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60203 Compiègne Cedex - France

Sylvain Rousseau sylvain.rousseau@hds.utc.fr
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Abstract

Object detection is an important vision task, and providing statistical guarantees around
such detections can be of critical importance. So far, most conformal bounding box re-
gression approaches do not simultaneously account for heteroscedasticity and dependencies
between the residuals of each dimension. In this paper, we examine the importance of such
dependencies and heteroscedasticity in the context of multi-target conformal regression, we
apply copula-based conformal prediction methods to model them and to improve the vol-
ume of bounding box prediction regions. We compare these methods to the state-of-the-art
conformal object detection approaches (on the KITTI & the BDD100K autonomous driving
benchmarks) and the empirical copula-based method shows high-efficiency results that are
robust w.r.t. heteroscedasticity and also robust w.r.t. the structure of the dependencies.

Keywords: Uncertainty quantification, object detection, conformal prediction, copulas.

1. Introduction

In recent years, quantifying the uncertainty of predictions made by machine learning al-
gorithms has become increasingly important as these algorithms are deployed in safety-
critical applications (Salim and Jayasudha, 2023). In vision-based autonomous driving,
object detection algorithms (Gupta et al., 2021) jointly predict the categories and the
locations of the objects in a road scene by processing an image or a video frame. Con-
sequently, to ensure that the system is safe, guarantees are not only needed for the clas-
sification task but also for the bounding box regression task. In 2D object detection,
uncertainty quantification (Hüllermeier and Waegeman, 2021; Abdar et al., 2021) has been
done using Bayesian techniques (Harakeh et al., 2020; Sheikh and Shah, 2005), gradient-
based techniques (Riedlinger et al., 2023), ensemble techniques (Lyu et al., 2020; Miller
et al., 2019), other post-hoc calibration methods (Kuppers et al., 2020; Oksuz et al.,
2023) and split conformal prediction (Andéol et al., 2023; De Grancey et al., 2022).
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Split conformal prediction (Papadopoulos et al., 2002) provides probabilistic guarantees
with a reasonable computational cost and with very few assumptions: the data is only
assumed to be exchangeable (Lei et al., 2018).

However, bounding box prediction can be seen as a multi-target regression problem
because it takes 4 scalars to represent a box in an image (i.e., the spatial coordinates of
the top left corner and the bottom right corner of the rectangle), but the split conformal
prediction (SCP) methods that have been proposed by De Grancey et al. (2022) infer
conformal predictions without explicitly accounting for dependencies that can exist between
the elements of the multivariate regression error, and the method in Andéol et al. (2023)
does not account for heteroscedasticity1 nor dependencies2. These limitations are significant
because such dependencies can be leveraged to improve the predictions and because the
residuals are not guaranteed to be homoscedastic1. In fact, Messoudi et al. (2021) proposed
a copula-based multivariate conformal regression method that models the dependencies
without assuming homoscedasticity and Zhang et al. (2023) improved it by leveraging those
dependencies to minimize the volumes of the prediction regions.

In this paper, we examine the impact of dependencies and heteroscedasticity in the
context of multi-target conformal regression, we apply copula-based conformal prediction
methods to bounding box regression and we compare these approaches to other conformal
object detection methods on KITTI (Geiger et al., 2012) & BDD100K (Yu et al., 2020).

The rest of this paper is organized as follows: In section 2, we provide an overview of the
previous works that are related to our contributions. In section 3, we formally present our
approach to conformal bounding box prediction and the preexisting approaches. In section
4 we present our experiments and discuss the results. Finally, we highlight the key points
of this study in section 5.

Ground truth box prediction region outer box inner box

Figure 1: An illustration of a valid bounding box prediction region.

1. In this paper, “heteroscedasticity” will simply stand for heteroscedasticity between residuals of each
dimension, and not heteroscedasticity within each dimension, as this is out of the scope of this paper.

2. Similarly, “dependencies” will simply stand for probabilistic dependencies between the dimensions of the
regression error.
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2. Related Works

In this section, we summarize the previous works that are related to our copula-based SCP
approach to bounding box prediction and establish links and distinctions between them.

Object detection (Felzenszwalb et al., 2009) is a multi-task learning problem composed
of an object classification task and an object localization task. Object classification pre-
dicts the type of an object in an image and object localization predicts the tightest rectangle
that encloses all its pixels. In general, a single (end-to-end) neural network is trained for
object detection with a loss function that is composed of two parts: a cross-entropy term
(for classification) and a penalty for the Jaccard index (the IoU: intersection over union) of
the predicted bounding box and the ground truth bounding box. Zhao et al. (2019), Chen
et al. (2024), and Su et al. (2024) provide good literature reviews for the various loss func-
tions and neural network architectures that are used in object detection. Although these
methods provide a confidence score (Wenkel et al., 2021) for each predicted detection, this
score cannot be used for uncertainty quantification (as is) because it is not well calibrated by
default and because it is holistic w.r.t. the predicted object’s class and its predicted location.

