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Abstract

Conformal Prediction (CP) is a powerful framework for constructing prediction sets with
guaranteed coverage. However, recent studies have shown that integrating confidence cal-
ibration with CP can lead to a degradation in efficiency. In this paper, We propose an
adaptive approach that considers the classifier’s uncertainty and employs entropy-based
reweighting to enhance the efficiency of prediction sets for conformal classification. Our
experimental results demonstrate that this method significantly improves efficiency.

Keywords: Conformal prediction, entropy reweighting, confidence calibration, tempera-
ture scaling, neural networks.

1. Introduction

Conformal Prediction (CP) is a well-established framework for constructing prediction sets
with guaranteed coverage, regardless of the underlying distribution of the data. However,
the efficiency of CP prediction sets can be affected by the accuracy of the underlying clas-
sifier’s uncertainty quantification.

Recent studies (Dabah and Tirer, 2024; Xi et al., 2024) have investigated the integration
of confidence calibration and CP to improve the quality of the prediction sets. Confidence
calibration aims to ensure that the predicted probabilities of a classifier reflect its true
accuracy (Xi et al., 2024). By calibrating the classifier’s probabilities, one can obtain more
reliable uncertainty estimates, which can potentially lead to more efficient prediction sets.
However, the results presented in Dabah and Tirer (2024); Xi et al. (2024) show that the
efficiency of prediction sets degrades when confidence calibration is combined with CP. This
raises the question of how to effectively integrate accurate uncertainty quantification with
guaranteed coverage to obtain efficient prediction sets.

We propose a novel approach that applies entropy-based reweighting to conformal clas-
sification in order to improve the efficiency of prediction sets. This method leverages the
uncertainty of the classifier to dynamically adjust the weights, leading to more efficient
prediction sets.

We conduct extensive experiments on various datasets, including AG News, CARER,
MNIST, and Fashion MNIST, to evaluate the effectiveness of our approach. By comparing
our method with existing techniques, we demonstrate its superior performance in terms of
prediction efficiency and accuracy. Our experimental results highlight the robustness and
applicability of the proposed method across different types of data and classification tasks.
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2. Related Work

Previous related works can be considered under two categories:

(1) Conformal Prediction for Calibrated Models

Methods like Platt’s scaling (Platt et al., 1999), isotonic regression (Niculescu-Mizil and
Caruana, 2005), spline-based probability calibration (Lucena, 2018), and temperature scal-
ing (Guo et al., 2017) are used for post ad hoc calibration to adjust classifier confidence
levels. Local Temperature Scaling (Ding et al., 2021) calibrates probabilities in multi-label
segmentation by assigning a unique temperature to each pixel for location-specific calibra-
tion. Temperature-conditional Generative Flow Networks (Kim et al., 2023) incorporate a
distinct pathway in their structure to adjust the policy’s logits with the inverse temperature
β, minimizing disruption to the network’s parameters. They lack the coverage guarantee
offered by CP. Moreover, temperature scaling, which is the most favored technique in this
context, requires a considerable amount of validation data that must be representative of
the training data. On the other hand, CP merely requires that the validation data (i.e.,
the calibration data) and the test data be exchangeable. However, integrating confidence
calibration with CP fails to deliver the anticipated advantages. Dabah and Tirer (2024); Xi
et al. (2024) empirically show that using post ad hoc calibration before applying CP increase
the size of prediction size. The observation that overconfident models (e.g. low temperature
in temperature scaling) produce small prediction sets but an exceedingly low temperature
fails to achieve the desired coverage Xi et al. (2024) motivates a novel loss function which
penalizes the under coverage of the prediction set. Cha et al. (2023) studied the impact of
temperature scaling in Bayesian graph neural networks on the prediction set produced by
CP for node classification task. As noted in Stutz et al. (2023), in complex tasks like the
dermatology problem, expert disagreements result in a high-entropy conditional probability
P (Y |X) that deviates from a one-hot distribution, leading to a coverage gap when modeled
using a majority-voting scheme.

(2) Uncertainty Measures for Deep Classifiers

Various methods for quantifying uncertainty have been introduced for neural network-
based classifiers. These uncertainty measures prove valuable in scenarios such as select-
ing samples based on uncertainty for active learning (Nguyen et al., 2022) and assigning
uncertainty evaluations to individual data points (Chlaily et al., 2023; Hüllermeier and
Waegeman, 2021). Additionally, uncertainty measures related to the concept of aleatoric
and epistemic uncertainty have been discussed in Gruber et al. (2023). Rossellini et al.
(2024) distinguishes between these two forms of uncertainty for constructing prediction in-
tervals for conformalized quantile regressors. Zhu et al. (2008); Nguyen et al. (2022) have
explored the balance between uncertainty and representativeness in the context of active
learning. Defining fY (X) as the classifier’s predictive probability of categorizing the object
with feature X as label Y , we can summarize some of existing uncertainty measures as
follows:

1. Entropy: −
∑K

Y=1 fY (X) log fY (X).

