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Abstract

Quantifying the stability of feature selection techniques has been an ongoing challenge over
the last two decades. A large number of stability estimators have been proposed to over-
come this problem, but performance guarantees based on suitable statistical frameworks
are lacking. A recently developed framework proposed a new and robust estimator of the
stability and a method to quantify the uncertainty of the estimates through approximate
confidence intervals. Unfortunately, this statistical framework is based on asymptotic as-
sumptions. In situations in which a low number of subsets of selected features are available
for the quantification of the stability estimator, the coverage guarantees provided by this
framework do not hold. In this work, we propose a method to estimate stability and achieve
validity in a situation where only a few samples are available. We take advantage of the
Conformal Prediction framework, constructing prediction intervals without any assumption
about the underlying distribution of data. Extensive simulations show that our method
successfully achieves conservative validity. Furthermore, as the number of available samples
increases efficiency is also achieved. Comparisons between prediction intervals and confi-
dence intervals show an acceptable trade-off between coverage guarantees and the interval
length for the former, while there is a clear miscoverage for the latter.

Keywords: Conformal prediction · Feature selection · Stability measure · Coverage guar-
antees

1. Introduction

Feature selection is a well-known approach to overcome the curse of dimensionality. This
technique, which is widely used by data scientists and machine learning engineers, reduce
the dimensionality of data without altering the original representation of features (Saeys
et al., 2007). This property allows us to identify meaningful scientific knowledge, remove
irrelevant features to improve prediction performance, or decrease computational perfor-
mance eliminating redundant features. A broadly used classification of these methods is
based on its evaluation strategy: filter, wrapper, and embedded methods, although mixed
approaches have also been proposed (Guyon et al., 2006; Bielza and Larrañaga, 2020). Fil-
ter methods evaluate the intrinsic properties of data to find correlations and statistical
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dependences, and are independent from the classification methodology. An example of rep-
resentative methods from this family are those based on mutual information (Brown et al.,
2012). Wrapper techniques use the performance of a classifier to find relevant features. This
family provides competitive results usually at high computational cost. Moreover, features
selected are dependent on the classifier’s performance criteria. Lastly, in embedded meth-
ods, the selection of features is guided by the training process of a prediction model. This
reduces the computational cost with respect to wrappers. Well-known methods belonging
to this family are the LASSO regularization (Tibshirani, 1996) and the tree-based methods
Breiman (2001).

The evaluation of feature selection results typically involves assessing the improvement
of a predefined performance score of a learning algorithm, e.g., accuracy. However, if the
selection method is applied to another subsample of the dataset, the question arises as to
how stable the feature selection method is. Stability quantifies the sensitivity of a method
to small changes in the training set. The stability of feature selection algorithms is crucial,
particularly in biomedical domains (Davis et al., 2006; Jurman et al., 2008). This is because
the final goal of these applications is usually to find a small set of highly discriminatory
features for later exploration (Kalousis et al., 2007). If a significant change in the selected
features is observed with only minor changes in the training dataset, the algorithm’s find-
ings may not be robust. It is worth noting that in high-dimensional and complex problems,
such as predicting phenotype from molecular signatures, the phenomenon of multiplicity
may appear (Statnikov and Aliferis, 2010; Statnikov et al., 2013). This happens whenever
two or more completely different subsets of non-redundant features are found to be max-
imally predictive of a phenotype. The causes behind this phenomenon are not clear, but
throughout this work, we assume that there is only one subset of non-redundant features
that maximizes the performance of a given predictor.

Stability has been extensively studied in the field of learning algorithms. However, the
pioneering, in-depth work on stability for feature selection algorithms was carried out by
Kalousis et al. (2005, 2007). Since these studies, a large number of stability measures have
been proposed in the literature (see Nogueira (2018) for more in-depth discussion). Among
all the proposals, one that should be highlighted is the stability measure put forward by
Kuncheva (2007), which has become a standard. In the present study, we focus on the
stability measure introduced by Nogueira et al. (2018), which generalizes Kuncheva’s mea-
sure. This new stability measure allows the quantification of the stability between subsets
of features with different cardinalities.