Conformal prediction (Vovk et al., 2022) is an uncertainty quantification (UQ) frame-
work with multiple advantages: it is post-hoc, model agnostic, distribution-free, computa-
tionally efficient, non-asymptotic and rigorously calibrated (i.e., with theoretical guaran-
tees). However, most conformal regression methods cannot be directly applied to bounding
box regression because it is a multivariate (multi-target) regression problem whilst research
in conformal prediction has mainly focused on single-target regression. Thus, De Grancey
et al. (2022) used the Bonferroni correction (Bland and Altman, 1995) to compensate for the
likelihood of errors that emerge in the multiple comparison problem induced by the 4 dimen-
sions. Later, Andéol et al. (2023) transformed the multidimensional residuals into scalars
and applied single-target conformal regression to bounding box prediction. As shown in sec-
tions 3.3.1 & 3.3.2, both methods do not explicitly account for the dependencies that can
exist between the elements of multivariate dissimilarities and the efficiency of the method
in Andéol et al. (2023) depends on the homogeneity of variance (heteroscedasticity).

These are significant limitations because error dependencies can be leveraged to improve
the efficiency of multivariate predictions, which is a major objective in conformal prediction.
To explicitly account for dependencies, Messoudi et al. (2021) proposed a generalized confor-
mal regression method that applies to multi-target problems, by modeling the dependencies
with copulas (Nelsen, 2006; Genest and Favre, 2007), and Zhang et al. (2023) improved that
method by minimizing the volumes of the prediction regions that it produces. To the best
of our knowledge, copula-based conformal prediction approaches have not been applied to
bounding box regression nor compared to other conformal object detection methods.

3. Methodology

In this section, we formally define object detection, box-wise conformal prediction, and the
various approaches that are compared in our experiments.
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3.1. Object detection

In this study, we only investigate single-class object detection. Given an input image Xi

and an object detector fθ, we denote by Ŷi = fθ(Xi) the predicted objects and by Yi
the ground truth objects. The j-th object in the i-th image is represented by a rectan-
gle (i.e., its bounding box) with the coordinates of the top left corner (xi,j ; yi,j) and the

coordinates of the bottom right corner (x̄i,j ; ȳi,j). Thus, we denote Yi = {Bi,j}Ni
j=1 with

Bi,j = {xi,j ; yi,j ;xi,j ; yi,j} and Ni as the number of objects in the i-th image.

In practice, the underlying deep neural network predicts a fixed number of objects that
is significantly greater than the number of objects in any image. A confidence score ρ is
assigned to each predicted object and a non-maximum suppression algorithm (NMS) is used
to remove duplicates and to keep the predictions with high confidence scores. Therefore,
the sets Yi and Ŷi are not presented in the same order. The Jaccard index (IoU: intersection
over union) is used to match each predicted bounding box B̂i,j′ = {x̂i,j′ ; ŷi,j′ ; x̂i,j′ ; ŷi,j′ ; ρi,j′}
with the most likely ground truth B̂i,j .

IoU(Bi,j , B̂i,j′) =
area(Bi,j ∩ B̂i,j′)

area(Bi,j ∪ B̂i,j′)

The performance of the detector can be assessed for different levels of thresholds with the
mean average precision (mAP), i.e., the area under the precision-recall curve, by considering
the predictions with ρi,j′ ≥ ρth and IoU(Bi,j , B̂i,j′) ≥ IoUth as true-positives. To simplify
the notations, we will consider j′ = j in the remainder of this paper.

Algorithm 1 Computing bounding box dissimilarity scores

Require: a detection threshold ρth, an overlap threshold IoUth,
a trained object detector fθ, a calibration dataset Dcal.

1: for Xi ∈ Dcal do
2: Predict the bounding boxes: Ŷi = fθ(Xi),
3: for Bi,j ∈ Yi, B̂i,j ∈ Ŷi do

4: if IoU(Bi,j , B̂i,j) ≥ IoUth and ρi,j ≥ ρth then

5: Pair Bi,j with B̂i,j

6: end if
7: αi,j ← {|x̂i,j −xi,j |, |ŷi,j − y

i,j
|, |xi,j − x̂i,j |, |yi,j − ŷi,j |} // dissimilarity scores

8: end for
9: end for

3.2. Box-wise conformal prediction

In this study, we only investigate box-wise split conformal prediction approaches: we infer
4-dimensional prediction regions (i.e., bounding box intervals). Box-wise SCP approaches
follow the general training and calibration procedure in Algorithm 2. For each bounding
box Bi,j , and given a user-specified (global) significance level ϵg ∈ [0, 1], we aim to infer a

small (efficient) 4-dimensional interval I(B̂i,j) such that

P (Bi,j ∈ I(B̂i,j)) ≥ 1− ϵg.
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An inferred interval I(B̂i,j) is valid if it contains the ground truth Bi,j (as in Figure 1) and
a UQ method is (marginally) well-calibrated if the proportion of valid inferences matches
the desired level 1− ϵg.

Thus, box-wise SCP algorithms are identical except for line 4 in Algorithm 2: they only
differ by how they process the multidimensional dissimilarities αi,j to determine conformal
quantiles {α1

s, . . . , α
1
s} (the key step for inferring the bounds of the 4-dimensional interval).

At test time (or in deployment), only steps 5 & 6 are done to predict a new interval.