2. Smallest margin: argmaxY ∗∈{1,...,K} fY ∗(X)− argmaxY ∈{1,...,K}\{Y ∗} fY (X).

3. Gini impurity:
∑K

Y=1(1− fY (X))fY (X).
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4. Threshold conformity score (Sadinle et al., 2019): 1 − fY (X), which penalizes cases
where f does not predict the observed label Y with high probability.

5. Adaptive conformity score (Romano et al., 2020): This is computed by summing up
the sorted softmax values in a descending sequence

a(f(X), Y ) =

r(Y,f(X))−1∑
i=1

f(i)(X) + Uf(r(Y,f(X)))(X), (1)

where f(1)(X) > f(2)(X) > · · · > f(K)(X) represent the order statistics of f(X),
U ∼ Uniform(0, 1) is independent of everything else, and r(Y, f(X)) is f(X)’s ranking
of the label Y .

6. Regularized Adaptive conformity score (Angelopoulos et al., 2021): To tackle the long-
tailed distribution issue inherent in softmax probabilities, Regularized Adaptive Pre-
diction Sets (RAPS) eliminate classes that are less likely by imposing a penalty on
classes that surpass a predetermined threshold:

a(f(X), Y ) =

r(Y,f(X))−1∑
i=1

(
f(i)(X) + λ1(i > kreg)

)
+ Uf(r(Y,f(X)))(X), (2)

where λ > 0 discourages sets larger than kreg.

7. Rank-based conformity score (Luo and Zhou, 2024a): The score function of RANK is
defined as:

a(f(X), Y ) =
r(Y, f(X))

K
,

which assigns a score based on the rank of the estimated probability f̂Y (X) among
all the estimated probabilities for feature X. The rank is divided by K so that the
range of the score is from 0 to 1. The prediction set gives higher priority to labels
with larger ranks.

3. Entropy Reweighted Conformal Classification

We start by defining key terms related to classification with CP. Let the feature space be
Rd and the label space be Y = {1, . . . ,K}. Denote f an K-class classification model and
D = {(Xn, Yn) ∈ Rd × Y}n∈I , Y a collection of i.i.d. random variables. Assume XN+1 is
a test object with its label YN+1 masked. The output of the classification model, denoted
as f(XN+1) ∈ [0, 1]K , represents the predicted probabilities of the test object belonging to
each of the K classes. A conformal Prediction Set (PS) at XN+1, is a subset of the label
space, C(XN+1) ⊆ Y that obeys

Prob(YN+1 ∈ C(XN+1)) ≥ 1− α, (3)

where α ∈ (0, 1) is a predefined confidence level and the probability is over D. We partition
the set of indices I into I1 and I2, and then we build the PS using the split conformal
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method. The classification model f is trained using the training samples {(Xn, Yn)}n∈I1 .
The PS depends on the calibration samples {(Xn, Yn)}n∈I2 , the corresponding predicted
probabilities, f(Xn) ∈ [0, 1]K , and an arbitrary conformity function, a(f(Xn), Yn) which
evaluates the goodness of a model prediction compared with the corresponding label. Marginal
validity (3) holds if the test data and the calibration set, i.e., (XN+1, YN+1) and {(Xn, Yn)}n∈I2
are exchangeable.

For classification problems, one can define a stronger property known as conditional
coverage:

Prob(YN+1 ∈ C|YN+1 = y) ≥ 1− α, (4)

which is alternatively termed as label-conditional coverage (Ding et al., 2024; Löfström et al.,
2015) to differentiate it from the feature-conditional coverage (Einbinder et al., 2022):

Prob(YN+1 ∈ C|XN+1 = x) ≥ 1− α, (5)

3.1. Conformal Classification

By definition, the PS based on conformity function a(f(Xn), Yn) is:

CA = {yN+1 ∈ Y,
∑
n∈I2

1 (An ≤ AN+1) ≤ nα} = {yN+1 ∈ Y, AN+1 ≤ QA} (6)

where An = a(f(Xn), Yn), AN+1 = a(f(XN+1), yN+1), obeys (3) if QA is the (1 − α)-th
sample quantile of A1, . . . , AN and nα = ⌈(1− α)(|I2|+ 1)⌉. The meaning of the obtained
PS depends on the definition of a. In regression tasks, it is natural to let a = a(Ŷ , Y ) be
the distance between predicted and observed labels. In the classification setup, the model
output is a discrete probability distribution. Finding a conformity function that produces
useful PS in the classification setup is less straightforward. A popular choice, APS score
(1), is

An = a(f(Xn), Yn) =

r(Yn,f(Xn))−1∑
i=1

f(i)(Xn) + Uf(r(Yn,f(Xn)))(Xn), (7)

where f(i)(Xn) denotes the i-th largest element of the probability vector f(Xn), r(Yn, f(Xn))
is the rank of the true label Yn in the probability vector f(Xn).

Although we use the APS score throughout our derivation and experiments, the entropy
reweighting method is applicable and orthogonal to other score functions such as THR
(Sadinle et al., 2019), RAPS (Angelopoulos et al., 2021), and SAPS (Huang et al., 2024).

3.2. Reweighted Conformity Scores

As CA depends on all data points unregarding their attribute or label, the validity of C,
i.e. the coverage guarantees in (3), is marginal over the attribute and label spaces. This
means the uncertainty of the model on predicting the class probabilities is assumed to
be constant. As for the regression case, data heteroskedasticity may make such marginal
PS highly inefficient. In the Error Reweighted (ER) Conformal Prediction algorithm of
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Algorithm 1 Entropy Reweighted Conformal Prediction with Calibrated Temperature

Input: Labeled data D = {(Xn, Yn)}n∈[N ], unlabeled data U = {Xn′}n′∈[N ′], coverage
probability 1− α, and a range of predefined temperature values {Tj}j∈[M ].

Output: Prediction set Cα for unlabeld data U .
Randomly split [N ] = {1, 2, . . . , N} into three (disjoint) parts I1, I2, I3. Set D1 =
{(Xn, Yn) : i ∈ I1}, D2 = {(Xn, Yn) : n ∈ I2}, and D3 = {(Xn, Yn) : n ∈ I3}.

Train a classification model f on D1 and use f to obtain the logits on D2 and D3:

z(Xn) = f(Xn), n ∈ I2 ∪ I3. (8)

for each temperature Tj do

Compute the reweighted probability vectors f̃(Xn) for each data point in D2 according
to (23):

f̃k(Xn) =
exp( zk(Xn)

H(Xn)·Tj
)∑K

i=1 exp(
zi(Xn)

H(Xn)·Tj
)
, n ∈ I2. (9)

Compute the reweighted conformity scores Ãn for each data point in D2 according to
(24):

Ãn =

r(Yn,f̃(Xn))−1∑
i=1

f̃(i)(Xn) + Uf̃(r(Yn,f̃(Xn)))
(Xn), n ∈ I2. (10)

Construct the prediction sets C
Tj
α (Xn) for each data point in D3 as:

C
Tj
α (Xn) =

{
y ∈ Y : Ãn(y) ≥ Q

Tj

Ã

}
, n ∈ I3, (11)

where Q
Tj

Ã
is the (1 − α)-th sample quantile of {Ãn : (Xn, Yn) ∈ D2} and Ãn(y) =∑r(y,f̃(Xn))−1

i=1 f̃(i)(Xn) + Uf̃(r(y,f̃(Xn)))
(Xn).

Calculate the average size of the resulting prediction sets:

AvgSize(Tj) =
1

|D3|
∑
n∈I3

|CTj
α (Xn)|. (12)

end
Select the optimal temperature T ∗ = argmin

Tj

AvgSize(Tj).

Compute the reweighted conformity scores Ãn for each (Xn, Yn) ∈ D2 ∪ D3 using T ∗.
Compute the final prediction sets CT ∗

α (X) for each X ∈ U as:

CT ∗
α (X) =

{
y ∈ Y : Ã(y) ≥ QT ∗

Ã

}
, (13)

where Ã(y) is the reweighted conformity score for X and label y, and QT ∗

Ã
is the (1−α)-th

sample quantile of {Ãn(Yi) : n ∈ I2 ∪ I3}.
return the prediction sets CT ∗

α (X) for each X ∈ U .
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Papadopoulos et al. (2008)) and the localized conformal prediction of Guan (2023), the
regression conformity scores are rescaled by a pre-trained function to boost the adaptivity
of the obtained prediction intervals. More formally, ER computes the prediction intervals
using a transformed conformity score, Bn = An

