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Abstract
In safety-critical applications, such as medicine and healthcare, decision makers are hesitant
to deploy machine learning models unless the expected algorithmic errors are guaranteed
to remain within pre-defined tolerances. However, since ML algorithms are statistical in
nature, a bounded error cannot be ensured for all possible data inputs. To the contrary,
practitioners could be provided with an estimate of the probability the error exceeds the
pre-defined tolerance interval. Thus, they will be able to better anticipate high magnitude
ML errors and thus manage them more effectively. We refer to this as the risk-assessment
problem and propose a novel solution for it. We propose a conformal prediction approach
that translates the risk-assessment task into a prediction interval generation problem. The
conformal prediction approach results in prediction intervals that are guaranteed to contain
the true target variable with a given probability. Using this coverage property, we prove
that our risk-assessment approach is conservative i.e., the risk we compute, under weak
assumptions, is not lower than the true risk resulting from the ML algorithm. We focus on
regression tasks and computationally study, and compare with other related methods, the
performance of the proposed method both with and without covariate shift. We find that
our method offers superior accuracy while being conservative.
Keywords: risk assessment, conformal prediction, machine learning safety

1. Introduction

Certain safety-critical applications demand tight error tolerances from ML algorithms. Con-
sider healthcare, for settings in which ML algorithms perform dose optimization for chemoth-
rapy and radiotherapy Feng et al. (2018); Huynh et al. (2020); Prinster et al. (2022). An
under- or over-dose could severely harm the health of a patient or could even be lethal.
Nevertheless, a 5 to 10 percentage deviation between the model’s prediction and the true
dosage—the absolute error in this case—is considered safe Gurney (2002); Cohen et al.
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(1996). Since ML algorithms are statistical in nature, these error tolerances cannot be always
guaranteed and a tolerance–violation is possible even for expectionally accurate ML models
Hüllermeier and Waegeman (2021). To better prepare for such events, ML model users would
like to reserve resources (financial, for instance), making it crucial to estimate the probability
with which the error overshoots the tolerated error margin Bertsimas and Orfanoudaki (2021).
To this end, we note that a ML model developer does not often have the flexibility to set the
tolerance threshold based upon the model’s performance. In practice, the model user and the
field of application (healthcare in this case) dictates the magnitude of the error tolerance.

We refer to the above problem as risk-assessment. Any method that aims to solve the
risk-assessment problem needs to satisfy two important properties. Firstly, it should be
accurate i.e., the estimated probability of the error overshooting the threshold should be
close to its true value. Secondly, it should be conservative i.e., the true probablity of the error
overshooting the tolerance shouldn’t be larger than its estimated value. Otherwise, the model
user would be over-optimistic about the risk it is undertaking—thereby under-allocating
resources in case the error tolerances are not met. Note that conservative risk-assessment
does not necessarily provide an accurate risk-assessment or vice-versa—assuming that the
error overshoots the tolerance with probability one is conservative but (usually) not accurate.
Conservative risk-assessment has the caveat of an over-allocation of resources for when a
violation of the error tolerances occurs. However, given the financial and potential health
harm involved, we suppose that it is better to be over-prepared than under.

1.1. Risk-assessment: problem formulation

We formalize the risk-assessment problem mathematically. Let (X,Y ) represent the input-
output pair, where X ∈ Rd and Y ∈ R. We denote by µ(x) the machine learning model
and by R+ ∋ e(x, y) := |µ(x) − y| the prediction error. Let τ(x) ∈ R+ be the pre-defined
error tolerance. Our goal is to estimate the probability with which the error overshoots this
tolerance. Equivalently, Risk assessment task:

Given τ(X) find α : P(e(X,Y ) ≥ τ(X)) ≤ α. (1)

Let I(X) denotes a band where the prediction errors are below the pre-defined error
tolerance, i.e., I(X) = [µ(X)− τ(X), µ(X) + τ(X)]. Then the above risk-assessment task
can also be expressed as

Given I(X) find α : P(Y ̸∈ I(X)) ≤ α. (2)

Risk assessment shows similar characteristics with the prediction interval (PI) generation task.
Owing to this similarity, we will tackle the risk assessment problem by an inverse PI generation
method—Figure 1 provides an illustration. Consider a PI generation approach that, given
a miss-coverage level α, outputs a prediction interval T (X;α) with the coverage property
P(Y ̸∈ T (X;α)) ≤ α. We observe that an α could be a solution to the risk-assessment
problem if T (X;α) satisfies two properties: a) it is contained inside the interval I(X); and
b) it is the largest possible. The former property ensures a conservative risk-assessment.
It follows from the inverse relation between the size of a prediction interval and the miss-
coverage level α. Furthermore, the latter ensures accurate risk-assessment, avoiding an
overly-conservative estimate.
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Figure 1: Intervals visualized at some input X = x. α1 and α2 are two possible choices for the
approximation of the failure probability. T (x;α1) is the largest PI contained inside I(X) whereas,
T (x;α2) is the smallest PI that contains I(X). These PIs—depending upon the PI generation
technique—might or might not be equal to I(X). Since I(x) ⊂ T (x;α2), α2 is smaller than the
failure probability and thus, provides a non-conservative solution to risk-assessment. However, since
I(x) ⊃ T (x;α1), α1 provides a conservative solution to risk-assessment.