Contribution of this work: To ensure a fair stability comparison between two or
more feature selection algorithms, the ability to quantify the uncertainty of the estimator
is crucial. Coverage guarantees become imperative at this point. Nogueira’s proposed
stability estimator can be associated with a sampling distribution. This allows the derivation
of approximate confidence intervals for stability estimates. However, in their statistical
framework, the underlying distribution is only approached asymptotically. Unfortunately,
a common situation in feature selection is the limited availability number of selected subsets.
Factors that contribute to this limitation include: a large amount of data, the computational
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complexity of the selection algorithm, or the requirement for an exhaustive search. Usually,
no more than 5 to 10 independent subsets of selected features are available, e.g., in a cross-
validation procedure. In this work, we focus on this common scenario where the number
of available samples is insufficient to satisfy assumptions based on the multivariate central
limit theorem. We propose using the conformal prediction framework (Vovk et al., 2005;
Shafer and Vovk, 2008) to provide efficient, valid, and finite-sample prediction intervals to
quantify the uncertainty surrounding the stability estimate.

Outline: The rest of the manuscript is organized as follows. Section 2 introduces
Nogueira’s and Conformal Prediction frameworks. In Section 3, our methodological proposal
is presented. Section 4 describes the experimental setup, while the results are detailed and
discussed in Section 5. Finally, Section 6 concludes the paper and presents future directions
of research.

2. Preliminaries

2.1. Nogueira’s stability estimator

In their original work, Nogueira et al. (2018) defined a set of five properties that a good
stability estimator must have. They found that none of the stability estimators previously
proposed in the literature had all of these properties, and defined a new estimator that
satisfied them, namely, fully defined, strict monotonicity, known bounds, maximum stability
if - and only if - the selection is deterministic, and correction for chance. Let’s assume we
are given a dataset D for a classification task D = {(X,Y )}, where X ∈ Rd is the set of
covariables and Y the prediction target. Throughout this work, we denote a specific feature
in the covariate space as the random variable Xj , ∀j ∈ {1, ..., d}. Let π(·) be a feature
selection method so that π(D) = z, where z is a binary string of length d. A value of 1 in
the jth position means that the feature Xj has been selected, whereas a 0 means that it has
not. We takeM bootstrap samples from D and apply the feature selection method π to each
bootstrap sample, obtaining a collection of feature sets Z = {z1, ..., zM}. The collection of
feature sets Z can be thought of as a matrix of size M × d. Each realization of the feature
selection method produces a set of features regardless of any previous realization of the
method, so it is plausible to assume independence, in the sense of no having data leakage,
between the rows of matrix Z. From this assumption, we can infer the true stability Φ of a
feature selection method when the columns of matrix Z are modeled as random variables
drawn from a Bernouilli distribution with mean parameters bj :

Φ = 1−
1
d

∑d
j=1 bj(1− bj)

b̄(1− b̄)
, (1)

where b̄ = 1
d

∑d
j=1 bj , and bj models the probability of a feature Xj to be selected by π.

The mean parameters bj are usually not known in real world applications, so stability must
be estimated.

Definition 1 (Stability estimator) A stability estimator for feature selection algorithms
is as follows:

Φ̂N (Z) = 1−
1
d

∑d
j=1 s

2
j

k̄
d

(
1− k̂

d

) , (2)
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where s2j = M
M−1 b̂j(1 − b̂j), b̂j = 1

M

∑M
i=1 zij, k̄ = 1

M

∑M
i=1

∑d
j=1 zij and zij is the element

i, j) of the matrix Z.

In Nogueira et al. (2018), it was shown that this stability estimator satisfies the five following
properties required to be a good stability estimator:

1. Fully defined: The estimator can deal with feature selection methods that return a
variate number of features.

2. Strict monotonicity: The estimator is an increasing function of the size of the
average pairwise intersection size 1

M(M−1)

∑M
l

∑M
k ̸=l |zl ∩ zk| between two rows zl, zk.

3. Bounded: The stability score produced by the estimator is bounded. This is required
for a meaningful interpretation and enables the stability comparison. The estimator
defined in Expression 2 is bounded within [− 1

M−1 , 1].

4. Maximum stability ⇐⇒ Deterministic selection: When two sets of selected
features are identical, their similarity is maximal (Kuncheva, 2007). This implies that
the estimator must reach its maximum score if, and only if, all the selected feature
sets are identical in size and elements.

5. Correction for chance: The expectation of the stability estimator remains constant
whenever we have independently drawn subsets at random. This property is known
as correction for chance, and reflects on the similarity of feature subsets that occurred
by chance.

