
FrameQuant: Flexible Low-Bit Quantization for Transformers

Harshavardhan Adepu 1 Zhanpeng Zeng 1 Li Zhang 2 Vikas Singh 1 2

Abstract

Transformers are the backbone of powerful foun-
dation models for many Vision and Natural Lan-
guage Processing tasks. But their compute and
memory/storage footprint is large, and so, serv-
ing such models is expensive often requiring
high-end hardware. To mitigate this difficulty,
Post-Training Quantization seeks to modify a pre-
trained model and quantize it to eight bits or lower,
significantly boosting compute/memory/latency
efficiency. Such models have been successfully
quantized to four bits with some performance loss.
In this work, we outline a simple scheme to quan-
tize Transformer-based models to just two bits
(plus some overhead) with only a small drop in
accuracy. Key to our formulation is a concept
borrowed from Harmonic analysis called Fusion
Frames. Our main finding is that the quantization
must take place not in the original weight space,
but instead in the Fusion Frame representations.
If quantization is interpreted as the addition of
noise, our casting of the problem allows invoking
an extensive body of known consistent recovery
and noise robustness guarantees. Further, if de-
sired, de-noising filters are known in closed form.
We show empirically, via a variety of experiments,
that (almost) two-bit quantization for Transformer
models promises sizable efficiency gains. The
code is available at https://github.com/
vsingh-group/FrameQuant

1. Introduction
Transformer-based Large Language Models (LLMs) domi-
nate the landscape for Natural Language Processing tasks
such as language translation and text summarization (Zhang
et al., 2023; Touvron et al., 2023; Zhang et al., 2022b).
Vision Transformers (VITs) adapt this idea for computer
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vision, and achieve state-of-the-art results on image classi-
fication (Zhai et al., 2022), object detection (Zhang et al.,
2022a), generation (Chang et al., 2022; Hudson & Zitnick,
2021) and segmentation (Cheng et al., 2022; Ranftl et al.,
2021). There is general agreement that scale provides re-
markable new capabilities.

While large models offer strong performance improvements,
their deployment as a module within a product creates
unique challenges. For example, serving these models on ex-
pensive hardware can drastically increase data center costs.
Even loading these models on consumer-grade machines is
difficult, and the ability to handle heterogeneous resource-
constrained devices is almost infeasible. This has led to
various efficiency-focused strategies for model compression
including but not limited to distillation (Hinton et al., 2015;
Zhu et al., 2021), pruning (Chen & Zhao, 2019), sparsity
(Yu et al., 2012; Yun et al., 2020) and quantization (Han
et al., 2016; Banner et al., 2019). Among these methods,
Post-Training Quantization offers unique advantages in that
it does not change the model architecture or training scheme.

This paper presents a new Post-Training Quantization
scheme, FrameQuant, that offers much more flexibility to
strike a balance between reducing model size and preserving
model quality. Specifically, FrameQuant offers what may be
considered equivalent to using a fractional number of bits
for quantization, e.g., 2.1 or 2.2 bits: this is valuable because
for large Transformer-based models like GPT, model quality
deteriorates fast (Frantar et al., 2023) as we reduce bit width
in the low-bit quantization regime (e.g., 2-bit). Further, de-
pending on the accuracy needs of the downstream task at
hand or a desire to control the worst-off error, more flexi-
bility offers the user more control. Towards this goal, our
main idea is to compute a specific type of redundant/over-
complete representation of a pre-trained weight matrix and
quantize the matrix in that representation. We will see how
robustness to quantization error will follow naturally from
our choice of representation. The de-quantization step uses
a straightforward scheme to re-construct the full-precision
weights. We leverage a mature concept from Harmonic
analysis, Fusion Frames, as the foundation for our proposal.

Fusion Frames (Donoho et al., 1998; Christensen, 2018)
serve an important role in signal processing in analog-to-
digital conversion and signal transmission. Frames are guar-
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anteed to be robust when the Frame coefficients are cor-
rupted by additive noise. They are numerically stable, and
if additional compute/memory overhead is acceptable, de-
noising filters with good theoretical properties or provably
optimal recovery schemes are known. To our knowledge,
Frame theory for neural network quantization is unexplored.
Our key contributions include (a) an approach that offers
fractional bit quantization capabilities with theoretical guar-
antees. (b) We empirically verify that Transformer-based
models can be quantized to two bits (or 2.x bits), on an ex-
tensive basket of 15 popular Vision Transformers and Large
Language Models from the OPT (Zhang et al., 2022b) as
well as Llama2 (Touvron et al., 2023) classes. We achieve
consistent improvements over all existing baselines.

