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Abstract
As machine learning becomes more prominent
there is a growing demand to perform several
inference tasks in parallel. Multi-task learning
(MTL) addresses this challenge by learning a sin-
gle model that solves several tasks simultaneously
and efficiently. Often optimizing MTL models
entails first computing the gradient of the loss for
each task, and then aggregating all the gradients
to obtain a combined update direction. However,
common methods following this approach do not
consider an important aspect, the sensitivity in the
dimensions of the gradients. Some dimensions
may be more lenient for changes while others may
be more restrictive. Here, we introduce a novel
gradient aggregation procedure using Bayesian in-
ference. We place a probability distribution over
the task-specific parameters, which in turn induce
a distribution over the gradients of the tasks. This
valuable information allows us to quantify the
uncertainty associated with each of the gradients’
dimensions which is factored in when aggregating
them. We empirically demonstrate the benefits of
our approach in a variety of datasets, achieving
state-of-the-art performance.

1. Introduction
In many application domains, there is a need to perform
several machine learning inference tasks simultaneously.
For instance, an autonomous vehicle needs to identify and
detect objects in its vicinity, perform lane detection, track
the movements of other vehicles over time, and predict free
space around it, all in parallel and in real-time. In deep
Multi-Task Learning (MTL) the goal is to train a single
neural network (NN) to solve several tasks simultaneously,
thus avoiding the need to have one dedicated model for each
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task (Caruana, 1997). Besides reducing the computational
demand at test time, MTL also has the potential to improve
generalization (Baxter, 2000). It is therefore not surprising
that applications of MTL are taking central roles in various
domains, such as vision (Achituve et al., 2021a; Shamshad
et al., 2023; Zheng et al., 2023), natural language processing
(Liu et al., 2019b; Zhou et al., 2023), speech (Michelsanti
et al., 2021), robotics (Devin et al., 2017; Shu et al., 2018),
and general scientific problems (Wu et al., 2018) to name a
few.

However, optimizing multiple tasks simultaneously is a
challenging problem that may lead to degradation in perfor-
mance compared to learning them individually (Standley
et al., 2020; Yu et al., 2020). To address this issue, one basic
formula that many MTL optimization algorithms follow is
to first calculate the gradient of each task’s loss, and then ag-
gregate these gradients according to some specified scheme.
For example, several studies focus on reducing conflicts be-
tween the gradients before averaging them (Yu et al., 2020;
Wang et al., 2020), others find a convex combination with
minimal norm (Sener & Koltun, 2018; Désidéri, 2012), and
some use a game theoretical approach (Navon et al., 2022).
However, by relying only on the gradient these methods
miss an important aspect, the sensitivity of the gradient in
each dimension.

Our approach builds on the following observation - for each
task, there may be many “good” parameter configurations.
Standard MTL optimization methods take only a single
value into account, and as such lose information in the ag-
gregation step. Hence, tracking all of the parameter configu-
rations will yield a richer description of the gradient space
that can be advantageous when finding an update direction.
Specifically, to account for all parameter values, we propose
to place a probability distribution over the task-specific pa-
rameters, which in turn induces a probability distribution
over the gradients. As a result, we obtain uncertainty esti-
mates for the gradients that reflect the sensitivity in each of
their dimensions. High-uncertainty dimensions are more le-
nient for changes while dimensions with a lower uncertainty
are more strict (see illustration in Figure 2).

To obtain a probability distribution over the task-specific
parameters we take a Bayesian approach. According to the
Bayesian view, a posterior distribution over parameters of
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interest can be derived through Bayes rule. In MTL, it is
common to use a shared feature extractor network with lin-
ear task-specific layers (Ruder, 2017). Hence, if we assume
a Bayesian model over the last task-specific layer weights
during the back-propagation process, we obtain the pos-
terior distributions over them. The posterior is then used
to compute a Gaussian distribution over the gradients by
means of moment matching. Then, to derive an update direc-
tion for the shared network, we design a novel aggregation
scheme that considers the full distributions of the gradients.
We name our method BayesAgg-MTL. An important im-
plication of our approach is that BayesAgg-MTL assigns
weights to the gradients at a higher resolution compared
to existing methods, allocating a specific weight for each
dimension and datum in the batch. We demonstrate our
method effectiveness over baseline methods on the MTL
benchmarks QM9 (Ramakrishnan et al., 2014), CIFAR-100
(Krizhevsky et al., 2009), ChestX-ray14 (Wang et al., 2017),
and UTKFace (Zhang et al., 2017).

In summary, this paper makes the following novel contri-
butions: (1) The first Bayesian formulation of gradient ag-
gregation for Multi-Task Learning. (2) A novel posterior
approximation based on a second-order Taylor expansion.
(3) A new MTL optimization algorithm based on our pos-
terior estimation. (4) New state-of-the-art results on sev-
eral MTL benchmarks compared to leading methods. Our
code is publicly available at https://github.com/ssi-research/
BayesAgg MTL.

2. Background
Notations. Scalars, vectors, and matrices are denoted with
lower-case letters (e.g., x), bold lower-case letters (e.g.,
x), and bold upper-case letters (e.g., X) respectively. All
vectors are treated as column vectors. Training samples
are tuples consisting of shared features across all tasks and
labels of K tasks, namely (x, {yk}Kk=1) ∼ D, where D
denotes the training set. We denote the dimensionality of
the input and the output of task k by dx and ok accordingly.

In this study, we focus on common NN architectures for
MTL having a shared feature extractor and linear task-
specific heads (Kendall et al., 2018; Sener & Koltun, 2018).
The model parameters are denoted by {θ, {wk}Kk=1}, where
θ ∈ Rdθ is the vector of shared parameters and {wk}Kk=1

are task-specific parameter vectors, each lies in Rdk . The
last shared feature representation is denoted by the vector
h(x;θ) ∈ Rdh . Hence, the output of the network for task k
can be described as fk(h(x;θ);wk). The loss of task k ∈
[1, ...,K] is denoted by ℓk(x,y; {θ,wk}). The gradient
of loss ℓk w.r.t h(x;θ) is gk := ∂ℓk

∂h(x;θ) (x,y; {θ,w
k}) ∈

Rdh . For clarity of exposition, function dependence on input
variables will be omitted from now on.

Figure 1. BayesAgg-MTL assumes a probability distribution over
the last layer parameters of each task. It first maps these distribu-
tions to the space of the last shared representation. Then an update
direction is found for the shared representation based on the mean
and variance of all distributions (denoted by X).

2.1. Multi-Task Learning

A prevailing approach to optimize MTL models goes as
follows. First, the gradient of each task loss is computed.
Second, an aggregation rule is imposed to combine the
gradients according to some algorithm. And lastly, perform
an update step using the outcome of the aggregation step.
Commonly the aggregation rule operates on the gradients of
the loss w.r.t parameters, or only the shared parameters (e.g.,
Yu et al., 2020; Navon et al., 2022; Shamsian et al., 2023)).
Alternatively, to avoid a costly full back-propagation process
for each task, some methods suggest applying it on the last
shared representation (e.g., Sener & Koltun, 2018; Liu et al.,
2020; Senushkin et al., 2023). Here, to make our method
fast and scalable, we take the latter approach and note that
it could be extended to full gradient aggregation.