In addition, they showed that their estimator has the same statistical properties as
Fleiss’ kappa (Fleiss, 1971). Following the work of Gwet (2008), they proved that confidence
intervals can be asymptotically (M →∞) derived because the statistic Φ̂N weakly converges
to a normal distribution.

Definition 2 (Φ̂N confidence interval) A (1 − α)-approximate confidence interval for
Φ̂N is

[Φ̂− z∗(1−α
2 )
√
σΦ̂ , Φ̂ + z∗(1−α

2 )
√
σΦ̂], (3)

where z∗
(1−α

2 )
is the inverse cumulative of a standard normal distribution at 1− α

2 and
√
σΦ̂

is an estimate of the variance.

Further details, including the demonstrations, are available at Nogueira et al. (2018) and
Nogueira (2018).

2.2. Conformal prediction

Conformal prediction is an uncertainty quantification framework originally proposed by
Vovk, Gamerman, Shafer and Vapnik (Gammerman et al., 1998; Vovk et al., 2005). Con-
formal prediction quantifies the uncertainty of a prediction providing valid and asymp-
totically efficient prediction intervals -or prediction sets in classification tasks-, instead of
traditional point predictions (Shafer and Vovk, 2008; Balasubramanian et al., 2014; An-
gelopoulos and Bates, 2023). The framework provides finite-sample coverage guarantees,
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i.e., given a dataset D = {Zi := (Xi, Yi)}ni=1, an unknown new sample Xn+1 and a confi-
dence level 1− α, the property

P(Yn+1 ∈ C(Xn+1)) ≥ 1− α, (4)

holds (Toccaceli, 2022), where C(·) denotes the prediction interval for Xn+1. This property
is known as the marginal validity, and is achieved without making any assumptions about
the underlying distribution of the samples. The only requirement is that these samples
must be independent and identically distributed (i.i.d.) observations1. However, the length
of the prediction intervals will depend on the choices we make when building the conformal
algorithm. We want the prediction interval to be as narrow as possible in order to be in-
formative, a property known as efficiency.

To illustrate how this framework performs, suppose that we are given a bag2 of i.i.d.
samples {Z1, ..., Zn} from an unknown distribution P. We want to construct a prediction
interval for a new unknown sample Zn+1 ∼ P with a confidence level of 1− α. Let’s make
the following hypothesis H0 : Zn+1 = z := (Xn+1, y), where y is some hypothetical value.
At this point we need to define a central notion in conformal prediction: the non-conformity
measure. A non-conformity measure is a real-valued function A : Rn×R→ R that quantifies
how strange a sample Zi ∈ {Z1, ..., Zn, z} is in the bag {Z1, ..., Zn, z}, i.e., the degree to
which the sample does not conform with the bag. A non-conformity measure assigns a
numerical non-conformity score

φi,z = A({Z1, ..., Zi−1, Zi+1, ..., Zn, z}, Zi), (5)

to each sample Zi ∈ {Z1, ..., Zn, z}. Non-conformity measures are typically defined as the
residual of a fitted estimator θ̂ within the augmented set of samples {Z1, ..., Zn, z}. However,
a non-conformity score φi alone does not inform us how strange the sample Zi is. We need
to compare φi with the other φj ̸=i non-conformity scores. Returning to our main point of
interest, i.e., establishing which are the possibilities that our trial value z could be Zn+1,
we can determine how strange z is if we count the number of samples in the bag that have
a large non-conformity score. Note that if we normalize this number with respect to the
number of elements in the bag,

pz =
|{i = 1, ..., n+ 1 | φi ≥ φn+1}|

n+ 1
, (6)

we can conveniently define a p-value for our hypothesis test. This is a valid p-value because
the i.i.d. property is required on the samples in the bag {Z1, ..., Zn+1}, forcing the vector
of non-conformity measures to be exchangeable. This implies that if H0 is true, the vector
of non-conformity measures is uniformly distributed among {1, ..., n+ 1}, so that pz is also
uniformly distributed over { 1

n+1 , ..., 1}. For this reason, pz is a valid p-value in the sense
that P(pz ≤ α) ≥ 1− α. Finally, if we wish to build the prediction interval C(Xn+1) with a

1. The only hard requirement is that data must be exchangeable, but the i.i.d. assumption implies ex-
changeability and is a common assumption, specifically among machine learning practitioners.