As for the prediction interval generation technique, we choose conformal prediction (CP)
Papadopoulos et al. (2002); Vovk et al. (2005). Compared to other approaches outlined in
Subsection 1.2, CP provides the following benefits: a) it is a distribution-free approach and
thus, unlike some standard approaches Nix and Weigend (1994); Khosravi et al. (2011b), does
not make any assumptions on the functional form of the data distribution Vovk et al. (2005);
Shafer and Vovk (2008); b) as we verify later numerically, it provides accurate solutions to
the risk-assessment problem; c) owing to its coverage property on the prediction interval
Lei et al. (2018); Angelopoulos and Bates (2021), our risk-assessment is conservative and
accurate—Section 3 provides further elaboration; d) it extends to problems with covariate
shifts Tibshirani et al. (2019); Barber et al. (2022); Prinster et al. (2022); and e) it is model
agnostic Papadopoulos et al. (2002); Lei et al. (2015) and therefore, does not require one to
change the underlying model architecture. Owing to the aforementioned properties, in the
context of regression CP has already been extended to various real-life uses cases—see Auer
et al. (2023); Nolte et al. (2024); Bastos (2024) and references therein.

1.2. Previous works

Recall that we seek an α such that the corresponding prediction interval T (X;α) is the
largest possible and is contained inside I(X). One can use any prediction interval generation
technique that efficiently solves this task. Broadly speaking, these methods have two
categories. The first category models the distribution for Y |X = x. The CDF of the
distribution provides the miss-coverage level α for an interval I(X). One possibility is
to model the distribution via a Bayesian neural network or Gaussian Process Regression
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David (1992); Williams and Rasmussen (1995). Another possibility is to assume a Gaussian
distribution and compute its mean and variance either via samples of the error (collected
over a hold-out set) or via additional outputs to a deep neural network Nix and Weigend
(1994); Khosravi et al. (2011b). The second category trains a neural network by minimizing
a loss function that enforces a small width and a desired coverage on the PIs Pearce et al.
(2018); Khosravi et al. (2011a). Note that the loss function depends on α, and thus for our
use case, this means minimizing multiple different loss functions until a desirable α is found,
which we expect to be prohibitively expensive.

The above approaches either make assumptions on the underlying data distribution or
require a substantial change to the predictive model’s architecture. A CP-approach is able
to address these limitations since it is both distribution-free and model agnostic. To the
best of our knowledge, only the authors in Prinster et al. (2022) have considered such an
approach to solve the risk-assessment problem. Our article builts upon this previous work
but offers three key differences. Firstly, we capture the randomness in the solution to the
risk-assessment problem via a hold-out set thereby, providing a lower variance solution.
Secondly, while accounting for this randomness, we establish that our method is conservative.
Thirdly, for independent and identically distributed (i.i.d) data, we prove the accuracy of our
split-CP based method. Lastly, we perform extensive numerical experimentation to provide
computational evidence that validate the desired properties of the proposed algorithm.

1.3. Contributions

Following is a summary of our contributions. Firstly, we formalize the risk-assessment
problem and propose a framework to solve it for regression problems using CP techniques.
Using the coverage property of the CP technique, we prove that our risk-assessment is
conservative. Secondly, we capture the randomness in the solution to the risk-assessment task
via a hold-out set. Our hold-out set does not require any information on the target variable
and thus, could also be generated using generative-ML techniques Goodfellow et al. (2016).
Lastly, to assess the accuracy of our risk-assessment algorithm, we conduct a comprehensive
set of computational experiments on problems with and without covariate shifts. On a variety
of real-life datasets, we compare our method to those outlined above and provide empirical
evidence that our method is both the most accurate and conservative.

2. Conformal Prediction (CP)

We briefly summarize CP in the presence of covariate shift. The i.i.d setting is a special case
of covariate shift. We consider the latter to be more practically relevant.

2.1. Covariate shift

The covariate shift problem has gained attention within the field of uncertainty quantification
in recent studies Tibshirani et al. (2019); Barber et al. (2022); Shimodaira (2000); Sugiyama
et al. (2007). This topic has also been highlighted in various ML applications, specifically in
the context of healthcare Quinonero-Candela et al. (2008); Ovadia et al. (2019); Ulmer et al.
(2020). Under covariate shift, Y |X = x has the same distribution under training and testing.
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However, the distribution for X changes under testing. Precisely,

training: (X,Y )
i.i.d∼ PX × PY |X ,

testing: (X,Y )
i.i.d∼ P̃X × PY |X ,

(3)

where PX and P̃X are distributions for X under training and testing, respectively. Co-variate
shift violates the data exchangeability assumption in standard CP Shafer and Vovk (2008).
Nevertheless, under weight-exchangeability (see Tibshirani et al. (2019)), CP techniques can
be applied again and PIs with coverage guarantees can be recovered even under covariate
shift Tibshirani et al. (2019).

Recall that under the exchageability assumption, the random variables V1, V2, . . . Vn have
a joint distribution f(V1, V2, . . . Vn) that is invariant under permutations of these random
variables. Furthermore, weight-exchageability means that the joint probability distribution
could be factorized as f(V1, . . . , Vn) = Πn

i=1wi(Vi)g(V1, . . . , Vn), where wi is a weight function
and g is invariant under permutations of the random variables.