γ+g(Xn)
, where g is a pre-trained model of

the conditional residuals, i.e. g(Xn) ≈ EYn|Xn
(|f(Xn) − Yn|) and γ > 0 a regularization

parameter. The corresponding PS

CB = {yN+1, BN+1 ≤ QB}, (14)

where QB is the (1−α)-th sample quantile of Bntrain+1, . . . , BN . When An = |f(Xn)− Yn|,
this is equivalent to Bn = An

γ+ EAn|Xn (An)
. This work is about transferring the ER idea to

the classification domain. Colombo (2023) considers a set of parameterized transformations
of the conformity scores,

B(X,Y ) = b(A(X,Y ), g(X,Y ), θ), (15)

and propose to train them in a CP-aware sense. In this formalism, the ER approach by
Papadopoulos et al. (2008) corresponds to setting b(a, g) = a

γ+g . The benefit of ER approach
is that it improves feature-conditional coverage (5).

3.3. Entropy-based Reweighting

In the previous section, we emphasized the concept of reweighting the conformity scores
based on the conditional residuals. However, since these residuals are estimated using a
separate model g, there is a risk of model mis-specification if the model doesn’t capture the
underlying data distribution correctly. To address this, a logical approach would be to use
information derived from the same model used for classification.

A natural extension of the ER approach to the classification setting involves setting
g(X) = H(X), where the entropy inherently adapts to and reflects the classification model’s
uncertainty about an individual data point.

Denote z(X) = (z1(X), . . . , zK(X)) as the logit vector produced by the classification
model, then the probability vector can be written as

f(X) =
exp(z(X))∑K
k=1 expzk(X)

. (16)

We consider reweighting the logit vector by the entropy of the corresponding probability
vector. The entropy H(X) of the probability vector f(X) = (f1(X), . . . , fK(X)) is defined
as:

H(X) = −
K∑
k=1

fk(X) log fk(X). (17)
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Substituting the softmax function into the entropy formula, we have:

H(X) = −
K∑
k=1

exp(zk(X))∑K
j=1 exp(zj(X))

log

(
exp(zk(X))∑K
j=1 exp(zj(X))

)
(18)

= −
K∑
k=1

exp(zk(X))∑K
j=1 exp(zj(X))

zk(X)− log

 K∑
j=1

exp(zj(X))

 (19)

= −
K∑
k=1

fk(X)zk(X) + log

 K∑
j=1

exp(zj(X))

 K∑
k=1

fk(X) (20)

= −
K∑
k=1

fk(X)zk(X) + log

 K∑
j=1

exp(zj(X))

 . (21)

Adding another tunable temperature parameter T , the reweighted logit vector becomes:

z̃k(X) =
zk(X)

H(X) · T
, k = 1, . . . ,K. (22)

The resulting reweighted probability vector can be obtained by applying the softmax func-
tion to the reweighted logits:

f̃k(X) =
exp(z̃k(X))∑K
j=1 exp(z̃j(X))

=
exp( zk(X)

H(X)·T )∑K
j=1 exp(

zj(X)
H(X)·T )

. (23)

The temperature parameter T controls the sharpness of the reweighted probability distri-
bution. When T → 0, the distribution becomes more concentrated on the class with the
highest reweighted logit. Conversely, when T → ∞, the distribution becomes more uniform.
By adjusting T , we can control the influence of entropy-based reweighting on the result-
ing probability distribution. In our experiments, we follow the cross-validation procedure
outlined in Yang and Kuchibhotla (2024) and the weighted aggregation idea in Luo and
Zhou (2024b) to find the optimal temperature parameter using a separate validation set
(see Algorithm 1).

The APS score (7) for the entropy reweighted probability vector (23) thus becomes:

Ãn = a(f̃(Xn), Yn) =

r(Yn,f̃(Xn))−1∑
i=1

f̃(i)(Xn) + Uf̃(r(Yn,f̃(Xn)))
(Xn), (24)

where f̃(Xn) = (f̃1(Xn), . . . , f̃K(Xn)) is the reweighted probability vector for input Xn and
r(Yn, f̃(Xn)) is the rank of the true label Yn in the reweighted probability vector f̃(Xn).
We present the full procedure for constructing prediction sets with the entropy reweighted
method in Algorithm 1.
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4. Experiments

In this section, we evaluate the performance of our proposed method. We conducted exper-
iments on four datasets: AG News (Zhang et al., 2015), CelebA Attributes (CARER) (Liu
et al., 2015), Fashion MNIST (Xiao et al., 2017), and MNIST (LeCun et al., 2010). For the
AG News and CARER datasets, we use BERT as the classifier, while for the MNIST and
Fashion MNIST datasets, we use a multi-layer neural network.