Algorithm 2 The generic calibration procedure for box-wise SCP

Require: a global significance level ϵg, an object detector fθ, a dataset D
1: Split the dataset D in two subsets: Dtrain & Dcal = {(Xi, Yi)}ni=1,
2: Fit or fine tune fθ on Dtrain,
3: Follow Algorithm 1 to compute bounding box dissimilarity scores {αi,j}ni=1,
4: Compute conformal quantiles {α1

s, α
2
s, α

3
s, α

4
s} from {αi,j}ni=1 and ϵg,

5: For any new predicted box B̂n+1,j , infer an inner box B̂n+1,j and an outer box B̂n+1,j :

B̂i,j = {x̂i,j + α1
s, ŷi,j + α2

s, x̂i,j − α3
s, ŷi,j − α4

s} (1)

B̂i,j = {x̂i,j − α1
s, ŷi,j − α2

s, x̂i,j + α3
s, ŷi,j + α4

s} (2)

6: Yield bounding box prediction regions I(B̂n+1,j)← [B̂n+1,j , B̂n+1,j ]

3.3. Compared approaches

In this section, we detail how each compared approach processes the multidimensional
dissimilarities to determine the conformal quantiles, in order to infer the bounds of bounding
box prediction intervals.

3.3.1. The Bonferroni correction

The Bonferroni approach (De Grancey et al., 2022) associates an adjusted significance level
ϵt to each dimension of the bounding box before applying 4 separate single-target conformal
prediction procedures: each conformal quantile αt

s (associated to the t-th dimension) is
computed with the significance level ϵt = ϵ1 = · · · = ϵ4 = ϵg

4 . This adjustment allows to
construct multiple confidence intervals while still ensuring that the overall confidence level
ϵg is maintained. In multiple hypothesis testing, this adjustment is often used to control
the family-wise error rate (FWER).

However, this method does not finely nor explicitly model the dependencies because
its ϵt values do not depend on the 4-dimensional distribution of the αi,j and therefore
ϵt = ϵg

4 , no matter the structure of the dependencies, which is equivalent to making a
conservative assumption about the dependencies. Nonetheless, this method accounts for
heteroscedasticity because each conformal quantile αt

s is computed separately.
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3.3.2. The max-additive approach

The max-additive approach (Andéol et al., 2023) reduces the multidimensional dissimilari-
ties into a one-dimensional sample by keeping the maxima of residuals.

αi,j = max(|x̂i,j − xi,j |, |ŷi,j − y
i,j
|, |xi,j − x̂i,j |, |yi,j − ŷi,j |). (3)

The bounds of I(B̂i,j) are inferred using equations 1 & 2, with the same conformal quan-
tile for every dimension, i.e., α1

s = · · · = α4
s = the ((1 − ϵg)(n + 1)/n)-percentile of the

dissimilarity scores. Therefore, this method does not explicitely account for any proba-
bilistic dependencies in the dissimilarities. Also, this method assumes the residuals to be
homoscedastic, or at least of comparable magnitude: if there is a dimension whose dissimi-
larity values are always significantly larger than the values on all the other dimensions, the
max operation will discard the dimensions with small dissimilarity values and thereby infer
prediction intervals that are larger than necessary (inefficient).

3.3.3. The copula-based approach

This study applies copula-based conformal prediction (CCP) to object detection for the
first time. The copula-based conformal prediction approach (Messoudi et al., 2021) that we
devote to object detection finely and explicitly represents the dependencies with copulas.

Copulas C : [0, 1]t → [0, 1] are multivariate cumulative distribution functions with
marginals that are uniform on the [0, 1] interval. Among other things (Genest and Favre,
2007), they are used to model the dependence structure between the marginals of a joint dis-
tribution function. Given two random variables V 1 ∼ F 1, V 2 ∼ F 2, their joint cumulative
distribution function (V 1, V 2) ∼ F and the probability integral transforms U1 = F 1(V 1) &
U2 = F 2(V 2), we can express F with its copula C as follows:

F (v1, v2) = P (V 1 ≤ v1, V 2 ≤ v2)

= P (F 1(V 1) ≤ F 1(v1), F 2(V 2) ≤ F 2(v2))

= P (U1 ≤ u1, U2 ≤ u2)

= C(u1, u2)

(4)

The above relations hold for any number of random variables (under mild conditions) and
the existence of a copula C is guaranteed by Sklar’s theorem (Sklar, 1959). In this study
we use the product copula (Cπ) to only model independence and we use the Gumbel copula
(CG) and the empirical copula (CE) to flexibly model independence or interdependency:

Cπ(u
1, . . . , um) =

m∏
t=1

ut, (5)

CG(u
1, . . . , um) = exp

(
m∑
t=1

(− lnut)θ

) 1
θ

, (6)

CE(u
1, . . . , um) =

1

n

n∑
i=1

m∏
t=1

1ut
i≤ut , (7)
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where θ is an estimated parameter and (the indicator function) 1ut
i≤ut takes the value 1 if the

inequality is verified and 0 other wise. Messoudi et al. (2021) showed that each significance
level ϵt in a conformal prediction setting with t outputs can be determined by inverting the
copula or by search. From the definition of validity and calibration in conformal prediction,
we get that:

P (Bi,j ∈ I(B̂i,j)) = P (|xi,j − x̂i,j | ≤ α1
s, . . . , |ȳi,j − ̂̄yi,j | ≤ α4

s) ≥ 1− ϵg, (8)

where for each dimension t, αt
s denotes the conformal quantile associated with the sig-

nificance level ϵt. By assuming that the method is well-calibrated, we get that:

F g(α1
s, . . . , α

4
s) = C(F 1(α1

s), . . . , F
4(α4

s)) = C(1− ϵ1, . . . , 1− ϵ4) = 1− ϵg, (9)

αt
s = Qt((1− ϵt)× (n+ 1)/n) (10)

where F g denotes the joint cumulative distribution, F t denotes the marginal of the t-th
dimension and Qt denotes its inverse (i.e., the quantile function). There can be many
solutions for the quadruplet (ϵ1, . . . , ϵ4). In such cases, the efficiency of the method depends
on the chosen quadruplet because the bounds depend on the associated conformal quantiles
as shown by equations 1 & 2. Instead of simply solving equation 9 for ϵ1 = · · · = ϵ4 as in
Messoudi et al. (2021), the efficiency can be further increased by minimizing the volume of
the inferred prediction regions under these specific (copula) constraints:

argmin
ϵ1,...,ϵ4

4∏
t=1

(
2× αt

s

)
s.t.

{
C(1− ϵ1, . . . , 1− ϵ4) ≥ 1− ϵg

ϵt ∈ (0, ϵg]
(11)

Zhang et al. (2023) solved this optimization problem with a differential evolution algorithm
(DE), which is a meta-heuristic optimization technique (Storn and Price, 1997). With this
solution, we will use the independent copula to model independence, the (semi-parametric)
Gumbel copula to flexibly model correlations, and the (non-parametric) empirical copula
to estimate the dependency structure directly from the observations αi,j .

Although Zhang et al. (2023) and Messoudi et al. (2021) did not provide formal proofs
for the validity guarantees, Sun and Yu (2023) provided a formal proof that relies on the
empirical copula (in an application of SCP to multi-step time series forecasting).

4. Experiments

4.1. Experimental setup

In this section, we present the datasets, the protocol, and the evaluation metrics that were
used to compare the different box-wise conformal prediction approaches.

The datasets

We use two real autonomous driving datasets (KITTI & BDD100K) as well as two synthetic
datasets to compare the different box-wise SCP approaches.

KITTI (Geiger et al., 2012) is a vision benchmark that was produced using a real
autonomous driving platform3 in 2012. To this day, it is still relevant and we use it in this

3. See https://www.cvlibs.net/datasets/kitti/setup.php
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study to detect the class with the most instances: car objects. We only use the publicly
accessible4 2D object detection data, that is, a total of 7841 images and 28742 car instances.

BDD100K (Yu et al., 2020) is a larger autonomous driving dataset that is diverse w.r.t.
appearance variation(s). Collected using multiple vehicles, it was published in 2020 and
recently used in multi-object tracking (MOT) challenges5 at the CVPR 2023 Workshop
on Autonomous Driving (WAD). In this study, we use it for car bounding box prediction
and to emulate settings with abundant data, as opposed to the significantly smaller KITTI
dataset. Similarly, we only use the part6 with publicly accessible annotations, that is, a
total of 80K images and 815717 car instances.

The synthetic datasets were used to examine the importance of dependencies and the
impact of heteroscedasticity. For the first one, we generated independent residuals from
a uniform distribution (αi,j ∼ U(Ω) with Ω = [0, 2.8] × [0, 2.5] × [0, 8] × [0, 2.5]), and for
the second one, we generated correlated residuals from a multivariate normal distribution
(αi,j ∼ N (0, Σ) with Σ11 = 2 , Σ22 = 1.5, Σ33 = 15, Σ44 = 1.5 and Σkl = 0.8 for k ̸= l). We
generated about 4000 data points for calibration and 3000 for testing. Although these sizes
are arbitrary (and rounded), they are reported because empirical methods are sensitive to
calibration sample sizes as shown by Messoudi et al. (2021).

The experimental procedure

As stated above, we focus on predicting cars’ bounding boxes. The DE algorithm was
initialized with a population of 20 candidates and the number of iterations was set to 200.

To assess the calibration, on each dataset, 12 values of the global significance level ϵg

were tried (from 0.01 to 0.9) and the variability of our results was assessed in a k-fold cross-
validation setting (10-fold for KITTI and 5-fold for BDD100K). For the real datasets, on
each cross-validation iteration, we used a different subset for testing (10% of the total) and
the training set (i.e., the rest) was further split in two parts: one set for calibration (10%
of the total) and one set for fine-tuning (80% of the total). No fine-tuning was done for the
synthetic data, the procedure (generation, calibration & test) was repeated 10 times.

For the real datasets, we fine-tuned the YOLO v8 object detector (Jocher et al., 2023)
(with the above split ratios) for 100 epochs on KITTI and for 20 epochs on BDD100K. We
filtered its predictions with a confidence threshold ρth = 0.3, and we paired the predicted
boxes with their ground truth boxes with a threshold IoUth = 0.3. The code7 is publicly
available and the implementation uses open-source libraries: PyTorch (Paszke et al., 2019),
Copulae (Bok et al., 2024) and SciPy (Virtanen et al., 2020).