If P̃X is absolutely continuous with respect to PX , the data under the covariate shift
are weighted exchangeble with the weight functions being the likelihood ratio given as
w(x) = dP̃X(x)/dPX(x)—see Tibshirani et al. (2019). Introducing these weights to the PI
computation, leads to a valid coverage for the CP intervals under covariate shift Tibshirani
et al. (2019). We present the exact formula below.

2.2. Prediction Intervals

We restrict ourselves to the two common types of weighted conformal prediction methods:
weighted split-CP Tibshirani et al. (2019) and JAW Prinster et al. (2022). Further works
that explore time series data, group-based distribution shifts and robust validation under
distribution shift can be found in Cauchois et al. (2024); Bhattacharyya and Barber (2024);
Angelopoulos et al. (2023); Gibbs and Candes (2021).

Weighted Split-CP: Consider a hold-out set Z = {(Xi, Yi)}i=1,...,n, which is independent
of the training set used for model training. Over the hold-out set Z, we collect samples of
the error e(Xi, Yi) as defined in Equation (1). The PI then follows from including those
values of y in the prediction set that result in an error smaller than a given quantile of these
error samples.

We represent with δx a point mass at value x. We then place point masses at the errors
e(Xi, Yi) and scale them by the weight functions defined as

pwi (x) =
w(Xi)∑n

j=1w(Xj) + w(x)
, i = 1, · · · , n,

pwn+1(x) =
w(x)∑n

j=1w(Xj) + w(x)
,

(4)

were w(X) is the likelihood ratio defined earlier. Summing up the weighted point masses,
provides the empirical error distribution

∑n
i=1 p

w
i (x)δe(Xi,Yi) + pwn+1(x)δ∞. Recall that this

scaling with weights is what leads to weight-exchangeability and subsequently coverage
properties given in Theorem 1. We take the (1 − α)-th quantile of this error distribution
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using the operator Q+
1−α{· · ·}. The PI for weighted split-CP then reads

T (x;α) = µ(x)±Q+
1−α{p

w
i (x)δe(Xi,Yi)}. (5)

For notational simplicity, we suppress the dependence of T on Z. In the special case where
P̃X = PX , the weights reduce to pwi (x) = pwn+1(x) = 1/(n+ 1), which leads to the original
split-CP method Lei et al. (2018).

JAWs: Instead of a hold-out set, for statistical efficiency, JAWs considers a leave-one-out
approach on the training data set—a k-fold cross-validation based methodology is also feasible
Barber et al. (2022). Let µ−i represent a model trained on all training points other than the
i-th one. Then the error samples are collected via e−i(Xi, Yi) = |Yi − µ−i(Xi)|. To derive a
PI for JAWs from that of split-CP, we replace µ and e by µ−i and e−i, respectively. This
leads to

T (x;α) =
[
Q−

α

{
pwi (x)δµ−i(x)−e−i(Xi,Yi)

}
,

Q+
1−α

{
pwi (x)δµ−i(x)+e−i(Xi,Yi)

} ]
.

(6)

Unified notation: For simplicity, we collectively express the above two prediction
intervals as

T (x;α) =
[
Q−

α

{
pwi (x)δV −

i (X)

}
, Q+

1−α

{
pwi (x)δV +

i (X)

}]
, (7)

where V +
i (X) and V −

i (X) are the upper and lower bounds of intervals that include the error
samples, respectively, and read

V ±
i (X) := µ□(X)± e□(Xi, Yi). (8)

The function Q− is the same as Q+ but with a delta-mass placed at −∞, which ensures that
we also consider the lower bounds of the interval expressed via V −

i (X). The placeholder (□)
could either be empty or −i for split-CP and JAW, respectively.

Desirable properties: The following properties are noteworthy. Firstly, for exchangeable
datasets w = 1, we recover the standard un-weighted split-CP and the Jackknife+ intervals
Barber et al. (2021); Papadopoulos et al. (2002). Secondly, the PIs are nested

T (X;α1) ⊆ T (X;α2), ∀α1 ≥ α2. (9)

Lastly, the PIs for both the weighted split-CP and JAW have the coverage property, which
we recall below—see Tibshirani et al. (2019); Barber et al. (2022) for further details.

Theorem 1 (Lower-bound) Tibshirani et al. (2019); Prinster et al. (2022) Under the
assumptions: a) data under co-variate shift in the sense of Equation (3); and b)P̃X is
absolutely continuous with respect to PX , the prediction interval T (X;α) resulting from
weighted split-CP and JAW satisfy

P(Y ∈ T (X;α)) ≥ 1− cα, (10)

where c equals 1 and 2 for split-CP and JAW, respectively.

Theorem 2 (Upper-bound) Lei et al. (2018) If (Xi, Yi) are i.i.d and e(Xi, Yi) have a
continuous joint distribution for i = 1, · · · , n, then—in addition to the lower-bound—the
split-CP prediction interval T (X;α) satisfies

P(Y ∈ T (X;α)) ≤ 1− α+ 2/(n+ 2). (11)
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3. The Inverse Conformal Prediction Algorithm

We propose a CP based approach to solve the risk-assessment problem, and present its
theoretical properties. We name our algorithm as InvCP (Inverse Conformal Prediction), as
it applies the inverse of CP to compute the coverage level instead of a prediction interval.
algorithm 1 summarizes the proposed method that the rest of the section discusses.