2. A bag is a set that allows for repeated elements.
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confidence level of 1−α, we only need to invert the hypothesis test and accept all the trial
values z that meet:

C(Xn+1) = {y : pz ≤ α}. (7)

It should be noted that in classification problems, the set of trial values is all the pos-
sible classes available, whereas in regression we need to define an appropriate interval of
trial samples. Due to the above-mentioned factors this methodology, known as transductive
conformal prediction, can be computationally demanding. Fortunately, a computationally
competitive variant called split or inductive conformal prediction (Papadopoulos et al.,
2002; Vovk et al., 2005) was developed with the same coverage guarantees, but sacrific-
ing efficiency. In this work, we focus on transductive conformal prediction for regression
problems.

3. Methodology

Let us suppose that we are given an M × d binary matrix Z as defined in Section 2.1. We
are interested in estimating the stability of the feature selection method that produced Z
using the estimator defined in (2). Moreover, we also want to obtain a valid estimate of the
stability as defined in Equation (4), regardless of the number of rows in Z. This is because
the number of rows in Z reflects the number of available samples to estimate stability. We
propose to take advantage of the conformal prediction methodology to achieve empirical
coverage guarantee on this stability estimation problem.

Conformal prediction uses past experience to construct valid prediction intervals, so we
need to find a way to discover this “past experience” from the given matrix Z. As stated in
Section 2.1, rows i.e., samples, in the matrix Z are assumed to be independent. Nogueira’s
model assumes that the elements of each column in Z follow a Bernouilli distribution with
parameter bj . These parameters, although unknown, are fixed for each column as long as
there is no multiplicity. Let us perform a subsampling of the matrix Z by rows, so that a
dataset R = {Z1, ...,Zc} is generated, where each Zi is a κ× d binary matrix with κ < M .
Due to the independence of each row in Z and the fact that all the elements in a column j
follow the same distribution, we can assume the subsamples to be indistinguishable.

Therefore, the stabilities of any two different subsamples, R1 and R2 must be equally
distributed. So, we can split the original binary matrix into a set of matrices. Specifically,
we compute the

(
M
κ

)
= c different combinations of κ rows from Z. Note that in Nogueira’s

framework, this procedure cannot be used to increase the available sample size for comput-
ing confidence intervals. This is due to the asymptotic validity of the confidence interval as
M →∞, hence, validity will only improve if Z has larger M values.

Once we have identified a bag of samples drawn from the same underlying distribution,
we are able to predict a valid prediction interval to quantify the uncertainty of any point
estimate θ̂z of the random variable Φ based on the set of samples {Φ̂N (Z1)), .., Φ̂N (Zi−1)),
Φ̂N (Zi+1)), ...., Φ̂N (Zn)), Φ̂N (z))}. Prediction intervals are derived using the transductive
conformal prediction approach described in Section 2.2. The next step is build the cali-
bration samples. In order to maximize the number of calibration samples and preserve the
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underlying distribution, we only take combinations of κ elements from Z for which c is
maximum. If there are two κ for which c is maximal, we will choose the largest κ. Finally,
we define the non-conformity measures (5) as

φz,i = f(θ̂z, Φ̂N (Zi)) ∀i ∈ {1, ..., c}, (8)

φz,c+1 = f(θ̂z, Φ̂N (z)), (9)

where Φ̂N (·) was defined in Expression (2), Φ̂N (z) is a proposed trial value in the interval
(− 1

κ−1 , 1) and f is a function that quantifies the distance between the point estimate and
a sample. The described procedure is summarized in Algorithm 1.

Algorithm 1 Prediction of stability using the transductive approach.

Input: D = (Φ̂N (Z1), ..., Φ̂N (Zc));
Input: Trial values Ztrial = {− 1

κ−1 , ..., 1};
Input: significance level α;

for Φ̂N (z)j ∈ Ztrial:

for Zi ∈ D:

θ̂j ← θ̂({D ∪ {Φ̂N (z)j})/{(Zi}) # compute point estimation

φj,i ← f(θ̂j , Φ̂N (Zi)) # compute the non-conformity scores

φj,c+1 ← f(θ̂j , Φ̂N (z)j) # compute the non-conformity scores of the trial value

pj ← |{i = 1, ..., c+ 1 | φj,i ≥ φj,c+1}|
c+ 1

# compute and save the p-value

C ← {Φ̂N (z)j ∈ Ztrial : p
j > α} # compute prediction intervals with confidence 1− α

Return: C, the valid prediction interval for µΦ̂N (z)j
.