Evaluation metrics

We evaluate the performance of box-wise SCP approaches with two metrics: we use the
empirical coverage (i.e., the percentage of valid inferences) to assess the calibration and
we use the volume of the inferred bounding box intervals to assess the efficiency of the
compared box-wise SCP approaches. In the below equations, 1

Bi,j∈I(B̂i,j)
has value 1 if

4. See https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d

5. See https://www.vis.xyz/bdd100k/challenges/cvpr2023/

6. See https://doc.bdd100k.com/download.html#k-images

7. See https://gitlab.utc.fr/robust-event-detection/copula-based-conformal-bounding-box-prediction
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Bi,j ∈ I(B̂i,j), and 0 otherwise; N denotes the number of images that were used to test
the box-wise SCP approach, Ni denotes the number of objects in the j-th image, and Vi,j

denotes the volume of the hyper-rectangle I(B̂i,j). Ideally, the volume should be tiny and
the coverage should be equal to the desired coverage level 1− ϵg.

Coverage =
1

N
×

N∑
i=1

 1

Ni
×

Ni∑
j=1

1
Bi,j∈I(B̂i,j)

 (12)

Average volume =
1

N
×

N∑
i=1

 1

Ni
×

Ni∑
j=1

Vi,j

 =

4∏
t=1

(
2× αt

s

)
(13)

4.2. Results

In this section, we report the results of our experiments. We designate by “Bonferroni” the
method that is described in section 3.3.1 and we designate by “Max additive” the method
that is described in section 3.3.2. For the methods in section 3.3.3, “Independent DE-CCP”
is based on the independent copula, “Gumbel DE-CCP” is based on the (semi-parametric)
Gumbel copula, and “Empirical DE-CCP” for the (non-parametric) empirical copula. We
use graphics to report the general trends and tables to provide finer details for high values
of desired coverage levels (1− ϵg).

4.2.1. Validity

As stated in section 4.1, we used multiple folds and different levels of ϵg to assess the
calibration of the compared SCP approaches:

Calibration curves

Figure 2: Calibration curves (from left to right) for correlated residuals, for independent
residuals, and for YOLO v8’s residuals on KITTI & on BDD100K.

As shown in Figure 2, in the case of correlated dissimilarities (on the first subplot,
from left to right), we can sort the compared approaches from the closest to the (perfect)
calibration line to the furthest as follows: “Max additive”, “Empirical DE-CCP”, “Gumbel
DE-CCP”, “Independent DE-CCP” and “Bonferroni”. Furthermore, as detailed in Table 1,
the results are close but the empirical coverage of the “Max additive” approach is bit lower
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than the desired levels. For theses reasons, the results of the “Empirical DE-CCP” approach
are put in bold.

In the case of independent residuals (on the second subplot), we can sort the approaches
from the closest to the calibration line to the furthest as follows: “Max additive” approach,
the copula-based approaches and the ”Bonferroni” approach. As shown in Table 2, the
validity results of the copula-based methods are very close.

1− ϵg Bonferroni Max additive
Independent
DE-CCP

Gumbel
DE-CCP

Empirical
DE-CCP

0.99 0.992±0.002 0.991±0.002 0.990±0.002 0.990±0.002 0.990±0.002
0.95 0.960±0.006 0.947±0.007 0.955±0.006 0.953±0.007 0.952±0.007
0.90 0.920±0.009 0.898±0.008 0.913±0.009 0.908±0.009 0.906±0.009
0.80 0.849±0.011 0.796±0.013 0.834±0.012 0.822±0.012 0.815±0.012

Table 1: Empirical coverage (mean and std.) for the correlated residuals dataset.

1− ϵg Bonferroni Max additive
Independent
DE-CCP

Gumbel
DE-CCP

Empirical
DE-CCP

0.99 0.990±0.002 0.991±0.002 0.987±0.002 0.988±0.003 0.987±0.003
0.95 0.952±0.007 0.951±0.004 0.945±0.006 0.944±0.004 0.945±0.006
0.90 0.902±0.008 0.902±0.006 0.892±0.007 0.892±0.008 0.894±0.009
0.80 0.812±0.011 0.802±0.009 0.792±0.010 0.792±0.012 0.791±0.011

Table 2: Empirical coverage (mean and std.) for the independent residuals dataset.

1− ϵg Bonferroni Max additive
Independent
DE-CCP

Gumbel
DE-CCP

Empirical
DE-CCP

0.99 0.992±0.005 0.987±0.006 0.989±0.006 0.989±0.006 0.985±0.006
0.95 0.967±0.010 0.932±0.012 0.958±0.012 0.956±0.013 0.930±0.011
0.90 0.932±0.016 0.876±0.012 0.915±0.015 0.909±0.015 0.875±0.013
0.80 0.857±0.019 0.775±0.012 0.833±0.016 0.820±0.017 0.775±0.011

Table 3: Empirical coverage (mean and std.) for YOLO v8’s residuals on KITTI.