1.1. Related Work

Given the growth in the scale of foundation models com-
mon in our community, model compression is an active
topic of research. Distillation (Hinton et al., 2015; Zhu
et al., 2021), pruning/shrinking (Chen & Zhao, 2019) and
the use of sparsity is quite common (Yu et al., 2012; Yun
et al., 2020). There is growing interest (Rokh et al., 2023;
Namburi et al., 2023; Gholami et al., 2022) in approaches
that perform model compression via quantization either (i)
during training or (ii) post-training since minimal changes
to the architecture are needed. Quantization during training
works well (Gholami et al., 2022; Nagel et al., 2021), but
models must be re-trained. Post-training quantization (PTQ)
methods (Nagel et al., 2019) simply quantize a pre-trained
model on a small calibration set, and involve much less work.
These methods are effective for large language models like
OPT (Zhang et al., 2022b), BLOOM (Scao et al., 2023) and
can reduce the bit-width with only a small degradation in
performance. For example, (Nagel et al., 2020) analyzed
the effect of data-dependent rounding. A layer-wise proxy
loss was studied and AdaRound quantization was proposed
to efficiently minimize this loss. The approach in (Frantar
& Alistarh, 2022) minimizes the squared error similar to
(Nagel et al., 2020), but quantizes each layer individually
while adjusting the remaining unquantized weights using
the Hessian of the proxy loss term following (Lecun et al.,
1989; Hassibi et al., 1993). OPTQ (Frantar et al., 2023)(for-
merly GPTQ) extended upon the ideas in OBQ (Frantar &
Alistarh, 2022), and offered other adjustments that gives a
stable scheme that can compress large language models like
OPT-175B or BLOOM-176B to 3 or 4 bits per parameter
without a large loss in accuracy. For Vision Transformers,
PTQ4ViT (Yuan et al., 2022) quantifies the weights in two
stages, and uses a Hessian-guided search for the optimal
scale for the weights. In (Liu et al., 2021b), a feature map
is used to search for the optimal quantization interval for
maintaining similarity between the quantized and original
feature maps. The method also chooses different bit widths

for each layer. Other strategies proposed for PTQ include
(Ding et al., 2022; Li et al., 2023). We note a recent con-
current result for two-bit quantization for language models
reported in (Chee et al., 2023). Our approaches are based on
different starting points: our choice of Frame theory to min-
imize quantization error versus the choice in (Chee et al.,
2023) of using incoherence as a pre and post-processing
step, which is later shown to offer desirable theoretical prop-
erties. But fundamentally, both methods work well due to
similar underlying principles related to basis expansions (on
a space-filling basis). We discuss later how (Chee et al.,
2023) can be viewed as a special version of our formulation
(but with no redundancy).

2. Finite Frame Theory and Fusion Frames
Frames generalize the Orthogonal basis decomposition of a
Hilbert space and provide redundant representations. Finite
frames find applications in robust signal transmission with
quantization and erasures (Goyal et al., 1998; 2001; Casazza
& Kovačević, 2003), Coding theory (Strohmer & Heath Jr,
2003), distributed processing (Casazza et al., 2008), Com-
pressed Sensing (Boufounos et al., 2009) among others.
We start with a brief review of relevant concepts. Readers
familiar with these concepts may skim this section.

Consider a finite-dimensional Hilbert space H of dimension
d. Throughout the paper, we denote this space as Hd.

Definition 2.1 (Frames). A family of k vectors ϕ =
(φi)

k
i=1 in Hd is called a frame for Hd if there exist con-

stants 0 < A ≤ B < ∞ such that

A||x||2 ≤
k∑

i=1

|⟨x, φi⟩|2 ≤ B||x||2 (1)

for all x ∈ Hd where ⟨·, ·⟩ is the dot-product. The constants
A and B are the lower and upper frame bounds.

The sandwich expression suggests that x will not be poorly
distorted when we calculate its inner products with a frame.
When A = B, ϕ is called a A-tight frame. When A = B =
1, we get a Parseval’s frame. Fig. 1 shows examples of
Tight Frames for R2 for different k’s. The lower bound is
equivalent to asking that ϕ span H. So, for a frame, we
always have k ≥ d. If k = 3d, the redundancy is r = 3.