3.1. Solution to the risk-assessment problem

Recall that to solve the risk-assessment problem using PIs, for any test input X = x and a
calibration set Z, we seek a miscoverage α(X,Z) such that the PI, at the test input, is the
largest possible but contained inside the interval I(x) = [µ(x)− τ(x), µ(x) + τ(x)]. Since
the PIs are nested Equation (9), we ensure that the PI is the largest possible by taking a
minimum over all α. Enforcing that this largest possible interval is contained inside I(X)
provides

α (X,Z) := min
α′

{α′
: T (X;α′) ⊆ I(X)}, (12)

We average α(X,Z) over a hold-out set Zγ := {Xiγ}{iγ=1,...,m}, and approximate the failure
probability P(e(X,Y ) ≥ τ(X)) via

αm
I :=

1

m

∑
X∈Zγ

α(X,Z). (13)

The set Zγ is independent of the calibration set Z and the training set, and requires only
the input information. In the theorem below, we use this independence property to derive a
convergence result for αm

I and we also prove the conservativeness of our method. Later in
Subsection 3.2 we discuss how to compute α(X,Z).

Theorem 3 (Conservativeness) Assume that the prediction interval in the definition for
α(X,Z) (given in Equation (12)) has the coverage property as given in Theorem 1. Let
αm
I be the estimator defined in Equation (13). Then, the following holds: (i) the probability

P(Y ̸∈ I(X)) has the upper-bound

P(Y ̸∈ I(X)) ≤ cEZ,X [αm
I ] , (14)

where c equals 1 and 2 for weighted split-CP and JAW, respectively; (ii) as m → ∞ and for
all Z, the estimator αm

I converges, in probability, to the expected value EX [α(X,Z)].

Proof See Appendix A.2.

Theorem 4 (Accuracy) Under the same assumption as in Theorem 2, as the size value
of n increases, we have the convergence property

EZ,X [αm
I ]

n→∞−→ P(Y ̸∈ I(X)). (15)

Proof See Appendix A.3.
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Remark 5 (Conservative bound for JAW) Since we estimate P(Y ̸∈ I(X)) using αm
I ,

ideally, we expect the bound P(Y ̸∈ I(X)) ≤ E[αm
I ]. As Theorem 3 dictates, this is true

for split-CP. However, for JAW, we get the conservative bound P(Y ̸∈ I(X)) ≤ 2E[αm
I ].

This is an artifact of the coverage property of JAW (and also Jackknife+), which reads
P(Y ∈ T (X;α)) ≤ 2α; see Theorem 1. Nonetheless, in experiments, we observe c ≈ 1, which
is aligned with previous studies Prinster et al. (2022); Tibshirani et al. (2019).

Remark 6 (Connection to previously proposed bounds) We compare our result to
that propsed by Prinster et al. (2022). Firstly, Prinster et al. (2022) provides the bound
P(Y ̸∈ I(X)) ≤ cα(X,Z). The latter holds for PIs with conditional coverage, which is usually
not the case for CP. Our analysis changes this bound to P(Y ̸∈ I(X)) ≤ cEZ,X [α(X,Z)] that
holds for a CP technique that provides marginal coverage. Secondly, for m = 1, the estimator
αm
I is a high-variance approximation for EZ,X [αm

I ] and is the same as that proposed in
Prinster et al. (2022). Therefore, the estimator in Prinster et al. (2022) is a special case of
ours. Our estimator better captures the randomness in α(X,Z) via a hold-out set.

3.2. Computation of α(X,Z)

To find an α(X,Z) that satisfies Equation (12), we proceed as in Prinster et al. (2022). We
find two PIs that have their left and right endpoints, respectively, inside I(X). We then set
α(X,Z) as the maximum of the coverage levels of these PIs. The nested property of the PIs
(see Equation (9)) ensures that this solves Equation (12)—Appendix A elaborates further.
The details are as follows. Starting with the right endpoint, we find a α+(X) such that the
right endpoint of T (X;α+(X)) (given by Q+

1−α+(X)

{
pwi (x)δV +

i (X)

}
) is inside I(X). This

amounts to summing those point masses that lie outside of the right endpoint of I(X). The
final result reads

α+(X) =

n∑
i=1

pwi (X)1{µ(X) + τ(X) ≤ V +
i (X)}.

We now compute α−(X) such that the left endpoint of T (X;α+(X)) (given by
Q−

1−α+(X)

{
pwi (x)δV +

i (X)

}
) is inside I(X). With a similar computation as above, we find

α−(X) =
n∑

i=1

pwi (X)1{V −
i (X) ≤ µ(X)− τ(X)}.

We set

α (X,Z) = max(α−(X), α+(X)). (16)

The InvCP algorithm in algorithm 1 summarises our computation of αm
I .

Remark 7 (Simplifications) InvCP algorithm further simplifies for specific cases. For
weighted split-CP intervals—using Equation (7) and Equation (8)—α+(X) simplifies as

α+(X) =

n∑
i=1

pwi (X)1{τ(X) ≤ e(Xi, Yi)}.
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Algorithm 1: Inverse Conformal Prediction (InvCP)
Input: a calibration data set Z = {(Xi, Yi)}1≤i≤n; α-calibration set Zγ = {Xiγ}1≤iγ≤m;

a pre-defined interval function I(X) = [a−(X), a+(X)]; a weight function pwi .
for iγ = 1 to m do

for i = 1 to n do
Compute V ±

i (Xiγ ) and pwi (Xiγ );
end
Compute α(Xiγ ,Z) using Equation (16);

end
Output: 1− αm

I , where αm
I = 1

m

∑
Xiγ∈Zγ α(Xiγ ,Z).