In the case of YOLO v8’s residuals on the KITTI benchmark (on the third subplot),
the “Max additive” approach and the “Empirical DE-CCP” approach are the closest to the
calibration line. However, as detailed in Table 3, the calibration results of “Max additive”
and “Empirical DE-CCP” get slightly lower than the desired calibration levels when 1− ϵg

gets very high. Nonetheless, the results of the “Gumbel DE-CCP” approach remain higher
but close to the (perfect) calibration line: among the methods that uphold the guarantees
that are expressed in Equation 8, this method is the closest to the calibration line.
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1− ϵg Bonferroni Max additive
Independent
DE-CCP

Gumbel
DE-CCP

Empirical
DE-CCP

0.99 0.990±0.000 0.989±0.000 0.989±0.000 0.989±0.000 0.989±0.000
0.95 0.954±0.001 0.948±0.001 0.953±0.001 0.951±0.001 0.948±0.001
0.90 0.912±0.001 0.898±0.001 0.911±0.001 0.907±0.001 0.897±0.001
0.80 0.835±0.001 0.796±0.001 0.823±0.001 0.816±0.001 0.795±0.002

Table 4: Empirical coverage (mean and std.) for YOLO v8’s residuals on BDD100K.

In the case of YOLO v8’s residuals on the BDD100K benchmark (the fourth subplot),
we observe the same ranking as on KITTI. However, all the calibration curves are closer to
the perfect calibration line. As detailed by Table 4, the “Max additive” approach and the
“Empirical DE-CCP” approach are very slightly off and the offsets are significantly smaller
than the offsets that we observe on KITTI (Table 3).

4.2.2. Efficiency

In this section we report the average size (volumes) of the inferred bounding box prediction
regions for each of the compared approaches, as defined by Equation 12.

Efficiency curves

Figure 3: Efficiency curves (from left to right) for correlated residuals, for independent
residuals, and for YOLO v8’s residuals on KITTI & on BDD100K.

1− ϵg Bonferroni Max additive
Independent
DE-CCP

Gumbel
DE-CCP

Empirical
DE-CCP

0.99 1.15e+04±8.89e+02 1.62e+05±8.09e+03 1.09e+04±7.70e+02 1.06e+04±6.77e+02 1.05e+04±6.73e+02
0.95 5.16e+03±1.88e+02 5.16e+04±2.93e+03 4.95e+03±1.91e+02 4.79e+03±1.68e+02 4.72e+03±1.69e+02
0.90 3.29e+03±1.70e+02 2.59e+04±1.66e+03 3.14e+03±1.43e+02 3.01e+03±1.35e+02 2.96e+03±1.38e+02
0.80 1.92e+03±8.06e+01 9.48e+03±6.74e+02 1.76e+03±6.94e+01 1.67e+03±6.08e+01 1.59e+03±5.80e+01

Table 5: Empirical efficiency (mean and std.) for the correlated residuals dataset.

As shown on Figure 3, in the case of correlated residuals (on the first subplot, from left
to right), all the efficiency curves are close but the curve of the “Max additive” approach
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1− ϵg Bonferroni Max additive
Independent
DE-CCP

Gumbel
DE-CCP

Empirical
DE-CCP

0.99 2.22e+03±3.86e+00 6.31e+04±3.43e+02 2.21e+03±4.39e+00 2.21e+03±4.07e+00 2.21e+03±3.45e+00
0.95 2.13e+03±1.12e+01 5.34e+04±5.71e+02 2.12e+03±7.99e+00 2.12e+03±7.66e+00 2.12e+03±9.99e+00
0.90 2.02e+03±7.93e+00 4.32e+04±4.71e+02 2.00e+03±1.07e+01 2.00e+03±1.03e+01 2.00e+03±1.04e+01
0.80 1.82e+03±8.97e+00 2.69e+04±4.58e+02 1.78e+03±1.31e+01 1.77e+03±1.37e+01 1.77e+03±1.16e+01

Table 6: Empirical efficiency (mean and std.) for the independent residuals dataset.

is significantly above the other curves when 1 − ϵg ≥ 0.7 and it reaches 1.62 × 105 (when
1 − ϵg = 0.99) whereas the other curves stay lower than 5.2 × 104, as detailed in Table 5.
In the case of independent residuals (the second subplot), the efficiency curve of the “Max
additive” approach is also significantly above the other curves when 1 − ϵg ≥ 0.5 and it
reaches 6.31× 104 (when 1− ϵg = 0.99) while the other curves stay lower than 2.3× 103, as
detailed in Table 6.

1− ϵg Bonferroni Max additive
Independent
DE-CCP

Gumbel
DE-CCP

Empirical
DE-CCP

0.99 6.96e+09±5.47e+09 1.06e+10±1.34e+10 3.78e+09±3.56e+09 3.45e+09±3.76e+09 7.33e+08±1.02e+09
0.95 2.10e+07±2.10e+07 4.33e+05±2.88e+05 6.97e+06±9.28e+06 3.44e+06±4.07e+06 2.87e+05±1.85e+05
0.90 4.42e+05±4.99e+05 4.86e+04±1.64e+04 1.84e+05±1.24e+05 1.21e+05±6.99e+04 3.48e+04±1.11e+04
0.80 2.31e+04±1.01e+04 6.95e+03±1.31e+03 1.56e+04±5.45e+03 1.14e+04±3.30e+03 5.42e+03±7.63e+02
0.70 6.93e+03±1.80e+03 2.32e+03±3.17e+02 4.41e+03±9.40e+02 3.31e+03±5.90e+02 1.87e+03±2.32e+02
0.60 3.08e+03±6.06e+02 9.40e+02±1.17e+02 1.79e+03±3.21e+02 1.35e+03±1.91e+02 8.07e+02±1.19e+02
0.50 1.69e+03±3.01e+02 4.37e+02±6.24e+01 8.25e+02±1.25e+02 6.23e+02±7.18e+01 3.90e+02±5.27e+01
0.40 1.03e+03±1.76e+02 2.17e+02±3.21e+01 4.04e+02±5.52e+01 3.00e+02±3.47e+01 1.95e+02±2.42e+01
0.30 6.60e+02±1.11e+02 1.07e+02±1.29e+01 1.93e+02±2.61e+01 1.43e+02±1.58e+01 9.55e+01±1.25e+01
0.20 4.53e+02±5.68e+01 4.58e+01±6.19e+00 8.39e+01±1.19e+01 5.95e+01±6.80e+00 3.98e+01±4.89e+00
0.10 3.16e+02±4.22e+01 1.36e+01±1.48e+00 2.65e+01±3.24e+00 1.77e+01±1.71e+00 1.16e+01±1.36e+00