Fusion Frames provide a way for fusing “smaller” frames
to construct large frames, offering various efficiency and
robustness properties (Eldar & Michaeli, 2008). Formally,

Definition 2.2 (Fusion Frames). Let (Wi)
k
i=1 be a family

of subspaces in Hd, and let (wi)
k
i=1 ⊆ R+ be a family of

weights. Then, ((Wi, wi))
k
i=1 is a fusion frame for Hd, if
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Figure 1. Examples of Tight frames of k = 4, 5, ..., 11 in R2

there exists constants 0 < A ≤ B < ∞ such that

A||x||2 ≤
k∑

i=1

w2
i ||Ui(x)||2 ≤ B||x||2 for all x ∈ Hd

where Ui denotes the orthonormal projection onto the sub-
space Wi for each i. The constants A and B still denote the
lower and upper fusion frame bounds respectively.

Similar to the Frames case, the Fusion Frame ((Wi, wi))
k
i=1

is referred to as a tight fusion frame if A = B and as a
Parseval fusion frame if A = B = 1. Finally, if wi = 1 for
all i, we simply utilize the notation (Wi)

k
i=1.

2.1. Operators in Fusion Frames

Fusion Frame (FF) operators can be formally defined using
a Hilbert direct sum. Since we use the operators for model
quantization, without loss of generality, we describe them in
terms of vectors and matrices, to keep notations simple. Let
((Wi, wi))

k
i=1 be a Fusion Frame for Hd with orthonormal

basis (Pi)
k
i=1 respectively.

The Analysis operator TW takes a signal x ∈ Hd and com-
putes its dot product with all the basis (Pi)

k
i=1. The results

represent x w.r.t. the FF as

TW : x 7→ (wiP
T
i (x))ki=1 (2)

The Synthesis operator T ∗
W is the adjoint of the analysis

operator, and takes a sequence of representation vectors
(yi)

k
i=1 and outputs a signal in Hd: the reconstruction of the

original signal from its FF representation is defined as

T ∗
W : (yi)

k
i=1 7→

k∑
i=1

wiPi(yi) (3)

The Fusion Frame operator SW is defined as the compo-
sition of these two operators. It first computes the FF rep-
resentation of a signal in Hd in different subspaces using
the Analysis operator. Then, when needed, we can recon-
struct the signal back from these representations using the
Synthesis operator. When the Fusion Frame is tight, the

reconstruction is exact (Casazza et al., 2011). Formally,

SW = T ∗
WTW : x 7→

k∑
i=1

w2
iUi(x) (4)

Here, Ui = PiPi
T is the orthogonal projection onto the

subspace Wi. If the Fusion Frame is tight, we have SW =
AId where Id is the d× d Identity Matrix. Throughout, we
will use Parseval Fusion Frames, where the frame bounds
A = B = 1. Fusion Frames offer many other properties but
due to space, we will keep the presentation focused.

How will Fusion Frames be used? An easy way to see
Fusion Frames in practice is to work out a simple example,

Example 1. Consider the Euclidean space Hd = R4. Say,
an oracle gives us a Fusion Frame where we have k = 3
subspaces, and each subspace is of equal dimension ρ = 2.
For notational ease, we represent these subspaces with their
Synthesis operator T ∗

W

=


0.57 0.00
0.00 0.57
0.57 0.00
0.00 0.57

 ,

 0.57 0.00
0.00 0.57
−0.28 0.50
−0.50 −0.28

 ,

 0.57 0.00
0.00 0.57
−0.28 −0.50
0.50 −0.28




We want to compute the FF representation of a signal
x =

[
−1 −0.5 0.5 1

]T
. To do so, we must apply the

Analysis operator TW on x. The Analysis operator is simply
based on the individual transposes in T ∗

W defined above.[
0.57 0.00 0.57 0.00
0.00 0.57 0.00 0.57

]
,

[
0.57 0.00 −0.28 −0.50
0.00 0.57 0.50 −0.28

]
· · ·

Applying TW on x, we get the FF representations

TW(x) =

([
−0.28
0.28

]
,

[
−1.22
−0.32

]
,

[
−0.22
−0.82

])
To get the actual projections of x onto different subspaces
Wi, we multiply these coefficients with the scaled orthonor-
mal basis (wiPi)

k
i=1 of their corresponding subspaces

(w2
iUi(x))

3
i=1 =



−0.1667
0.1667
−0.1667
0.1667

,

−0.7053
−0.1890
0.1890
0.7053

,

−0.1280
−0.4777
0.4777
0.1280




We can verify by checking the identity SW = Id or check-
ing that

∑3
i=1 w

2
iUi(x) = x (only accurate up to rounding

errors) that this Fusion Frame is a Parseval’s frame. Ap-
plying the Synthesis operator T ∗

W on the projections above
recovers x perfectly.