4. Experimental settings

Focusing on a scenario where only small samples are available and the coverage guarantees
for the confidence interval defined in Expression (3) are broken, let’s suppose a M × 100
binary matrix Z with M = m, ∀m ∈ {5, ..., 10}3. We chose to study the cases from M = 5
up to M = 10 because this is a plausible situation when research based on computationally

3. The number of columns is irrelevant. We decided upon 100 columns in line with the work of Nogueira
et al. (2018).
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demanding feature selection algorithms is conducted. This may be, for example, the result-
ing matrix derived from applying a feature selection method on a cross-validation scenario.
The tests are carried out on artificial datasets codified as the matrix Z, whose columns,
i.e., the features, are drawn from a Bernoulli distribution with a known mean parameter
pj . This assures a known value for the true stability function Φ, which will be referred to
as the oracle.

We now turn to the following two aspects: (i) the consistence of the estimations Φ̂N (Zi)
for low values of κ, and (ii) the estimation of the stability from {Z1, ...,Zc}. In Figure
1, we show some examples of synthetic datasets for different combinations of M and κ.
The stability estimate for each Zi is shown in blue, while the oracle and the mean of the
vector of estimates (Φ̂(Z1), ..., Φ̂(Zc)) are indicated in red and black, respectively. As we can
see, the Φ̂(Zi) values are close to the true stability predicted by the oracle Φ(Z), and the
greater the κ the closer it is to the oracle. This last statement was also empirically observed
by Nogueira et al. (2018). The second observation is about the mean of the stability’s
estimates. It seems very close to the true stability, so it is postulated as a simple but
acceptable estimator candidate to provide point predictions. To strengthen these findings,
we show in Figure 2 the residuals for 1000 independent samples using the combinations in
Figure 1. The residuals are small, as shown in Figure 2. We observe that as the number of
rows in the matrix Z increases, the residuals improve. This is because a larger number of
samples leads to a more accurate estimate. Moreover, the number κ also has an impact on
the quality of the estimations.

As suggested in the previous paragraph, we take the mean as point estimator. Finally,
we define the following non-conformity measure

φz,i = |
Φ̂(Zi)− µz

σz
|, (10)

where µz, σz are the mean and the standard deviation of {Z1, ...,Zc, z} and z is a trial
value in the interval (− 1

κ−1 , 1). We performed 1000 independent simulations for each m.

On each simulation, we used 500 test values equally-spaced along the interval ( −1
κ−1 , ..., 1) in

order to create a sufficiently dense test-bed set. Despite the inefficiency of this process, we
follow this iterative sampling procedure for its simplicity. Operational versions of this work
could be enhanced by adapting optimization methods from the full conformal methodology
(Papadopoulos et al., 2011; Cherubin et al., 2021).

5. Results

Figure 3 presents the coverage results derived from both prediction intervals and confidence
intervals. For both methods, coverage is defined as the fraction of ground truth samples
included in the predicted interval of confidence. The conformal framework achieves validity
in all the scenarios, closely approaching perfect calibration in five of them, and without
assuming any underlying distribution of data. The overconfidence predicted in Figures
3(a) and 3(b) is due to the low number of calibration samples. According to Figure 2,
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(a) M = 5, κ = 2
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(b) M = 6, κ = 3
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(c) M = 7, κ = 5
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(d) M = 8, κ = 4
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(e) M = 9, κ = 2
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(f ) M = 10, κ = 6

Figure 1: Stability estimates of the possible c subsamples, each consisting of κ elements
drawn from a sample with M elements, are shown in blue. The oracle line denotes
the true stability, while the black dashed line represents the average of the c
subsamples.
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Figure 2: Boxplot with residuals of 1000 independent samples using different combinations
of M and κ.

the number of points available to ‘fit’ the mean is too low, leading to a low efficiency for
these cases. The coverage reported using the confidence intervals from Equation (3) leads
to miscoverage because this only holds true when M →∞. Table 1 shows the coverage dif-
ference with respect to perfect calibration δCov for both prediction intervals and confidence
intervals. Due to space efficiency, only the results for 1−α = 0.9, 0.7, 0.5, and 0.3 are shown.