Table 7: Empirical efficiency (mean and std.) for YOLO v8’s residuals on KITTI.

1− ϵg Bonferroni Max additive
Independent
DE-CCP

Gumbel
DE-CCP

Empirical
DE-CCP

0.99 1.59e+08±9.23e+06 1.73e+08±9.97e+06 1.51e+08±7.40e+06 1.41e+08±7.79e+06 1.41e+08±8.60e+06
0.95 9.11e+06±4.91e+05 6.44e+06±3.23e+05 8.29e+06±4.79e+05 7.49e+06±3.99e+05 6.22e+06±3.24e+05
0.90 1.62e+06±2.76e+04 9.84e+05±1.55e+03 1.36e+06±6.67e+03 1.21e+06±8.24e+01 8.88e+05±5.10e+03
0.80 2.46e+05±2.75e+02 1.40e+05±1.23e+03 1.93e+05±6.70e+01 1.73e+05±4.26e+01 1.27e+05±6.38e+02
0.70 8.48e+04±3.86e+02 4.45e+04±2.48e+02 6.06e+04±6.23e+02 5.45e+04±5.08e+02 4.09e+04±3.34e+02
0.60 4.07e+04±4.19e+02 1.82e+04±3.31e+01 2.54e+04±8.34e+01 2.29e+04±3.05e+01 1.74e+04±9.66e+00
0.50 2.29e+04±1.07e+02 8.41e+03±2.42e+01 1.21e+04±6.42e+01 1.08e+04±8.34e+01 8.10e+03±4.18e+01
0.40 1.42e+04±9.66e+00 4.07e+03±2.33e+01 5.97e+03±1.05e+01 5.33e+03±3.30e+01 3.96e+03±3.40e+01
0.30 9.32e+03±5.08e+01 1.92e+03±1.55e+01 2.91e+03±1.57e+01 2.58e+03±1.73e+01 1.89e+03±1.62e+01
0.20 6.39e+03±1.62e+01 8.22e+02±3.30e+00 1.28e+03±2.23e+00 1.12e+03±4.36e+00 8.13e+02±3.06e+00
0.10 4.53e+03±2.36e+01 2.57e+02±1.08e+00 4.09e+02±2.99e+00 3.51e+02±4.16e+00 2.55e+02±2.57e-01

Table 8: Empirical efficiency (mean and std.) for YOLO v8’s residuals on BDD100K.

For the real datasets, as detailed in Tables 7 & 8, the “Empirical DE-CCP” approach
yields the best efficiency results, the “Max additive” approach comes in second but it
performs worse when 1 − ϵg = 0.99. As shown on Figure 3, on the KITTI dataset (on the
first subplot, from left to right), when 1 − ϵg = 0.99 all the curve abrutly shoot up and
the curve of the “Max additive” approach shoots up the most. As detailed in Table 7, the
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efficiency curves of all the other approaches stay below 7 × 109 but the efficiency curve of
the “Max additive” approach reaches 1010.

On the BDD100K dataset (the fourth subplot), we also observe abrupt increases when
1 − ϵg = 0.99 but, in contrast with the results on the KITTI, the efficiency curves only
shoot up by two orders of magnitude (at most), as detailed in Table 8. The “Max additive”
approach still performs worse when 1− ϵg = 0.99 but its results are closer to the results of
the other methods.

4.3. Results discussion

In this section, we interpret the results of our experiments, we discuss the importance of
this study, and we draw recommendations to alleviate its limitations.

As reported in the previous section, the calibration results of the “Max additive” ap-
proach are not highly affected by the presence or the absence of correlations in the residuals.
However, its efficiency results are highly affected by heteroscedasticity (on the synthetic
datasets). As described in section 4.1, the synthetic residuals are generated such that the
range of one dimension is significantly higher than the ranges of all the other dimensions.
In these cases, the “Max additive” approach simply discards the dissimilarity data of the
dimensions with small ranges as shown in equation 3, and this is very inefficient because
a very big correction α1

s = · · · = α4
s is always applied to each dimension of each predicted

bounding box when inferring the corresponding interval (as described in Equations 1 & 2).

