03 ± 0.8 40.22 ± 1.5 40.99 ± 0.8 39.60 ± 1.0

Furthermore, similar to what we did for the Component X dataset, here also, a comple-
mentary experiment is designed to assess the model’s uncertainty in predicting the RUL of
the test set by monitoring the decision interval’s length over iterations. For this purpose,
this experiment is implemented on the C-MAPSS dataset while having the setup for the two
best results in Table 3. Figure 6 illustrates the decreasing size of the prediction intervals
for the test set during iteration using RF as the model and both Mond reg (Figure 6(a))
and norm Mond CPS (Figure 6(b)).
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Figure 6: The size of the prediction intervals for the test set of C-MAPSS data in case the
model is RF and the conformal predictor are Mond reg and norm Mond CPS
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6. Concluding Remarks

This study proposes CoPAL, an algorithm for active learning based on conformal prediction,
to enhance the model’s performance on regression tasks. To evaluate the effectiveness of
this algorithm, we applied it to a real-world scenario focused on predictive maintenance, i.e.,
estimating the remaining useful life (RUL) of a vehicle component. The presented results
show that the predictive performance can be significantly improved by using the CoPAL
algorithm compared to random sample selection; the results on Component X shows a
reduction in the RMSE 13.06 and 13.68 units, respectively, for XGBoost and Random
forests, which correspond to 16% and 17% improvement for these models. Furthermore, the
results for the C-MAPSS dataset showed a 19.56 and 21.38 unit reduction of RMSE using
XGBoost and Random forests, respectively, leading to 31% and 35% improvements.

In examining the result related to the effect of sample selection policies, it was ob-
served that for selecting samples to query the oracle, utilizing the most uncertain and
most uncertain roulette policies proved notably advantageous for the Component X data.
However, in addition to these policies, the most certain roulette showed efficacy in refin-
ing models using the C-MAPSS dataset, especially when the CPSs are used for prediction
interval calculation. This could be attributed to the smaller training sample size in the
C-MAPSS dataset compared to the Component X data, suggesting that the model benefits
from exposure to more confidently predicted RUL values.

We then proceed to interpret the observed trends in the RUL prediction intervals for
the test set over iterations. The results exhibited a reduction in the prediction interval’s
length over successive iterations on both datasets. This confirms the positive effect of the
CoPAL algorithm in improving the model and gaining higher certainty in predicting the
test set over iterations. Furthermore, To support the reproducibility of the experiments,
the code is shared on a Gittea repository2.

As a future work for this study, the CoPAL algorithm could be extended to incorporate
survival analysis methodologies for examining the survival curve of vehicles and estimating
their remaining useful life. This technique is particularly useful when dealing with real-
world datasets where samples are often censored, meaning that they have not experienced
failure or the event of interest in data collection. This enables the research to be done on the
complete dataset rather than only on the samples that have experienced the failure. In this
study, we utilized a separate calibration set to form the Mondrian categories and calibrate
the model when using Mondrian conformal predictors. Future research could investigate
the use of CoPAL without the calibration step. Additionally, future work could develop
techniques to use fresh calibration instances on each iteration in an active learning setup.
Exploring different query strategy methods beyond uncertainty-based sampling in active
learning is also of interest. Lastly, applying the CoPAL algorithm to domains other than
predictive maintenance, such as the medical field, could be a valuable direction for future
research.

2. See https://gitea.dsv.su.se/zakh1874/CoPAL/src/branch/main/
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Reyna. Scania component x dataset: A real-world multivariate time series dataset for
predictive maintenance, 2024.

David D Lewis. A sequential algorithm for training text classifiers: Corrigendum and
additional data. In Acm Sigir Forum, volume 29, pages 13–19. ACM New York, NY,
USA, 1995.

David D Lewis and Jason Catlett. Heterogeneous uncertainty sampling for supervised
learning. In Machine learning proceedings 1994, pages 148–156. Elsevier, 1994.

Tony Lindgren, H̊akan Warnquist, and Martin Eineborg. Improving the maintenance plan-
ning of heavy trucks using constraint programming. In ModRef 2013: The Twelfth
International Workshop on Constraint Modelling and Reformulation, Uppsala, Sweden,
September 16th, 2013, pages 74–90. Université Laval, 2013.
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Figure 7: Five rounds of CoPAL with RF and norm Mond CPS on Component X dataset
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