Similar expression could be obtained for α−(X). For the unweighted split-CP, α+(X) further
simplifies to 1

n+1

∑n
i=1 1{τ(X) ≤ e(Xi, Yi)}. Appendix A provides more details for the case

where the tolerance level τ(X) is fixed for all X values.
The takeaway is that for the above cases, both α+(X) and α−(X) can be found by counting

the errors in the calibration set that exceed the tolerance level τ(X) at the input X.

4. Experimental results

We compare the performance of the InvCP approach to other approaches presented in the
previous works in solving the risk-assessment problem. We consider both the iid and covariate
shift setting. An open source implementation of our work could be found here.

4.1. Risk-assessment methods and datasets

Risk-assessment methods: We consider two deep neural networks, NN-1 and NN-2,
which have one and two outputs, respectively. The first output of both approximates the
mean of Y |X = x. The additional output of NN-2 approximates the variance of the same.
The width and depth are chosen such that the training error drops to a sufficiently low
value—see Appendix B for further results. We compare the following approaches: CP-S (split
CP), CP-CV (CP with cross-validation), CP-SW (weighted CP-S), and CP-CVW (weighted
CP-CV). We choose 10-folds for both CP-CV and CP-CVW. For NN-1, we also consider
the Res-Gauss method, which fits a Gaussian distribution over samples of the error e(X,Y )
collected over a hold-out set Z—see Khosravi et al. (2011b). The miss-coverage results from
the CDF of the Gaussian distribution. For NN-2, we consider mean variance estimation
(MVE) that assumes a Gaussian distribution for Y |X = x with the mean and the variance
resulting from the two outputs of NN-2. The miss-coverage follows from the CDF of this
Gaussian—see Nix and Weigend (1994) for further details. Neither Err-Gauss nor MVE are
weighted for the covariate shift setting.

Datasets: Following Pearce et al. (2018), we consider five datasets from the UCI
repository Dua and Graff (2017): Kin8, Combine Cycle Power Plant, Naval Propulsion,
California Housing and Wine Quality White. The error tolerance τ(X) is set as ϵ ∗ µ(X),
where ϵ ∈ R+. Similar to Tibshirani et al. (2019), we apply covariate shift via exponential
tilting, which resamples the testset with a likelihood ratio of w(x) ∝ exp(xTβ). Both β and

9
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Datasets CP-S CP-SW CP-CV CP-CVW Res-Gauss
Kin-8 (iid) 0.01 0.01 -0.19 -0.19 -0.03

Kin-8 (shift) 0.02 -0.001 -0.25 -0.19 0.01
Combine Cycle Power Plant (iid) 0.001 0.001 -0.16 -0.16 -0.08

Combine Cycle Power Plant (shift) -0.05 -0.01 -0.32 -0.24 -0.11
Naval Propulsion (iid) -0.001 -0.001 -0.53 -0.53 -0.1

Naval Propulsion (shift) 0.02 -0.01 -0.6 -0.5 -0.06
California Housing (iid) -0.02 -0.02 -0.20 -0.20 -0.18

California Housing (shift) -0.1 -0.02 -0.29 -0.21 -0.27
Wine Quality White (iid) -0.01 -0.01 -0.26 -0.26 -0.02

Wine Quality White (shift) -0.04 -0.04 -0.51 -0.32 -0.04

Table 1: Dev of different methods for NN-1. Method with the best accuracy is shown in bold.
Recall that Dev ≤ 0 implies that the method is conservative. All the conservative methods
are highlighted in blue.

ϵ are chosen such that we have similar magnitude of miss-coverages over all the datasets.
Appendix B outlines further details related to the selection of β and ϵ.

Splitting of the dataset: Each dataset is split into three parts: (i) training set over
which the model is trained; (ii) calibration set Z used to compute scores for the split-CP
methods; and (iii) calibration set Zγ over which we compute αm

I in Equation (13). We shuffle
the set Z ∪ Zγ and perform a random split of Z and Zγ repeatedly for 100 iterations. We
estimate EZ,Zγ (αm

I ) by averaging αm
I over these iterations.

Reference: Since the true failure probability is unavailable, as our reference, we consider
an empirical counting-based miss-coverage αm

I,Emp :=
∑

X∈Zγ 1(Y ̸∈ I(X))/m. To estimate
EZγ (αm

I,Emp), we average αm
I,Emp over the hundred samples of Zγ—see above. We label this

approach as Emp. The deviation of a risk-assessment method from the empirical value then
reads

Dev := EZγ (αm
I,Emp)− EZ,Zγ (αm

I ). (17)

Thus, the accuracy of a risk-assessment method would be |Dev|, and a method would be
conservative if

Conservativeness: Dev ≤ 0. (18)

4.2. Discussion on results

Accuracy comparison for NN-1: Table 1 summarizes the results. Apart from Kin8 (iid),
CP-based methods are the most accurate for both iid and shifted datasets. For Kin8 (iid),
Res-Gauss provides the best results while being conservative; however, unlike CP-based
methods, its conservativeness cannot be theoretically guaranteed. CV-based methods always
provide conservative results but are not the most accurate.