In contrast, the efficiency results of the “Bonferroni” approach and the copula-based
approaches are not affected by dissimilarities with a dimension that has a larger range than
all the other dimensions. This can be explained by the fact that these methods compute a
different conformal quantile αt

s for each dimension t: a dimension with a very large range
doesn’t make them discard all the other dimensions. Moreover, the copula-based approaches
are more efficient than the “Bonferroni” approach. They explicitly model the dependencies
and they directly minimize the sizes of the inferred bounding box intervals.

The “Empirical DE-CCP” is shown to be flexible w.r.t. the type of dependency and
it has the best efficiency results on the real datasets (on KITTI and on BDD100K, using
YOLO v8’s residuals). However, it is also shown to be slightly over-conservative (above the
calibration line) in the case of correlated dissimilarities and slightly under-conservative in
the case of independent residuals. In the case of YOLO v8’s residuals, it is nearly perfectly
calibrated on the BDD100K dataset but it is also slightly under-conservative on the KITTI
dataset. These over-conservative results can be explained by the fact that Equation 11
allows the DE optimization algorithm to find solutions that are above the calibration line:
the copula constraint is expressed as an inequality instead of an equality. This explanation is
supported by the fact that the DE optimization algorithm did not find any feasible solution
when the copula constraint was expressed as an equality in our experiments. The under-
conservative results can be explained by the fact that the “Empirical DE-CCP” approach
depends on the amount of data that is used for calibration. This explanation is supported
by the results of the “Gumbel DE-CCP” approach because it is closer to the calibration
line than the “Empirical DE-CCP” in the case of independent dissimilarities, and it is also
supported by the (near perfect calibration) results on the larger dataset (BDD100K).
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This study is significant because it is the first application of copula-based conformal
prediction to bounding box regression and because it fills the knowledge gap regarding the
comparison of this approach to state-of-the-art conformal bounding box prediction methods
(on two real autonomous driving benchmarks). Also, although De Grancey et al. (2022) had
mentioned the possibility of using absolute values in the dissimilarity score to infer bounding
box intervals, instead of simply enlarging the predicted bounding box as in De Grancey et al.
(2022) & Andéol et al. (2023), this is the first study that puts this idea in practice in the
context of object detection.

Inferring bounding box intervals has multiple practical advantages but it is also theo-
retically more rigorous. A properly sized and aligned inner box is more useful when a robot
needs to reach a target object with guarantees (when a drone lands on a non-rectangular
spot, for example) whereas the outer box is more useful when a robot needs to avoid an ob-
stacle with guarantees (when an autonomous car parks in an surrounded slot, for example).
From a theoretical perspective (Couso and Dubois, 2014), a ground truth bounding box is
an ontic set and therefore inferring a single larger box that contains it does not properly
quantify the uncertainty in its prediction. In fact, an epistemic set over a set (an ontic
set that represents an upper bound and another ontic set that represents a lower bound) is
needed to quantify the uncertainty in an ontic set: a bounding box interval that contains the
ground truth bounding box is the proper representation of the uncertainty in its prediction.

Nonetheless, since object detection is not always single-class nor solely comprised of the
bounding box regression task, this study is limited by the fact that it does not jointly ad-
dress multi-class object classification & localization (bounding box regression). Solving this
problem would require considering a generic multi-target problem (Waegeman et al., 2019),
where a classification task is mixed with a (multivariate) regression task. The challenge
here would be to mix heterogeneous tasks, yet since the copula-based approaches aggregate
quantiles of conformal scores rather than the conformal scores themselves, extending the
idea seems feasible 8. An even more challenging task would be to integrate the recognition
of a varying number of objects across images, possibly needing to mix conformal approaches
with tools such as random finite sets (Vo and Vo, 2013).

5. Conclusion

This paper has applied copula-based split conformal prediction approaches to bounding
box regression and it has compared their results to state-of-the-art conformal bounding box
prediction methods. It has shown that the empirical copula-based method is more efficient
and more robust to heteroscedastic residuals even when one dimension has a very large
spread. This non-parametric method is also shown to be nearly perfectly calibrated on the
BDD100K benchmark and slightly under-conservative on the KITTI benchmark. Further
development should include conformal predictions for the classification task (as well) and
rely on an efficiency optimization algorithm that can find feasible solutions for equality
copula constraints.

8. This contrasts with the max-additive approach, which implicitly assumes commensurability of the com-
puted non-conformity scores or residuals.
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Léo Andéol, Thomas Fel, Florence De Grancey, and Luca Mossina. Confident object de-
tection via conformal prediction and conformal risk control: an application to railway
signaling. In Conformal and Probabilistic Prediction with Applications, pages 36–55.
PMLR, 2023.

J Martin Bland and Douglas G Altman. Multiple significance tests: the bonferroni method.
Bmj, 310(6973):170, 1995.

Daniel Bok, Copulae The, and team. Copulae, March 2024. URL https://github.com/

DanielBok/copulae.

Wei Chen, Jinjin Luo, Fan Zhang, and Zijian Tian. A review of object detection: Datasets,
performance evaluation, architecture, applications and current trends. Multimedia Tools
and Applications, pages 1–59, 2024.

Inés Couso and Didier Dubois. Statistical reasoning with set-valued information: Ontic
vs. epistemic views. International Journal of Approximate Reasoning, 55(7):1502–1518,
2014.

Florence De Grancey, Jean-Luc Adam, Lucian Alecu, Sébastien Gerchinovitz, Franck Ma-
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