We also evaluated the efficiency of both methods. Table 1 shows the efficiency as the
difference between the endpoints of the uncertainty intervals ∆Eff , averaged over the 1000
independent tests. Note that the prediction intervals are slightly larger than the confidence
intervals. This effect occurs because, due to the coverage guarantees, prediction intervals
must be wider. Nevertheless, in terms of informativeness, prediction intervals seem to be as
efficient as confidence intervals. In addition, asM increases, the average length of prediction
intervals approaches the average length of confidence intervals.

6. Conclusions

The stability of a feature selection algorithm quantifies how different sets of samples affect
the selection of a relevant subset of features. This property is essential to increase confi-
dence in the features selected by an algorithm. In this work, we present a procedure for
constructing well-calibrated prediction intervals to measure the stability of a feature selec-
tion method. We focus on the situation in which only a few subsets of selected features
are available after running a computationally demanding feature selection procedure. The
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(e) M = 9
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(f ) M = 10

Figure 3: Coverage comparison between prediction intervals in blue and confidence intervals
in red. The black dashed line represents the expected output from a perfectly
calibrated model.
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M Method

1 - α

0.9 0.7 0.5 0.3

∆Eff δCov ∆Eff δCov ∆Eff δCov ∆Eff δCov

5
P.I. 0.17(0.06) +0.02 0.11(0.04) +0.06 0.07(0.03) +0.08 0.04(0.02) +0.09

C.I. 0.08(0.03) -0.25 0.05(0.02) -0.24 0.03(0.01) -0.17 0.02(0.01) -0.10

6
P.I. 0.17(0.05) +0.05 0.11(0.03) +0.15 0.07(0.02) +0.16 0.04(0.02) +0.12

C.I. 0.08(0.03) -0.16 0.05(0.02) -0.18 0.03(0.01) -0.15 0.02(0.01) -0.10

7
P.I. 0.12(0.03) +0.01 0.08(0.02) +0.05 0.05(0.02) +0.05 0.03(0.01) +0.00

C.I. 0.08(0.02) -0.15 0.05(0.01) -0.13 0.03(0.01) -0.12 0.02(0.01) -0.09

8
P.I. 0.12(0.03) +0.02 0.08(0.02) +0.07 0.05(0.01) +0.07 0.03(0.01) +0.05

C.I. 0.07(0.02) -0.15 0.05(0.01) -0.16 0.03(0.01) -0.12 0.02(0.00) -0.06

9
P.I. 0.10(0.02) +0.01 0.06(0.02) +0.05 0.04(0.01) +0.04 0.02(0.01) +0.02

C.I. 0.07(0.02) -0.09 0.04(0.01) -0.10 0.03(0.01) -0.06 0.02(0.00) -0.05

10
P.I. 0.10(0.02) +0.02 0.06(0.01) +0.08 0.04(0.01) +0.06 0.02(0.01) +0.05

C.I. 0.07(0.02) -0.09 0.04(0.01) -0.10 0.03(0.01) -0.07 0.02(0.00) -0.04

Table 1: Efficiency∆Eff and the deviation from perfect calibration δCov. Efficiency is given
as the average length of the prediction intervals (P.I.) and the confidence intervals
(C.I.), respectively. The standard deviation is given in parentheses. Deviations
from the perfect calibration correspond to the values observed in Figure 3. The +
represents deviation as overcoverage, whereas − represents that the deviation is a
misscoverage. A deviation of 0.00 corresponds to a deviation lower than ±0.005.

developed framework can be applied to any stability estimator, as long as the subsample
stability converges to the ground truth. We specifically use Nogueira’s estimator to measure
stability (3). This estimator fulfils the desirable properties that a stability estimator should
have and also allows the construction of approximate confidence intervals. Our empirical
work showed that the conformal prediction intervals achieves both validity and efficiency
in a scenario with a low number of samples, whereas the confidence intervals provided by
the Nogueira’s framework are not valid. This is due to the finite sample validity property
in conformal prediction.

The main limitation of our work is related to the simplicity of the estimator and the
defined non-conformity measure. As Figure 3 shows, despite the validity achieved by the
prediction intervals, their efficiency can be improved when the number of samples available
is low. Future research should investigate and implement more sophisticated methods,
such as fitting a kernel density estimator (Jing Lei, 2014). Further research should also
explore this procedure in real-world applications, other stability measures and estimators,
and the inductive conformal prediction framework. Finally, wider prediction intervals may
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be a multiplicity indicator; even so stability theory must be adapted and new estimators
developed to overcome this challenge.
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