The experiment evaluates the calibration performance of classifiers trained on the four
datasets. The calibration performance is assessed using various score functions, including
the Entropy Reweighted (ER) score function proposed in this work, APS (Romano et al.,
2020), RAPS (Angelopoulos et al., 2021), and SAPS (Huang et al., 2024), across different
desired coverage levels 1− α ranging from 0.90 to 0.99 with a step size of 0.01. We employ
the split conformal method for all score functions. To account for variability, the experiment
is repeated 10 times using different random splits of the data into calibration and test sets.
The evaluation metrics used are coverage and size. Coverage measures the proportion of
test instances for which the true label falls within the predicted prediction set, while size
represents the average number of labels included in the prediction sets.

The results are presented in Figure 4, which shows the coverage-size plots for each
dataset separately. Each plot displays the trade-off between coverage and size for different
score functions. The proposed ER score function is labeled as “ER (Ours)” in the plots.
From the plots, we observe that the ER score function achieves competitive performance
compared to other score functions across all datasets. It maintains good coverage while
yielding relatively small confidence set sizes. The results demonstrate the effectiveness of
the proposed entropy-based reweighting approach in improving the calibration performance
of the classifiers.

Table 1 indicates that the proposed reweighting method outperforms the baseline model
in terms of size across different α values.

To explain the superior performance of the proposed ER method, we categorize the cases
into four scenarios: (1) the model was correct (Yn = argmaxy fy(Xn)) and the entropy is
low (indicating the model is certain about its prediction); (2) the model was correct and the
entropy is high; (3) the model was incorrect and the entropy is low; and (4) the model was
incorrect and the entropy is high. According to entropy reweighting, in the third scenario,
the conformity score will adjust in preferable directions, meaning the score will increase and
make the incorrect label harder to be included in the prediction set. Since this scenario
is very common in over-confident deep network models, entropy reweighting will positively
influence the scoring process and the construction of the prediction set.

5. Limitations and Future Work

Although the experimental results indicate enhancements in both the conditional coverage
and the efficiency of the PS, the current analysis remains largely empirical. We aim to
enhance the theoretical robustness of the entropy reweighting approach by pursuing the
following future directions.

1. Temperature spline-based calibration: Instead of estimating a single temperature
parameter T , we propose a temperature spline by estimating a feature-conditional
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Figure 1: Size vs. Coverage plots for different datasets and score functions.

temperature function T (X). This added flexibility could enable us to enhance the
conditional coverage further.

2. Sample reweighting approach: Furthermore, we consider to reweight the samples ac-
cording to localized CP approach (Guan, 2023), where we examine a local region
around the test sample. Another option is by extending the calibration training idea
in Colombo (2024) to classification settings.

3. Application in graph-structure datasets: We plan to apply entropy reweighted method
to graph-structured datasets to explore how graph topology influences model uncer-
tainty quantification. We will focus on key applications such as node classification
(Cha et al., 2023), link prediction (Luo et al., 2023), and edge weight prediction (Luo
and Colombo, 2024), which is crucial for weighted graphs in various domains.
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Dataset Score Function
α = 0.01 α = 0.05 α = 0.10

Coverage Size Coverage Size Coverage Size

AG News

ER (Ours) 0.977 1.484 0.951 1.125 0.898 1.011
APS 0.991 1.998 0.951 1.367 0.903 1.163
RAPS 0.990 2.055 0.952 1.307 0.906 1.145
SAPS 0.990 2.003 0.950 1.322 0.901 1.179

CARER

ER (Ours) 0.988 1.257 0.948 1.050 0.898 0.989
APS 0.991 1.300 0.944 1.113 0.897 1.034
RAPS 0.991 1.270 0.949 1.115 0.897 1.034
SAPS 0.990 1.497 0.948 1.196 0.898 1.105

Fashion MNIST

ER (Ours) 0.991 1.610 0.951 1.119 0.903 1.014
APS 0.991 1.721 0.948 1.279 0.901 1.125
RAPS 0.990 2.178 0.950 1.235 0.899 1.102
SAPS 0.990 2.054 0.950 1.266 0.898 1.149

MNIST

ER (Ours) 0.990 1.009 0.952 0.967 0.899 0.912
APS 0.990 1.070 0.948 0.985 0.901 0.927
RAPS 0.990 1.051 0.952 0.984 0.899 0.923
SAPS 0.988 1.036 0.951 0.988 0.901 0.931

Table 1: Results for different α values.
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