Accuracy comparison for NN-2: Table 2 summarize the results. Apart from Kin8
(shift), CP-based methods are the most accurate for both iid and shifted datasets. For Kin8
(shift), MVE provides the best results but is not conservative. Similar to NN-1, CV-based

10
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Datasets CP-S CP-SW CP-CV CP-CVW MVE
Kin-8 (iid) 0.01 0.01 -0.10 -0.10 0.04

Kin-8 (shift) -0.02 -0.01 -0.23 -0.15 0.008
Combine Cycle Power Plant (iid) 0.003 0.003 -0.15 -0.15 -0.06

Combine Cycle Power Plant (shift) -0.05 -0.01 -0.30 -0.19 -0.16
Naval Propulsion (iid) -0.001 -0.001 -0.10 -0.10 -0.15

Naval Propulsion (shift) 0.32 -0.006 -0.20 -0.12 0.05
California Housing (iid) 0.007 0.007 -0.20 -0.20 -0.05

California Housing (shift) -0.09 0.012 -0.16 -0.22 -0.05
Wine Quality White (iid) -0.008 -0.008 -0.05 -0.05 0.01

Wine Quality White (shift) 0.05 -0.02 -0.12 -0.04 0.03

Table 2: Accuracy of different methods for NN-2. Recall that Dev ≤ 0 implies that the
method is conservative. All the conservative methods are highlighted in blue.

methods always provide conservative results but are not the most accurate. Although MVE
uses the entire training set for mean and variance computation, it could inaccurately estimate
the mis-coverage significantly.

Observe that the unweighted CP-S is conservative and the most accurate for iid dataset.
However, for shifted dataset, it losses most of its accuracy and is not conservative. This
demonstrates the importance of introducing weights while dealing with covariate shift.

Loss of conservativeness: Table 1 and Table 2 demonstrate that for some datasets,
CP-based methods do not maintain their conservativeness. Since for these datasets the
miss-coverage from CP methods is very close to that from Emp, we attribute this loss of
conservativeness to the finite sample randomness of the hold-out sets Z and Zγ .

Variation of miss-coverage levels: For the Kin8 dataset and the NN-1 architecture,
variation of miss-coverages over the hold-out sets Z and Zγ are shown in 2(a) and 2(b).
CV-based methods have the lowest variance however, as explained earlier, they are not
the most accurate. The weighted CP methods have a higher variance compared to their
non-weighted versions because weights decrease the effective calibration set size—Appendix B
provides further elaboration.

Similar results as above but for the NN-2 architecture are shown in 2(c) and 2(d). Observe
that MVE has the lowest variance because to estimate the mean and the variance, it uses
the entire training set, which is much larger than the hold-out set Z. However, despite the
low variance, it is not the most accurate method. Similar results for other datasets could be
found in Appendix B.

Convergence with n: Both the split-CP and Res-Gauss methods rely on a calibration
set. We study the influence of the size of the calibration set over the accuracy of our
risk-assessment methods. We consider the California Housing dataset since it has the largest
number of datapoints and thus we can choose a large value of m (i.e. the size of the hold-out
set Zγ . 3(a) and 3(b) present the results. Under both iid and shifted data, Res-Gauss’s
accuracy doesn’t improve after a certain value of n. Recall that Res-Gauss assumes a
Gaussian distribution for Y |X = x, which could be the reason for its limited accuracy. If the
underlying data distribution is different from a Gaussian then, irrespective of the value of n,
Res-Gauss could only provide limited accuracy. In contrast, CP-S makes no such assumption
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(a) NN-1 for iid dataset.
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(b) NN-1 for shifted dataset.
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(c) NN-2 for iid dataset.

CP-SW CP-CVW CP-S MVE Emp

0.10

0.15

0.20

0.25

0.30

m
iss

-c
ov

er
ag

es

results for NN-2, Kin8(with shift)

(d) NN-2 for shifted dataset.

Figure 2: Miss-coverage variation for Kin8 dataset over the holdout sets (Z and Zγ).

(a) Results for iid-data. (b) Results for shifted data.

Figure 3: Variation of miss-coverage for the California Housing dataset over the size of the
calibration set.
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on the data distribution, and its accuracy improves as n increases. These findings also
validate the convergence results established in Theorem 3 and Theorem 4.

5. Limitations and future work

The current paper proposes the InvCP algorithm, an interval-generation based method
for risk assessment of regression models. We consider JAW and weighted split conformal
prediction intervals as they provide theoretical coverages under covariate shift. Other
conformal prediction intervals such as Conformalized Quantile Regression Romano et al.
(2019) or Conformalizing Bayes Angelopoulos and Bates (2021) can also be applied to our
framework following the proposed InvCP algorithm. However, their theoretical properties
under covariate shift are unclear and require further research. Furthermore, the recent
development of adaptive conformal inference under arbitrary distribution shifts Gibbs and
Candes (2021) provides the potential of conducting risk assessment in an online fashion.
Deriving conservative risk assessment methods under arbitrary shifts is important as many
ML models are used in fast-changing areas such as finance and economics, where the market
and customers behaviours can shift abruptly. In the future, we aim to extend our algorithm
to improve its adaptibility in these more challenging data scenarios.