2.2. Bayesian Inference

We wish to incorporate uncertainty estimates for the gradi-
ents into the aggregation procedure. Doing so will allow us
to find an update direction that takes into account the impor-
tance of each gradient dimension for each task. A natural
choice to model uncertainty is using Bayesian inference.
Since we would like to get uncertainty estimates w.r.t the
last shared hidden layer, we treat only the last task-specific
layer as a Bayesian layer. This “Bayesian last layer” ap-
proach is a common way to scale Bayesian inference to deep
neural networks (Snoek et al., 2015; Calandra et al., 2016;
Wilson et al., 2016a; Achituve et al., 2021c). We will now
present some of the main concepts of Bayesian modeling
that will be used as part of our method.

For simplicity, assume a single output variable. We also
dropped the task notation for clarity. According to the
Bayesian paradigm, instead of treating the parameters w
as deterministic values that need to be optimized, they are
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treated as random variables, i.e. there is a distribution over
the parameters. The posterior distribution for w, after ob-
serving the data, is given using Bayes rule as

log p(w|D) ∝ log p(y|X,w) + log p(w). (1)

Predictions in Bayesian inference are given by taking the
expected prediction with respect to the posterior distribu-
tion. In general, the Bayesian inference procedure for
w is intractable. However, for some specific scenarios,
there exists an analytic solution. For example, in linear
regression, if we assume a Gaussian likelihood with a
fixed independent scalar noise between the observations τ ,
p(y|{xi}|D|

i=1,w) =
∏|D|

i=1 N (yi|xT
i w, τ2), and a Gaussian

prior p(w) = N (w|mp,Sp) then,

p(w|D) = N (w|m,S)

m = S((Sp)
−1mp + τ−2Xy)

S = ((Sp)
−1 + τ−2XXT )−1.

(2)

Here X ∈ Rdx×|D| is the matrix that results from stacking
the vectors {xi}|D|

i=1. Similarly, we denote by H ∈ Rdh×|D|

the matrix that results from stacking the vectors of hid-
den representation. In the specific case of deep NNs with
Bayesian last layer we get the same inference result only
with H replacing X. Going beyond a single output variable
entails defining a covariance matrix for the noise model.
However, in this study we assume independence between
the output variables in these cases.

Unlike regression, in classification the likelihood is not a
Gaussian, and the posterior can only be approximated. The
common choice is to use variational inference (Wilson et al.,
2016b; Achituve et al., 2021b; 2023), although there are
other alternatives as well (Kristiadi et al., 2020).

3. Method
We start with an outline of the problem and our approach.
Consider a deep network for multi-task learning that has a
shared feature extractor part and task-specific linear layers.
We propose to use Bayesian inference on the last layer as a
means to train deterministic MTL models. For each task k,
we define a Bayesian probabilistic model representing the
uncertainty over the linear weights of the last, task-specific
layer wk. The distribution over weights induces a distribu-
tion over gradients of the loss with respect to the last shared
hidden layer. Given these per-task distributions on a joint
space, we propose an aggregation rule for combining the
gradients of the tasks to a shared update direction that takes
into account the uncertainty in the gradients (see illustra-
tion in Figure 1). Then, the back-propagation process can
proceed as usual.

Since regression and classification setups yield different
inference procedures according to our approach, albeit hav-

ing the same general framework, we discuss the two setups
separately, starting with regression.

3.1. BayesAgg-MTL for Regression Tasks

Consider a standard square loss for task k, ℓk = (yk − ŷk)2,
between the label yk and the network output ŷk. Given a
random batch of example B ∼ D, the gradient of the loss
with respect to the hidden layer h for the ith example is,

gk
i =

∂lki
∂ŷki

∂ŷki
∂hi

= 2wk(hT
i w

k − yki ). (3)

Our main observation is that gk
i is a function of wk. Hence,

if we view wk in the back-propagation process as a random
variable, then gk

i will be a random variable as well. This
view will allow us to capture the uncertainty in the task
gradient. Since the dimension of the hidden layer is usually
small compared to the dimension of all shared parameters,
operations in this space, such as matrix inverse, should not
be costly.

If we fix all the shared parameters, then the posterior over
wk has a Gaussian distribution with known parameters via
Eq. 2. As gk

i is quadratic in wk, it has a generalized chi-
squared distribution (Davies, 1973). However, since this
distribution does not admit a closed-form density function,
and since the gradient aggregation needs to be efficient as
we run it at each iteration, we approximate gk

i as a Gaussian
distribution. The optimal choice for the parameters of this
Gaussian is given by matching its first two moments to
those of the true density, as these parameters minimize the
Kullback–Leibler divergence between the two distributions
(Minka, 2001). Luckily, in the regression case, we can
derive the first two moments from the posterior over wk,

E[gk
i ] = 2[Skhi +mk(hT

i m
k − yki )],

E[gk
i (g

k
i )

T ] = 4[(yki )
2(Sk +Mk)− 2yki (m

khT
i (S

k +Mk)

+ (Sk +Mk)hi(m
k)T + hT

i m
k(Sk −Mk))

+ (Sk +Mk)(Ai +AT
i )(S

k +Mk)

+ Tr(AiS
k)(Sk +Mk) + (mk)TAim

k(Sk −Mk)],
(4)

where Ai = hih
T
i , Mk = mk(mk)T , we assumed τ =

1, and Tr(·) is the matrix trace. We emphasize that the
following approximation is for the gradient of a single data
point and a single task, not for the gradient of the task with
respect to the entire batch. The full derivation is presented
in Appendix A.1.

Several points deserve attention here. First, note the similar-
ity between the solution of the first moment and the gradient
obtained via the standard back-propagation. The two dif-
ferences are that the last layer parameters, wk, are replaced
with the posterior mean, mk, and an uncertainty term was
added. In the extreme case of Sk → 0 and mk → wk, the
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mean coincides with that of the standard back-propagation.
Second, in the case of a multi-output task, following our
independence assumption between output variables, we can
obtain the moments for each output dimension separately
using the same procedure, so de facto we treat each output
as a different task. Finally, during training, the shared pa-
rameters are constantly being updated. Hence, to compute
the posterior distribution for wk we need to iterate over the
entire dataset at each update step. In practice, this can make
our method computationally expensive. Therefore, we use
the current batch data only to approximate the posterior over
wk, and introduce information about the full dataset through
the prior as described next.

Prior selection. A common choice in Bayesian deep learn-
ing is to choose uninformative priors, such as a standard
Gaussian, to let the data be the main influence on the poste-
rior (Wilson & Izmailov, 2020; Fortuin et al., 2021). How-
ever, in our case, we found this prior to be too weak. Since
the posterior depends only on a single batch we opted to
introduce information about the whole dataset through the
prior. A natural choice is to use the posterior distribution of
the previous batch as our prior (Särkkä, 2013, Chapter 3).
However, this method did not work well in our experiments
and we developed an alternative. During each epoch, we
collect the feature representations and labels of all examples
in the dataset. At the end of the epoch, we compute the
posterior based on the full data (with an isotropic Gaussian
prior) and use this posterior as the prior at each step in the
subsequent epoch. Updating the full data prior more fre-
quently is likely to have a beneficial effect on our overall
model; however it will also probably make the training time
longer. Hence, doing the update once an epoch strikes a
good balance between performance and training time.