Corrupting FF representations by noise. What happens
when the Fusion frame representations are corrupted by
noise, say due to erasure or quantization? Because of re-
dundancy in the representation of a signal, we expect some
immunity to corruptions in the representations due to noise.
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In the current example, this is indeed the case. If we add
noise to TW(x) with an SNR of 10dB and use the noisy
coefficients to reconstruct x back, we observe an MSE re-
duction of 33% at a redundancy factor of r = 1.5× and
50% MSE reduction r = 2×, consistent with theory (Goyal
et al., 1998).

Quantizing Transformer layers. Let us consider quan-
tizing each layer in a Transformer model as in (Nagel
et al., 2020; Frantar & Alistarh, 2022; Frantar et al., 2023;
Yuan et al., 2022), e.g., by quantizing individual weights
or columns, one by one. First, notice that the quantization
error/noise is weight-dependent. Further, the error will also
depend on how all other weights are quantized. The only
way to guide a quantization scheme is the evaluation of a
loss (to be described shortly) on a small calibration dataset
D. In this regime, even with strong assumptions on the
noise, it is difficult to say much about the quality of the de-
quantization. On the other hand, far more is known (Goyal
et al., 1998; Waldron, 2019; Casazza & Kutyniok, 2012)
about the behavior of quantization of data given in an appro-
priate Frame basis (e.g., Fusion Frames), and error bounds
on the reconstruction are available. Put simply, quantiza-
tion noise in the space of Frame projections incurs far less
error in the reconstructions due to the robustness of Frame
representations. §3 will leverage this principle.

2.2. Tight Fusion Frames and their construction

We first define the type of Fusion Frames we will use and
then describe how they can be constructed.
Definition 2.3 (Tight Fusion Frames or TFF). For A > 0
and with Id giving the d × d Identity matrix, a (k, ρ, d)-
TFF is a sequence {Ui}ki=1 of d× d orthogonal projection
matrices of rank ρ and scalars {wi}ki=1, wi > 0 such that

k∑
i=1

w2
iUi = AId. (5)

A (k, ρ, d)-TFF is a sequence of k equidimensional sub-
spaces of dimension ρ in a d-dimensional space, and Ui is
the orthogonal projection matrix onto the ith sub-space.

Constructing TFFs. The algorithm in (Casazza et al., 2011)
can be used to generate TFFs if we provide the dimension d,
the number k of subspaces we need, and the dimension ρ of
each of these subspaces. The algorithm has two main steps.
First, one generates a Tight Frame of d unit norm vectors
for the complex domain Cρ. Then, this Frame is modulated
with the square roots of unity to generate the k subspaces
for Cd. We use a simple construction described in (Fickus
et al., 2023) to extend these Fusion Frames to Rd. Since it
can be used as a black-box module, we skip the details and
include a brief synopsis in Appendix §J.

Remarks. A few properties are useful to note. This Fusion
Frame construction is sparse/block diagonal and can be gen-

Figure 2. Illustration of standard calculation (on top) versus the
corresponding calculations in FF space (bottom)

erated one subspace at a time. To generate another Fusion
Frame, we can hit it with a random rotation. Depending on
the Transformer model at hand, the dimension of the acti-
vations of the layer determines d. For a desired redundancy
factor (k × ρ ≥ d) in our frames, given d we simply choose
a k and ρ such that they are valid (i.e., a TFF exists for the
triple (k, ρ, d)) according to (Casazza et al., 2011). If not,
we use a slightly lower redundancy factor r knowing that
we will always have a trivial solution for k = 1 and ρ = d.

3. Fusion Frames based Quantization
We can now leverage the ideas described in the preceding
sections for quantizing the parameters of a Transformer
model. Consistent with common PTQ approaches (Nagel
et al., 2020; Frantar & Alistarh, 2022; Frantar et al., 2023;
Yuan et al., 2022), we perform quantization layer-by-layer,
minimizing the proxy loss between the quantized and non-
quantized output of the layer.

What are analogous calculations in FF space? Consider
a layer l in a Transformer model, with parameters Θl. Let
Ăprev be the activation of the already quantized previous
layer for the examples in the calibration set D. The (non-
quantized) output Zl of layer l is

Zl = ΘlĂprev (6)

Here, Θl maps the input Ăprev to the output Zl. To avoid
directly quantizing Θl, we want the quantization noise to
instead impact the analogous terms in the Fusion Frame
representation (but equivalent calculation as (6)). To this
end, let us set up some notations. In general, the dimension
of Zl and Ăprev may not be the same. So, the number of
subspaces in their respective Fusion Frames will be differ-
ent. Let k, kprev denote the number of subspaces for Zl

and Ăprev respectively. In other words, W l = (W l
i)

k
i=1

and Wprev = (Wprev
i )

kprev

i=1 . Let the sequence of orthonor-
mal basis for the subspaces of W l and Wprev be given by
(P l

i )
k
i=1 and (P prev

i )
kprev

i=1 respectively. To reduce notational
clutter, we absorb the scalars wi into Pi. To write down the
expression in FF space, for simplicity, let us vectorize the
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set of orthogonal basis above and define