6. Conclusions

We formalized the problem of risk assessment to estimate the failure probability of a regression
model. We showed how conformal prediction-based prediction interval techniques can be used
for risk assessment under different data settings—exchangeability and covariate shift. We
theoretically prove that the InvCP approach is conservative and we validate our theoretical
findings with computational experiments that use deep neural networks.
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Appendix A. Method

A.1. Why taking the maximum works?

We choose α(X,Z) as the maximum of α+(X) and α−(X). Taking the maximum requires justification.
The misscoverage α+(X) ensures that the right endpoint of T (X;α+(X)) is inside of I(X). This does
not necessarily guarantee that T (X;α+(X)) ⊆ I(X). The left endpoint of T (X;α+(X)) might still
be outside of I(X)—likewise for α−(X). Taking a maximum works because of the nested property
of PIs (see Equation (9)), which provides T (X;α(X,Z)) ⊆ T (X;α+(X)) ∩ T (X;α−(X)). Since the
left and right endpoints of T (X;α−(X)) and T (X;α+(X)) are already inside I(X), respectively, we
find T (X;α(X,Z)) ⊆ I(X).

A.2. Proof for Theorem 3.1

Since T (X;α(X,Z)) is included in I(X), we find

P(Y ̸∈ I(X)|Z = z,X = x) ≤ P(Y ̸∈ T (X;α(X,Z))|Z = z,X = x). (19)

where the randomness is over Y |X. Marginalising the above relation with respect to the calibration
set Z and the input X provides

P(Y ̸∈ I(X)) ≤ P(Y ̸∈ T (X;αI)) ≤ cαI , (20)

where

αI := EZ,X [α(X,Z)], (21)

and the last inequality in the above expression, follows from the coverage property of CP (Theorem 1).
By taking an expectation of Equation (13) with respect to the distribution of X and Z, and

applying the definition in Equation (21), we can prove that αm
I is an unbiased estimator for αI . In

Equation (20), replacing αI by the expected value of its estimator αm
I , we find that

P(Y ̸∈ I(X)) ≤ cEZ,X [αm
I ] . (22)

Furthermore, from the law of large numbers, as m → ∞ and ∀Z, we find αm
I

P→ EX [α(X,Z)].

A.3. Proof for Theorem 3.2

Now we move to prove the accuracy of split-CP under i.i.d. assumption. For given X,Z, find

α̃(X,Z) := max
α′

{α
′
: I(X) ⊆ T (X;α′)} (23)

Note that under i.i.d data assumption, all the weights pwi (x) = pwn+1(x) = 1/(n+ 1), and

α̃(X,Z) ≥ α(X,Z)− 1/(n+ 1). (24)

To see above, let α0 = α(X,Z) − 1/(n + 1), then Q+
1−α0

{
1/(n+ 1)δV −

i (X)

}
>

Q+
1−α(X,Z)

{
1/(n+ 1)δV −

i (X)

}
, hence T (X;α0) ⊃ T (X;α(X,Z)). As T (X;α(X,Z)) is the largest

prediction interval that is within I(X), we get T (X;α0) ⊇ I(X). According to the definition of
α̃(X,Z) in Equation (23), we get Equation (24).

Next, by the definition above, we get

P(Y ̸∈ I(X)|Z = z,X = x) ≥ P(Y ̸∈ T (X; α̃(X,Z))|Z = z,X = x). (25)
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Marginalising the above relation with respect to the calibration set Z and the input X, and utilizing
the probability bound of split-CP, we get

P(Y ̸∈ I(X)) ≥ P(Y ̸∈ T (X; α̃I)) ≥ α̃I − 2

n+ 2
(26)

≥ αI − 1

n+ 1
− 2

n+ 2
, (27)

Combing with Equation (20) where c = 1 for split-CP, we have that αI converges to P(Y ̸∈ I(X)) as
n → ∞.

A.4. Algorithm details

Length invariant symmetric intervals: We consider an interval I(X) of the form I(X) =
[µ(X)− τ, µ(X) + τ ], where τ > 0. This interval is symmetric around µ(X), and its length doesn’t
change with X. Furthermore, we assume that the data is exchangeable i.e., there is no co-variate
shift and, thus, the likelehood ratio w = 1. For such a case, as shown below, the miscoverage α(X,Z)
defined in based on a symmetric prediction interval around µ(X), e.g., Split-CP, is independent of
X for any given Z. Consequently, no α-hold-out set is required to collect samples of α(X,Z), i.e.
access to a training and calibration set is sufficient.

We further elaborate on the above claim. Under exchangeable data, the weights read pwi (X) = 1
n+1

for all i ∈ {1, . . . , n}. Applying these weights to Equation (3.2), we find

α(X,Z) =
1

n+ 1

n∑
i=1

1{ei ≥ τ} (28)

where e is the error e(x, y) = |y − µ(x)|. The sum 1
n+1

∑n
i=1 1{ei ≥ τ} is X-independent and hence,

for a given calibration set, α(X,Z) is also X-independent.

Remark 8 (Connection to earlier work-continued) For the case discussed above, since
α(X,Z) is X-independent, our estimator is the same estimator as that proposed in Prinster et al.
(2022). Note that even for this case, the bound P(Y ∈ I(X)) ≥ 1 − cα(X,Z) derived in Prinster
et al. (2022) would hold only if the randomness from Z is ignored.