Aggregation step. Having an approximation for the gra-
dient distribution of each task we need to combine them
to find an update direction for the shared parameters. De-
note the mean of the gradient of the loss for task k w.r.t
the hidden layer for the ith example by µk

i := E[gk
i ],

and similarly the covariance matrix Σk
i := (Λk

i )
−1 :=

E[gk
i (g

k
i )

T ]− E[gk
i ]E[gk

i ]
T . We strive to find an update di-

rection for the last shared layer, gi, that lies in a high-density
region for all tasks. Hence, we pick gi that maximizes the
following likelihood:

argmax
gi

K∏
k=1

N (gi|µk
i ,Σ

k
i ) =

argmin
gi

−
K∑

k=1

log N (gi|µk
i ,Σ

k
i ).

(5)

Thankfully, the above optimization problem can be solved

Algorithm 1 BayesAgg-MTL
Input: B - a random batch of examples; p(wk|D) ∀k ∈
[1, ...,K] - posterior distributions over the task-specific pa-
rameters; s - scaling hyper-parameter
For i = 1, ..., |B|:

For k = 1, ...,K:
• Compute E[gk

i ] and E[gk
i (g

k
i )

T ] as in Eq. 4 for
regression or Eq. 11 for classification.
• Set (operations are done element-wise),
µk

i := E[gk
i ],

λk
i := (E[(gk

i )
2]− E[gk

i ]E[gk
i ]))

−1.
End for
Compute gi =

∑K
k=1

(λk
i )

s∑K
k=1(λ

k
i )

sµ
k
i .

End for
Compute gradient via matrix multiplication w.r.t the shared
parameters: 1

|B|
∑|B|

i=1 gi
∂hi

∂θ

in closed-form, yielding the following solution:

gi =

(
K∑

k=1

Λk
i

)−1( K∑
k=1

Λk
iµ

k
i

)
. (6)

However, we found that modeling the full covariance matrix
can be numerically unstable and sensitive to noise in the
gradient. Instead, we assume independence between the
dimensions of gk

i for all tasks which results in diagonal
covariance matrices having variance (σk

i )
2 := 1/λk

i . The
update direction now becomes:

gi =

K∑
k=1

1/(σk
i )

2∑K
k=1 1/(σ

k
i )

2
µk

i =

K∑
k=1

αk
i︷ ︸︸ ︷

λk
i∑K

k=1 λ
k
i

µk
i ,

(7)

where the division and multiplication are done element-
wise. In Eq. 7 we intentionally denote by αk

i the vector
of uncertainty-based weights that our method assigns to
the mean gradient to highlight that the weights are unique
per task, dimension, and datum. The final modification
for the method involves down-scaling the impact of the
precision by a hyper-parameter s ∈ (0, 1], namely, we take
(λk

i )
s. Empirically, the scaling parameter helped to achieve

better performance, perhaps due to misspecifications in the
model (such as the diagonal Gaussian assumption over gk

i ).
With the aggregated gradient for each example, the back-
propagation procedure proceeds as usual by averaging over
all examples in the batch and then back-propagating this
over to the shared parameters. We summarize our method
in Algorithm 1.

To gain a better intuition about the update rule of BayesAgg-
MTL , consider the illustration in Figure 2. In the figure,
we plot the mean update direction of two tasks along with
the uncertainty in them. The first task is more sensitive to
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Figure 2. BayesAgg-MTL update for a two-dimensional feature
representation. Black arrows indicate the mean update direction of
each task; Red arrow is the update direction of a simple average;
Blue arrow is the proposed update direction. Darker colors in the
contours represent regions with higher density.

shifts in the vertical dimension and less so to shifts in the
second (horizontal) dimension, while for the second task,
it is the opposite. By taking the variance information into
account, BayesAgg-MTL can find an update direction that
works well for both, compared to a simple average of the
gradient means.

Making predictions. Since we have a closed-form solution
for the posterior of the task-specific parameters, BayesAgg-
MTL does not learn this layer during training. Therefore,
when making predictions we use the posterior mean, mk,
computed on the full training set. We do so, instead of
using a full Bayesian inference, for a fair comparison with
alternative MTL approaches and to have an identical run-
time and memory requirements when making predictions.

Connection to Nash-MTL. In (Navon et al., 2022) the
authors proposed a cooperative bargaining game approach to
the gradient aggregation step with the directional derivative
as the utility of each player (task). They then proposed using
the Nash bargaining solution, the direction that maximizes
the product of all the utilities. One can consider Eq. 5 as the
Nash bargaining solution with the utility of each task being
its likelihood. However, unlike (Navon et al., 2022) we get
an analytical formula for the bargaining solution since the
Gaussian exponent and the logarithm cancel out.

3.2. BayesAgg-MTL for Classification Tasks

We now turn to present our approach for classification tasks.
When dealing with classification there are two sources of
intractability that we need to overcome. The first is the
posterior of wk, and the second is estimating the moments
of gk

i . We describe our solution to both challenges next.

Posterior approximation. In classification tasks the likeli-
hood is not a Gaussian and in general, we cannot compute
the posterior in closed-form. One common option is to

approximate it using a Gaussian distribution and learn its
parameters using a variational inference (VI) scheme (Saul
et al., 1996; Neal & Hinton, 1998; Bishop, 2006). However,
in our early experimentations, we didn’t find it to work well
without using a computationally expensive VI optimization
at each update step. Alternatively to VI, the Laplace approx-
imation (MacKay, 1992) approximates the posterior as a
Gaussian using a second-order Taylor expansion. Since the
expansion is done at the optimal parameter values that are
learned point-wise, the Jacobean term in the expansion van-
ishes. Here, we follow a similar path; however, we cannot
assume that the Jacobean is zero as we are not near a station-
ary point during most of the training. Nevertheless, we can
still find a Gaussian approximation. A similar derivation
was proposed in (Immer et al., 2021), yet they ignored the
first order term eventually. Denote by ŵk the learned point
estimate for the task parameters, and ∆wk := wk − ŵk.
Then, at each step of the training by using Bayes rule we
can obtain a posterior approximation for wk using the fol-
lowing:

log p(wk|B) ≈ log p(ŵk|B)+(
−∂log p(yk|X,wk)

∂wk
− ∂log p(wk)

∂wk

)T

∆wk+

1

2
(∆wk)T

(
−∂2log p(yk|X,wk)

∂(wk)2
− ∂2log p(wk)

∂(wk)2

)
∆wk.

(8)
The above takes the following form ck+(ak)T (wk−ŵk)+
1
2 (w

k − ŵk)TBk(wk − ŵk), where ak ∈ Rdk ,Bk ∈
Rdk×dk , ck ∈ R are known constants. We stress here again,
that since we apply Bayesian inference to the last layer pa-
rameters only, computing and inverting Bk, typically does
not incur a large computational overhead.

After rearranging and completing the square we obtain a
quadratic form corresponding to the following Gaussian
distribution (see full derivation in Appendix A.2):

p(wk|B) ≈ N (wk|ŵk − (Bk)−1ak, (Bk)−1). (9)

Examining the above posterior reveals several insights. First,
the posterior mean corresponds to the Newton method up-
date step. Second, the covariance of this posterior is the
same as that of the Laplace approximation. Third, at a sta-
tionary point the Laplace approximation is recovered if the
gradient of the loss w.r.t the parameters approaches zero.

One limitation of the approximation in Eq. 9 is that the Hes-
sian will not be positive-definite in most cases. Therefore,
we replace it with the generalized Gauss-Newton (GGN)
matrix (Schraudolph, 2002; Martens & Sutskever, 2011;
Daxberger et al., 2021):

B̃k =

|B|∑
i=1

(Jk
i )

THk
i J

k
i + (Sk

p)
−1. (10)
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Where, Jk
i = ∂fk(xi;w

k)/∂wk ∈ Rok×dk is
the Jacobean of the model output for task k w.r.t
the last layer parameters of that task, Hk

i =
−∂2log p(yk

i |xi,w
k)/∂(fk(xi;w

k))2 ∈ Rok×ok is the
Hessian of the negative log-likelihood w.r.t the model out-
puts of task k, and Sk

p is the covariance of the Gaussian prior
for wk. As in the regression case we use here an informative
prior based on the posterior from the full dataset at each
training step.

Moments estimation. Unlike the regression case, in clas-
sification gk

i will depend on wk through some non-linear
function. Hence, obtaining the moments as in Eq. 4 in
closed-form is more challenging. However, since we are es-
timating the parameters of the last layer only, which in many
cases are relatively low-dimensional, we can efficiently ap-
proximate these moments with Monte-Carlo sampling:

E[gk
i ] ≈

1

J

J∑
j=1

gk
i (w

k
j ),

E[gk
i (g

k
i )

T ] ≈ 1

J

J∑
j=1

gk
i (w

k
j )g

k
i (w

k
j )

T .

(11)

Here, wk
j are samples from p(wk|B), and the total number

of samples are J . Effectively this means that we need to
back-propagate gradients w.r.t the shared hidden layer J
times; however, since the task-specific layers are linear it
can be done cheaply and in parallel. Having the moment es-
timation we proceed with the aggregation rule as described
in Section 3.1.

Making predictions. Unlike the regression case, here we
learn the parameters of the last layer as part of the posterior
approximation. Therefore, making predictions is done as
usual with a forward-pass through the network.

4. Related Work
Multi-task learning is an active research area that attempts
to learn jointly multiple tasks, commonly using a shared
representation (Ruder, 2017; Navon et al., 2022; Liu et al.,
2023; Elich et al., 2023; Shi et al., 2023; Yun & Cho, 2023).
Learning a shared representation for multiple tasks imposes
some challenges. One challenge is trying to learn an archi-
tecture that can express both task-shared and task-specific
features. Another challenge is to find the optimal balancing
of the tasks and enable learning the different tasks with equal
importance. One line of research in MTL suggests meth-
ods to introduce novel MTL-friendly architectures, such as
task-specific modules (Misra et al., 2016), attention-based
networks (Liu et al., 2019a), and an ensemble of single-task
models (Dimitriadis et al., 2023). Yet, a more common
line of research focuses on the MTL optimization process,
trying to explain the difficulties in the process by e.g. con-

Figure 3. Mean weight over dimensions per-example for 20 ran-
dom examples on the QM9 dataset at different training stages.

flicting gradients (Wang et al., 2020) or plateaus in the loss
landscape (Schaul et al., 2019). Our method focuses on the
latter, MTL optimization process improvement. We note
though that there are several ways to formulate the MTL
problem and refer to the survey of Zhang & Yang (2021) for
an in-depth review.

Different strategies were proposed to address the MTL opti-
mization challenge to successfully balance the training of
the different tasks and resolve their conflicts. The methods
can broadly be categorized into two groups, loss-based and
gradient-based (Dai et al., 2023). Loss-based approaches
attempt to allocate weights for the tasks based on some crite-
ria related to the loss, such as the difficulty of the task (Guo
et al., 2018), random weights (Lin et al., 2022), geometric
mean of the task losses (Chennupati et al., 2019; Yun & Cho,
2023), and task uncertainty (Kendall et al., 2018). Regard-
ing the last one, to weigh the tasks it uses the uncertainty
in the observations only. This is very different from our
approach that weighs each dimension of the task gradients
based on full Bayesian information.

Gradient-based methods attempt to balance the tasks by us-
ing the gradients information directly (Chen et al., 2018;
2020; Javaloy & Valera, 2022; Liu et al., 2020; Navon et al.,
2022; Fernando et al., 2023; Senushkin et al., 2023). For
example, GradNorm (Chen et al., 2018) dynamically tunes
the gradient magnitudes to prevent imbalances between the
tasks during training. PCGrad (Yu et al., 2020) identifies gra-
dient conflicts as the main optimization issue in MTL, and
attempts to reduce the conflicts by projecting each gradient
to the other tasks’ normal plane. Nash-MTL (Navon et al.,
2022) suggests treating MTL as a bargaining game to find
Pareto optimal solutions. Several studies suggested adapta-
tions for the multiple-gradient descent algorithm (MGDA)
(Désidéri, 2012; Sener & Koltun, 2018), such as CAGrad,
(Liu et al., 2021), and MoCo (Fernando et al., 2023). As
opposed to previous methods, our approach considers both
the mean and the variance of the gradients to derive an up-
date direction. It is worth noting that one possible limitation
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Table 1. QM9. Test performance averaged over 3 random seeds.

∆m% (↓)

LS 177.6± 3.4
SI 77.8± 9.2

RLW 203.8± 3.4
DWA 175.3± 6.3
UW 108.0± 22.5

MGDA 120.5± 2.0
PCGrad 125.7± 10.3
CAGrad 112.8± 4.0
IMTL-G 77.2± 9.3

Nash-MTL 62.0± 1.4
IGBv2 67.7± 8.1

Aligned-MTL-UB 71.0± 9.6

BayesAgg-MTL (Ours) 53.2± 7.1

of BayesAgg-MTL , having in common with other popular
MTL methods, is that it may fail on rare or atypical exam-
ples (Sagawa et al., 2019). But, we leave exploring this
phenomenon for future works.

Lastly, some studies recently suggested performing model
merging based on the uncertainty of the parameters (Matena
& Raffel, 2022; Daheim et al., 2023). The goal there is
usually to combine models for various tasks, such as model
ensembling, federated learning, and robust fine-tuning. Un-
like these methods, we assume a Bayesian model on the last
layer only and propagate the uncertainty to the gradients for
gradient aggregation.

5. Experiments
We evaluated BayesAgg-MTL on several MTL benchmarks
differing in the number of tasks and their types. Unless
specified otherwise, we report the average and standard
deviation (std) of relevant metrics over 3 random seeds.
In all datasets, we pre-allocated a validation set from the
training set for hyper-parameter tuning and early stopping
for all methods. Throughout our experiments, we used the
ADAM optimizer (Kingma & Ba, 2015) which was found
to be effective for MTL due to partial loss-scale invariance
(Elich et al., 2023). Full experimental details are given in
Appendix B.

Compared methods. We compare BayesAgg-MTL with
the following baseline methods: (1) Single Task Learning
(STL), which learns each task independently under the same
experimental setup as that of the MTL methods; (2) Linear
Scalarization (LS), which assigns a uniform weight to all
tasks, namely

∑K
k=1 ℓ

k; (3) Scale-Invariant (SI) (Navon
et al., 2022), which assigns a uniform weight to the log of all
tasks, namely

∑K
k=1 log ℓk; (4) Random Loss Weighting

(RLW) (Lin et al., 2022), which allocates random weights
to the losses at each iteration; (5) Dynamic Weight Average

Table 2. Test performance averaged over 3 random seeds on binary
classification tasks from CIFAR-MTL & ChestX-ray14 datasets.