Appendix B. Experimental Results

This section provides further details on the experimental results conducted in the main text.

B.1. Details of the datasets

We split each dataset into three parts: training dataset, calibration dataset and test dataset. Training
dataset is used to train the ML model. Calibration dataset is used to compute the scores for split-CP
methods, and the mean and the variance for Err-Gauss method. Test dataset is the holdout set
denoted by Zγ in Equation (13). Table 3 presents the sizes of these different sets.

For covariate shift, we consider exponential tilting where the testing distribution P̃X is proportional
to exp(xTβ)PX , where PX is the training distribution. Table 3 presents the values of β for different
datasets. The test set under covariate shift is sampled (with replacement) from the original test
set by weighting the probabilities with exp(xTβ). Under co-variate shift, the effective number of
calibration points change to (see Reddi et al. (2015))

neff =

(
n∑

i=1

|w(Xi)|

)2

/

(
n∑

i=1

|w(Xi)|2
)
.
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Therefore, while applying the unweighted risk-assessment methods (CP-S, Res-Gauss and MVE) to
the covariate shift setting—for a fair comparison with weighted techniques—we reduce the number
of calibration points to neff . Table 3 presents the different values of neff .

As our interval I(X), we set the tolerance τ(X) to τ(X) = ϵ ∗ µ(X). Table 4 presents the values
of ϵ chosen. These values were choosen such that we get similar miss-coverage values (in order or
magnitude) over different datasets.

Datasets Total Points Features train/calib/test set size β neff

K8 8912 8 5734/1000/1458 [−1, 0, . . . , 0, 4] 81
CCPP 9568 4 6698/1000/1870 [−1, 0, . . . , 0, 6] 45

NP 11934 16 8354/1000/2580 [−1, 0, . . . , 0, 6] 101
CH 20640 8 14448/1000/5192 [−1, 0, . . . , 1, 0] 246
WW 4898 11 1469/500/2929 [−1, 0, . . . , 1, 0] 42

Table 3: Dataset information—abbreviations defined in Subsection 4.1

Datasets ϵ

K8 0.15
CCPP 0.01

NP 0.05
CH 0.2
WW 0.15

Table 4: Error tolerance over datasets—abbreviations defined in Subsection 4.1

B.2. Details of the models

Recall that we have two models NN-1 and NN-2, which have one and two outputs, respectively. The
first output of both approximates the mean of Y |X = x. The additional output of NN-2 approximates
the variance of the same. For all datasets except Naval Propulsion, NN1 and NN2 have two hidden
layers with 64 and 16 units, respectively. For Naval Propulsion, to better approximate the data, we
added another hidden layer with 64 units. Both the models are trained using an Adam’s optimizer
with a learning rate of 0.01 and a batch-size of 64. Log of the MSE error for a first few epochs and
for NN1 is shown in Figure 4. Similar training curves were obtained for NN2.

B.3. Results over additional datasets

We present the results for data sets Combine Cycle Power Plant (CCPP), California Housing (CH),
Naval Propulsion (NP) and Wine Quality White (WW) in this section.

For CCPP data set, the results under iid and shift data settings using model NN-1 and NN-2
are shown in Figure 6(a)-6(d). In all experiments, all methods generate conservative mis-coverage
estimates, while CP-S and CP-SW are the most accurate methods. CP-CV and CP-CVW have
smaller variances comparing with the split-CP methods.

For California Housing data set, the results are shown in Figure 7(a)-7(d). CP-S and CP-SW are
the most accurate methods in the i.i.d and shifted data sets, respectively. The unweighted method
CP-S provides non-conservative results on the shifted data. Res-Gauss method has higher variance
and less accuracy. MVE has smaller variance, but it cannot maintain conservative.
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Figure 4: Log(MSE) on test set for NN-1.

For Wine Quality White data set, the results are shown in Figure 8(a)-8(d). For NN-1 model,
CP-S/CP-SW and Res-Gauss provide comparable accurate results. For NN-2 model, only CP based
methods provide conservative estimates on the shifted dataset.
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(a) NN-1 for iid dataset.
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(b) NN-1 for shifted dataset.
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(c) NN-2 for iid dataset.
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(d) NN-2 for shifted dataset.

Figure 5: Miss-coverage variation for Naval Propulsion dataset over the holdout sets (Z and
Zγ).
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(a) NN-1 for iid dataset.

CP-SW CP-CVW CP-S Res-Gauss Emp
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

m
iss

-c
ov

er
ag

es

results for NN-1, CCPP(with shift)

(b) NN-1 for shifted dataset.
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(c) NN-2 for iid dataset.
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(d) NN-2 for shifted dataset.

Figure 6: Miss-coverage variation for Combusion Cycle Power Plant dataset over the holdout
sets (Z and Zγ).
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(a) NN-1 for iid dataset.
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(b) NN-1 for shifted dataset.
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(c) NN-2 for iid dataset.
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(d) NN-2 for shifted dataset.

Figure 7: Miss-coverage variation for California Housing dataset over the holdout sets (Z
and Zγ).
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Risk assessment for regression
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(a) NN-1 for iid dataset.
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(b) NN-1 for shifted dataset.
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(c) NN-2 for iid dataset.
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(d) NN-2 for shifted dataset.

Figure 8: Miss-coverage variation for Wine Quality White dataset over the holdout sets (Z
and Zγ).
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