CIFAR (Acc.) [↑] CX-ray (∆m%) [↓]

LS 56.96± .06 −14.62± 0.2
SI 55.75± 0.3 −10.94± 0.4

RLW 59.30± .08 −11.69± 0.1
DWA 58.44± 0.5 −14.79± .07
UW 56.63± 0.5 −13.95± 0.2

MGDA 59.74± .07 −14.44± 0.4
PCGrad 56.32± 0.2 −13.43± 0.5
CAGrad 56.59± 0.2 −14.49± 0.1
IMTL-G 57.09± 0.3 − 8.23± 1.8

Nash-MTL 56.59± 0.2 −13.23± 0.5
IGBv2 56.61± 0.2 − 2.82± 0.6

Aligned-MTL-UB 56.57± 0.7 −14.14± 0.2

BayesAgg-MTL (Ours) 59.97± 0.4 −14.96± 0.1

(DWA) (Liu et al., 2019a), which allocates a weight based on
the rate of change of the loss for each task; (6) Uncertainty
weighting (UW) (Kendall et al., 2018), which minimize
a scalar term corresponding to the aleatoric uncertainty
for each task; (7) Multiple-Gradient Descent Algorithm
(MGDA) (Désidéri, 2012; Sener & Koltun, 2018), which
finds a minimum norm solution for a convex combination of
the losses; (8) Projecting Conflicting Gradients (PCGrad)
(Yu et al., 2020), which projects the gradient of each task
onto the normal plane of tasks they are in conflict with; (9)
Conflict-Averse Grad (CAGrad) (Liu et al., 2021), which
searches an update direction centered at the LS solution
while minimizing conflicts in gradients; (10) Impartial
MTL-Grad (IMTL-G) (Liu et al., 2020), which finds an
update vector such that the projection of it on each of the
gradients of the tasks is equal; (11) Nash-MTL (Navon
et al., 2022) that derives task weights based on the Nash bar-
gaining solution; (12) Improvable Gap Balancing (IGBv2)
(Dai et al., 2023), which suggests a Reinforcement learning
procedure to balance the task losses; (13) Aligned-MTL-
UB (Senushkin et al., 2023), which aligns the principle
components of a gradient matrix.

Evaluation metric. Unless specified otherwise, we re-
port the ∆m% metric introduced in (Maninis et al., 2019).
This metric measures the average relative difference be-
tween a method m compared to the STL baseline accord-
ing to some criterion of interest Mk. Namely, ∆m =
1
K

∑K
k=1(−1)δk(Mk

m −Mk
s )/M

k
s . Where, Mk

m is the cri-
terion value for task k under method m, Mk

s is the criterion
value for task k under the STL baseline, and δk ∈ {0, 1}. If
δk = 0 then a lower value for Mk is better (e.g., task loss),
and if δk = 1 then a higher value for Mk is preferred (e.g.,
task accuracy). Lower ∆m% indicates a better performance.

Pre-training stage. To obtain meaningful features for the
Bayesian layer, it is a common practice to apply a pre-
training step using standard NN training for several epochs
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Table 3. UTKFace. Test performance averaged over 8 random seeds.

Age (×101) (↓) Gender (↑) Ethnicity (↑) ∆m% (↓)

STL 1.40± 0.03 92.32± 0.35 82.42± 0.42 –

LS 1.46± 0.02 92.92± 0.24 83.98± 0.43 0.69± 0.59
SI 1.42± 0.03 93.05± 0.29 83.40± 0.27 0.11± 0.89

RLW 1.44± 0.03 92.89± 0.25 83.70± 0.49 −0.31± 0.76
DWA 1.44± 0.02 92.90± 0.16 83.55± 0.33 0.35± 0.60
UW 1.43± 0.00 92.99± 0.24 83.09± 0.39 0.15± 0.24

MGDA 1.38± 0.02 93.29± 0.31 83.51± 0.30 −1.39± 0.50
PCGrad 1.47± 0.03 92.92± 0.28 83.28± 0.38 1.13± 0.57
CAGrad 1.40± 0.02 93.06± 0.26 83.28± 0.46 −0.58± 0.59
IMTL-G 1.41± 0.03 93.10± 0.16 83.78± 0.47 −0.50± 0.89

Nash-MTL 1.42± 0.02 92.89± 0.10 83.19± 0.50 −0.17± 0.71
IGBv2 1.42± 0.02 93.09± 0.22 83.34± 0.33 −0.21± 0.50

Aligned-MTL-UB 1.45± 0.02 93.00± 0.24 83.36± 0.43 0.66± 0.50

BayesAgg-MTL (Ours) 1.35± 0.03 93.01± 0.17 84.25± 0.35 −2.23± 0.76

(Wilson et al., 2016a;b). We follow the same path here and
apply an initial pre-training step using linear scalarization.
We would like to stress here that in all the experiments,
the overall number of training steps for BayesAgg-MTL
(including the pre-training) is the same as all methods.

5.1. BayesAgg-MTL for Regression

We first evaluated BayesAgg-MTL on an MTL problem
with regression tasks only. We used the QM9 dataset which
contains ∼ 130, 000 stable small organic molecules repre-
sented as graphs having node and edge features (Ramakr-
ishnan et al., 2014; Wu et al., 2018). The goal here is to
predict 11 chemical properties, such as geometric and en-
ergetic ones, that may vary in scale and difficulty of the
tasks. We follow the experimental protocol of Navon et al.
(2022). Specifically, we allocate approximately 110, 000 ex-
amples for training, with separate validation and testing sets
with 10, 000 examples each. Additionally, we employ the
message-passing neural network architecture (Gilmer et al.,
2017) in conjunction with the pooling operator described in
(Vinyals et al., 2016).

The test results for this dataset are presented in Table 1.
Baseline method results were taken from (Dai et al., 2023),
except for Aligned-MTL-UB, which is included here for the
first time. The criterion used in ∆m here is the mean abso-
lute error (MAE) of the losses. From the table, BayesAgg-
MTL achieves the best test performance, with a significant
improvement compared to most of the baseline methods.

To gain a better intuition into the weights that BayesAgg-
MTL assigns, we define here again the vector of weights
per example and task from Eq. 7, αk

i := λk
i /(
∑K

k=1 λ
k
i ).

Figure 3 depicts for all tasks the average over dimensions
of αk

i for 20 random examples at the start, middle, and end
of training. The plot reveals an interesting pattern. Early

in training, the average weights are distributed among the
tasks without any specific pattern. As training progresses,
larger weights are assigned for tasks 4− 10 in the middle of
the training, while tasks 0− 3 receive smaller weights. At
the end of the training, this pattern changes, and tasks 0− 3
are assigned with larger weights compared to tasks 4− 10.

5.2. BayesAgg-MTL for Binary Classification

Next, we evaluated BayesAgg-MTL on the MTL bench-
marks CIFAR-MTL (Krizhevsky et al., 2009; Rosenbaum
et al., 2018), and ChestX-ray14 (Wang et al., 2017). To
the best of our knowledge, we are the first to evaluate MTL
methods on the latter dataset. These datasets contain a large
number of tasks, 20 and 14 respectively, with a high class-
imbalance distribution. This poses a significant challenge
for current MTL methods.

CIFAR-MTL uses the coarse labels of the CIFAR-100
dataset to create an MTL benchmark having 20 binary tasks.
Classes from this dataset are grouped into super-classes
(fish, flowers, trees, etc.), such that each example is given
a one-hot encoding vector of labels indicating the super-
class it belongs to. We use the official train-test split having
50, 000 examples and 10, 000 examples respectively. We al-
locate 5, 000 examples from the training set for a validation
set. Our experiments on this dataset were conducted using a
simple NN having 3 convolution layers.

ChestX-ray14 contains ∼ 112, 000 X-ray images of chests
from 32, 717 patients. Each image has labels from 14 bi-
nary classes corresponding to the occurrence or absence of
thoracic diseases. Multiple diseases can appear together in
a patient. In our experiments, we mostly follow the train-
ing protocol suggested in (Taslimi et al., 2022) that used
ResNet-34 for the shared parameters. we use the official
split of 70%− 10%− 20% for training, validation, and test.
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We present the test results for these datasets in Table 2. On
the CIFAR-MTL we report the accuracy in class assignment,
and on the ChestX-ray14 we report the ∆m based on the
AUC-ROC values per task. From the table, BayesAgg-MTL
performs best on both datasets. Interestingly, on the ChestX-
ray14 dataset almost all methods, except for ours and DWA,
under-perform the naive LS baseline. In Appendix C.2 we
compare the run-time of all methods on this dataset and on
the QM9. We show that BayesAgg-MTL is substantially
faster than other baseline methods that use gradients w.r.t
the shared parameters to weigh the tasks.

5.3. BayesAgg-MTL for Mixed Tasks

In the last set of experiments, we evaluated BayesAgg-MTL
and baseline methods on the UTKFace dataset (Zhang et al.,
2017). This dataset contains over 20, 000 face images with
annotations of age, gender, and ethnicity. The age values
range from 0 to 116, treated as a regression task. Gender is
classified into binary categories, either male or female, while
ethnicity is classified into five distinct categories, making it a
multi-class classification task. We split the dataset according
to 70%− 10%− 20% to train, validation, and test datasets.
Here, we use ResNet-18 for the shared network.

Results for this dataset based on 8 random seeds are pre-
sented in Table 3. Here as well BayesAgg-MTL outperforms
all methods, having the best results on 2 out of 3 tasks. Inter-
estingly, our approach and MGDA, were the only methods
to improve upon the STL baseline on the regression task.

6. Conclusions
In this study, we present BayesAgg-MTL , a novel method
for aggregating the task gradients in MTL. Instead of treat-
ing the gradient of each task as a deterministic quantity we
advocate here to assign a probability distribution over them.
The randomness in them arises by noticing that there are
many possible configurations for the task-specific parame-
ters that work well. Hence, by tracking all of them using
Bayesian tools we can obtain a richer description of the gra-
dient space. This in turn allows us to model the uncertainty
in the gradients and derive an update direction for the shared
parameters that takes it into account. We demonstrate our
method’s effectiveness on several benchmark datasets com-
pared with leading baseline methods. For future work, we
would like to extend BayesAgg-MTL beyond linear task
heads. The challenge here would be to efficiently estimate
the Bayesian posterior and the gradient moments.
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A. Full Derivations
We now present the full derivation for Eq. 4 & Eq. 9 presented in the main text. For clarity, we drop here the superscript
notation of the task.

A.1. Regression Moments

Starting with the first moment,

E[gi] =

∫
gip(gi)dgi =

∫
gi(w)p(w|D)dw

= 2

∫
w(hT

i w − yi)p(w|D)dw

= 2

∫
wwThi − yiwp(w|D)dw

= 2([S+mmT ]hi − yim).

(12)

Where we made explicit the dependence in w on the first step. For computing the second moment we aided by the matrix
reference manual (Brookes, 2020),

E[gig
T
i ] =

∫
gig

T
i p(gi)dgi =

∫
gi(w)gT

i (w)p(w|D)dw

= 4

∫
w(hT

i w − yi)(h
T
i w − yi)w

T p(w|D)dw

= 4

∫
(y2iwwThi − 2yiwhT

i wwT +wwThih
T
i wwT )p(w|D)dw.

(13)

We now solve each term separately and obtain the result,∫
wwT p(w|D)dw = S+mmT ,∫

whT
i wwT p(w|D)dw = mhT

i (S+mmT ) + (S+mmT )him
T + hT

i m(S−mmT ),∫
wwThih

T
i wwT p(w|D)dw = (S+mmT )(Ai +AT

i )(S+mmT ) +mTAim(S−mmT ) + Tr(AiS)(S+mmT ).

(14)
Where, Ai = hih

T
i .

A.2. Second Order Posterior Approximation

We now present the quadratic form of the log-posterior in Eq. 9. First we recap some of our notations here,

c = log p(ŵ|B); a = −∂log p(y|X,w)

∂w
− ∂log p(w)

∂w

∣∣∣∣
w=ŵ

; B = −∂2log p(y|X,w)

∂w2
− ∂2log p(w)

∂w2

∣∣∣∣
w=ŵ

.

(15)

Using these constants in Eq. 8 yields the following form:

c+ aT (w − ŵ) +
1

2
(w − ŵ)TB(w − ŵ)

= c− aT ŵ +
1

2
(ŵTBŵ)− (BT ŵ − a)TB−1(BT ŵ − a)︸ ︷︷ ︸

const.

+
1

2
(w − (ŵ −B−1a))TB(w − (ŵ −B−1a)).

(16)

The above takes the quadratic form of a Gaussian having mean (ŵ −B−1a) and covariance B−1.
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(a) Gender (b) Ethnicity

Figure 4. Expected calibration error (ECE) vs Brier score for the Gender and Ethnicity tasks from the UTKFace dataset. In orange -
baseline methods, and in purple our method. Lower values are better. We named our method and the top competitor on each plot.

B. Full Experimental Details
All the experiments were done using PyTorch on NVIDIA V100 and A100 GPUs having 32GB of memory.

QM9. On this dataset we followed the training protocol presented by Navon et al. (2022). Specifically, We allocated
110, 000 examples for training and 10, 000 examples for validation and testing. The task labels are normalized to have
zero mean and unit std. We use the implementation of (Fey & Lenssen, 2019) for the message-passing NN presented in
(Gilmer et al., 2017) as the base NN. Here, we trained only our method and the baseline method Aligned-MTL-UB. All the
other results were taken from (Navon et al., 2022; Dai et al., 2023). We used the same random seeds as in those studies.
Each method was trained for 300 epochs using the ADAM optimizer (Kingma & Ba, 2014) with an initial lr of 1e − 3.
The batch size was set to 120. We use the ReduceOnPlate scheduler with the ∆m metric, computed on the validation set.
This metric was also used for early stopping and model selection. For BayesAgg-MTL we set the number of pre-training
epochs using linear scalarization to 50. In initial experiments, we found that in regression tasks relatively higher values
for the s hyper-parameter were preferred. Hence, we searched over s ∈ {0.75, 0.85, 0.95}. For the Aligned-MTL-UB we
did a hyper-parameter search over the scale modes in {min, median, and rmse}, and whether to apply that scale to the
task-specific parameters as well.

CIFAR-MTL. Similarly to (Rosenbaum et al., 2018), to form an MTL benchmark we used the coarse labels of CIFAR-100.
Each example in the CIFAR-100 dataset belongs to one of 20 super-classes. We use these super-classes as separate binary
MTL tasks, where the task value is 1 if the example indeed belongs to the super-class and 0 otherwise. We use the
official CIFAR train-test split of 50, 000 and 10, 000 respectively. We allocated 5, 000 examples from the training set to
validation. To train the models we use a CNN having 3 convolution layers with 160 channels and a kernel of size 3. Each
convolution was followed by an Exponential Linear Unit (ELU) activation and max-pooling of 3× 3. The final layer is a
batch normalization layer. All methods were trained for 50 epochs using the ADAM optimizer, with an initial learning rate
of 1e− 3 and a scheduler that drops the learning rate by a factor of 0.1 at 60% and 80% of the training. We set the batch
size to 128 and used a weight decay of 1e− 4. For all baseline methods, we did a hyper-parameter grid search over the most
important 2− 3 hyper-parameters. Specifically, we would like to highlight that we searched over additional weight decay
values for the LS, SI, and RLW baselines as advocated by Kurin et al. (2022). As for BayesAgg-MTL , unlike the regression
case, for classification smaller s values are preferred. We searched over s ∈ {5e−2, 5e−3, 5e−4}. Also, we search over the
number of pre-train epochs in {1, 3}. We set J , the number of Monte-Carlo samples, to 1024, although we could have used
much less without performance degradation. We used the validation accuracy for early stopping and model selection.

ChestX-ray14. This dataset reports the absence or appearance of 14 types of chest diseases, which we view as an MTL
problem. It contains approximately 112, 000 images from 32, 717 patients. We use the official data split presented in (Wang
et al., 2017), having 70% training examples, 10% validation examples, and 20% test examples. We follow the experimental
setup of (Taslimi et al., 2022) that uses PyTorch Image Models (Wightman, 2019) for data augmentations, a publicly
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Table 4. Average run time (Sec. ×102) of a training iteration on CIFAR-MTL and QM9 datasets.

CIFAR-MTL QM9

LS 1.551 3.932
SI 1.600 3.957

RLW 1.555 3.910
DWA 1.571 3.937
UW 1.740 4.033

MGDA 15.34 39.57
PCGrad 19.99 29.89
CAGrad 12.19 26.16
IMTL-G 10.12 27.19

Nash-MTL 22.47 45.32
IGBv2 3.651 4.723

Gradient w.r.t Representation

MGDA-UB 5.522 9.352
IMTL-G 2.969 4.426

Aligned-MTL-UB 2.988 4.428
BayesAgg-MTL (Ours) 5.558 4.177

available repository. We resize each image to size 224 × 224 and use data augmentation such as color jitter having 0.4
intensity and random erase of pixels with a probability of 0.25. Images are normalized according to ImageNet statistics
(Russakovsky et al., 2015). We use here ResNet-34 pre-trained on ImageNet as the shared feature extractor. We replaced the
final classification layer with a fully connected layer of dimension 256 followed by an ELU activation. Experimental details
and hyper-parameter searches are similar to those described for CIFAR-MTL, except for the following changes. Here we
trained for 100 epochs, the batch size was set to 256, and we didn’t use a weight decay. We use the ∆m metric for early
stopping and model selection.

UTKFace. This dataset contains approximately 23, 700 images of faces, each associated with the age, gender, and ethnicity
of the person. We remove 3 examples from the dataset that have missing labels. We split the dataset to train/validation/test
according to the 70− 10− 20 scheme. The split was stratified by the age variable as it is the most diverse label. We treat the
task of predicting the age as a regression task, and we normalize it to have zero mean and unit std. During training, images
are resized to 140× 140, randomly cropped to size 128, and undergo random horizontal flip. Test images are resized and
centered cropped. Here, we used ResNet-18 with the final classification layer replaced by a fully connected layer of size
256 and an ELU activation. The experimental setup is similar to that described under the CIFAR-MTL, with the exception
that here we trained for 100 epochs. We perform a hyper-parameter grid search for all methods on this dataset as well.
For our method, we set the number of pre-training epochs to 10 and searched over s ∈ {0.3, 0.5, 0.8} for the regression
task and s ∈ {0.005, 0.05, 0.1} for the classification tasks. We use the ∆m metric for early stopping and model selection.
Optimizing and evaluating the regression task is done using the MSE loss and the classification tasks using the standard
cross-entropy loss.

C. Additional Experiments
C.1. Calibration

A possible benefit of using a Bayesian layer as the last layer is enhanced uncertainty estimation capabilities. Here we
compare BayesAgg-MTL to baseline methods on that aspect. To do so we log the expected calibration error (ECE) (Naeini
et al., 2015) and Brier score (Brier, 1950) for all methods on the classification tasks of the UTKFace dataset. In ECE we
first discretize the [0, 1] line segment and then measure a weighted average difference between the classifier confidence and
accuracy. We use 15 interval bins in our comparison. Brier score measures the mean square error between the one-hot label
encoding and the prediction probability vector. In both metrics, lower values are better. Results are presented in Figure 4.
From the figure, BayesAgg-MTL is better calibrated than most methods on both datasets. On the gender task, it is best
calibrated according to the two metrics. On the Ethnicity task, it has the best Brier score and second-best ECE score. We
stress here that for a fair comparison with baseline methods, we did not use the Bayesian posterior of BayesAgg-MTL on
the last layer to make test predictions, but rather the point estimate of it learned during training. Using the full posterior
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should yield even better results.

C.2. Training Time

Table 4 compares the run time of all methods on the CIFAR-MTL and QM9 datasets. We report the average processing
time of a batch based on 10 epochs. To do the comparison, we use the best hyper-parameter configuration (in terms of
performance) according to the CIFAR-MTL experiments. For MGDA and IMTL-G we present the run time under two
settings, (1) when using in the aggregation scheme the full gradients w.r.t the shared parameters (top block); (2) when using
in the aggregation scheme the gradients w.r.t the hidden layer (bottom block) as BayesAgg-MTL does. For BayesAgg-MTL
we do not include the pre-training steps in the time measurements. From the table, methods that do not rely on the gradients
for weighing the tasks are faster as outlined before in previous studies (Xin et al., 2022; Kurin et al., 2022); however, this
often comes at a significant performance reduction. BayesAgg-MTL training time is almost as fast as those methods on
regression problems, in which everything is done in closed-form, and slower on classification problems, partly due to the
sampling process. Nevertheless, it is substantially faster than other gradient balancing methods that use gradients w.r.t the
shared parameters.

C.3. Comparison to Bayesian Training

Table 5. Comparison of ∆m% values to Deep Ensembles averaged over 3 random seeds.

QM9 UTKFace

Ensemble (1024 heads) 161.4± 13.1 0.99± 0.62
Ensemble (10 networks) 144.5± 0.3 −0.13± 0.39

BayesAgg-MTL (Ours) 53.2± 7.1 −2.23± 0.76

Given that we used a Bayesian inference procedure in our approach, a natural question one may ask is how does standard
approximate Bayesian training perform in MTL?

Recall that the goal of this paper is to use Bayesian inference on the last layer as a means to train deterministic MTL
models using the uncertainty estimates in the gradients of the tasks. We use these uncertainty estimates to come up with an
aggregation rule for combining the gradients of the tasks to a shared update direction. More concisely, our aim is to better
learn a deterministic MTL model while reducing as much as possible the computational overhead involved in training it. In
standard approximate Bayesian training the gradient used in the backward process is considered as a deterministic quantity,
similarly to non-Bayesian training. Hence, even when applying standard Bayesian inference to the task-specific parameters,
the optimization issues regarding how to combine the gradients of the tasks effectively remain.

To showcase that we compare BayesAgg-MTL to deep ensembles (Lakshminarayanan et al., 2017) that have a strong link to
approximate Bayesian methods (Wilson & Izmailov, 2020; D’Angelo & Fortuin, 2021; Wild et al., 2024). We chose deep
ensembles because of their simplicity and predictive abilities. We show here results on QM9 and UTKFace for two baselines:
(1) Using 1024 heads for each task and a shared backbone; (2) Using 10 networks, each with a different backbone and task
heads. The latter is substantially computationally more demanding as it requires different copies of the backbone as well,
which is usually large. We combine the tasks using linear scalarization (i.e., equal weighting of the tasks) and averaging
over the ensemble members. We follow the same experimental protocol of the paper and report the ∆m values for each
method in Table 5. From the table, the ensemble model with the shared backbone performs roughly the same as standard
linear scalarization, with a slight advantage on QM9. This result makes sense as the uncertainty information is not taken
into account when aggregating the gradients (i.e., only the mean values are used). Full ensemble training improves upon
the ensemble baseline having a shared feature extractor, but it comes with a substantial computational overhead. Finally,
BayesAgg-MTL substantially outperforms both methods on both datasets.

C.4. Full Results

In Tables 6 and 7 we present the per-task results for all methods on the QM9 and ChestX-ray14 respectively. On
QM9 we report the mean-absolute error of each task and on ChestX-ray14 the AUC-ROC of the tasks. Due to lack of
space, we abbreviated several diseases names from the ChestX-ray14. We outline here the full names of all diseases:
Atelectasis, Cardiomegaly, Consolidation, Edema, Effusion, Emphysema, Fibrosis, Hernia, Infiltration, Mass, Nodule,

17



Bayesian Uncertainty for Gradient Aggregation in Multi-Task Learning

Pleural Thickening, Pneumonia, Pneumothorax.

Table 6. QM9. Full test results averaged over 3 random seeds.

µ α ϵHOMO ϵLUMO ⟨R2⟩ ZPVE U0 U H G cv

MAE ↓ ∆m% (↓)

STL 0.067 0.181 60.57 53.91 0.503 4.53 58.80 64.20 63.80 66.20 0.072

LS 0.106 0.326 73.57 89.67 5.197 14.06 143.4 144.2 144.6 140.3 0.129 177.6
SI 0.309 0.346 149.8 135.7 1.003 4.51 55.32 55.75 55.82 55.27 0.112 77.8

RLW 0.113 0.340 76.95 92.76 5.869 15.47 156.3 157.1 157.6 153.0 0.137 203.8
DWA 0.107 0.325 74.06 90.61 5.091 13.99 142.3 143.0 143.4 139.3 0.125 175.3
UW 0.387 0.425 166.2 155.8 1.065 5.00 66.42 66.78 66.80 66.24 0.123 108.0

MGDA 0.217 0.368 126.8 104.6 3.227 5.69 88.37 89.41 89.32 88.01 0.120 120.5
PCGrad 0.106 0.293 75.85 88.33 3.940 9.15 116.4 116.8 117.2 114.5 0.110 125.7
CAGrad 0.118 0.321 83.51 94.81 3.219 6.93 114.0 114.3 114.5 112.3 0.116 112.8
IMTL-G 0.136 0.288 98.31 93.96 1.753 5.70 101.4 102.4 102.0 100.1 0.097 77.2

Nash-MTL 0.103 0.249 82.95 81.89 2.426 5.38 74.52 75.02 75.10 74.16 0.093 62.0
IGBv2 0.251 0.333 149.1 130.2 0.956 4.39 56.75 57.19 57.25 56.73 0.110 67.7

Aligned-MTL-UB 0.172 0.350 117.3 109.0 1.520 5.23 76.13 76.58 76.62 75.71 0.980 71.0

BayesAgg-MTL (Ours) 0.122 0.280 87.78 90.44 1.776 5.31 63.33 64.91 66.71 81.91 0.093 53.2

Table 7. ChestX-ray14. Full test results averaged over 3 random seeds.

Atel. Card. Cons. Edema Effu. Emph. Fibr. Hernia Infi. Mass Nodule Pleu. Pneumonia Pneu.

AUC-ROC ↑ ∆m% (↓)

STL .7543 .8615 .7132 .8212 .8224 .6333 .7357 .7647 .6830 .6208 .5894 .6389 .5710 .7701

LS .7744 .8804 .7477 .8457 .8273 .8798 .8250 .9129 .7013 .8209 .7593 .7660 .7235 .8525 −14.62
SI .7457 .8739 .7289 .8426 .8152 .8593 .7903 .8045 .6996 .7971 .7268 .7353 .6993 .8389 −1.94

RLW .7596 .8704 .7389 .8385 .8218 .8390 .7956 .8646 .6991 .7933 .7340 .7362 .7101 .8345 −11.69
DWA .7734 .8847 .7503 .8482 .8267 .8768 .8185 .9410 .6977 .8175 .7590 .7739 .7240 .8440 −14.79
UW .7600 .8870 .7437 .8464 .8221 .8768 .8176 .9434 .7012 .8049 .7426 .7608 .7057 .8498 −13.95

MGDA .7720 .8857 .7473 .8454 .8260 .8762 .8181 .9290 .6961 .8141 .7570 .7661 .7213 .8479 −14.44
PCGrad .7678 .8793 .7461 .8432 .8266 .8721 .8165 .8565 .6991 .8123 .7499 .7629 .7203 .8451 −13.43
CAGrad .7744 .8823 .7489 .8464 .8269 .8756 .8199 .9201 .6998 .8158 .7567 .7702 .7207 .8482 −14.50
IMTL-G .7395 .8533 .7229 .8235 .8023 .7692 .7538 .8973 .6903 .7543 .7052 .7221 .6758 .8026 −8.24

Nash-MTL .7623 .8774 .7445 .8420 .8206 .8627 .8214 .8997 .6999 .8035 .7412 .7553 .7117 .8447 −13.24
IGBv2 .7189 .8354 .7049 .8097 .7865 .7360 .7160 .7053 .6858 .6828 .6647 .7038 .6512 .7783 −2.83

Aligned-MTL-UB .7689 .8801 .7491 .8456 .8245 .8772 .8221 .8992 .6997 .8115 .7543 .7674 .7208 .8497 −14.15

BayesAgg-MTL (Ours) .7761 .8836 .7511 .8487 .8293 .8863 .8289 .9121 .6967 .8220 .7622 .7762 .7214 .8545 −14.96
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