Pl = [P l
1P

l
2 . . . P

l
k] and Pprev = [P prev

1 P prev
2 . . . P prev

kprev
]

Taking the FF representations of the output Zl means

PT
l Zl = PT

l ΘlĂprev︸ ︷︷ ︸
=Zl

(7)

Rearranging brackets,

PT
l ΘlĂprev = PT

l Θl(PprevP
T
prev)Ăprev (8)

= (PT
l ΘlPprev)(P

T
prevĂprev) (9)

In the above expression, the object (PT
l ΘlPprev) maps the

FF representation of Ăprev, i.e., (PT
prevĂprev), to the FF

representation of (PT
l Zl). This operation is completely in

the FF representation space as desired.

A notation simplification allows us to cross-reference what
our FF-space calculations are doing w.r.t. the objective
function. Let Cprev = PT

prevĂprev and Dl = PT
l ΘlPprev.

Our objective is to quantize Dl to D̂l while minimizing the
proxy loss in terms of FF representations,

L(D̂l) = ||DlCprev − D̂lCprev||2F
= tr((Dl − D̂l)

TCT
prevCprev(Dl − D̂l))

= tr((Dl − D̂l)CprevC
T
prev(Dl − D̂l)

T )

The term H̃ = CprevC
T
prev corresponds to the Hessian

prominent in most published results on PTQ strategies
(Nagel et al., 2020; Frantar & Alistarh, 2022; Frantar et al.,
2023; Chee et al., 2023). So, our loss is the same as other
approaches, except that we are operating in the FF represen-
tation space and enjoy all the associated noise robustness
properties. Further, because the loss for quantizing the trans-
formed weights Dl is the same as e.g., (Frantar et al., 2023),
we can directly use the Hessian-based iterative quantization
algorithms in (Frantar & Alistarh, 2022; Frantar et al., 2023)
with minimal changes. Finally, following recent results in
Post-training Quantization (Nagel et al., 2020; Frantar &
Alistarh, 2022; Frantar et al., 2023; Chee et al., 2023) we
primarily focus on quantizing the transformed weights (Dl)
but include one experiment with a simple activation quan-
tization in §F. We note that there are standalone activation
quantization strategies for smaller Vision models for up to
four bits, see (Ding et al., 2022; Yuan et al., 2022).

Details of the quantization procedure. Other than working
in the FF space, the quantization itself is almost identical
to (Frantar et al., 2023). We use the iterative method from
(Frantar et al., 2023) with some modifications to improve
the stability of our algorithm. For example, we found that
clipping the weights before calling the iterative scheme

Figure 3. Inference for a FrameQuant quantized model.

from GPTQ reduces the weight range during quantization.
This effectively adds more quantization noise to the outlier
weights that are too large. Since Fusion Frames spread out
the energy uniformly among different subspaces, we observe
that there are only a few outliers in the transformed Weight
matrices, and hence clipping them boosts performance. We
found that simply clipping the weights at 2σ (assuming a
Normal distribution), where σ is the standard deviation of
Dl, works well in practice. We observe that this change also
helps the method in (Chee et al., 2023) (and this modified
algorithm is also included in our baselines). Alg. 1 shows
the sequence of steps in FrameQuant.

Algorithm 1 FrameQuant
Require: Weight matrix Θl, previous layer activations
Ăprev, input and output Fusion Frames Pl, Pprev, block
size B
1: Compute Cprev = PT

prevAprev, Dl = PT
l ΘlPprev

2: Compute σ = std(Dl), µ = mean(Dl)
3: Dl = 2σ clip(Dl, µ− 2σ, µ+ 2σ)
4: D̂l = quantize(Dl, Cprev, B) // modified GPTQ
5: Store D̂l // store the quantized matrix D̂l

return PlD̂lCprev // return quantized layer activations

3.1. Robustness of Fusion Frames

We now state some technical results that apply to both
Frames and Fusion Frames.

(a) Redundancy related guarantees. During quantization,
the Fusion Frame coefficients are corrupted. This can be
modeled as an additive noise being added to these coeffi-
cients. Assume that the redundancy factor is r > 1. Even
with classical analysis, the result in (Rozell & Johnson,
2005; Goyal et al., 1998) shows that when using Tight
Frames to reconstruct the signal from noisy coefficients,
for memoryless quantization, we get an MSE reduction of
O(1/r). A rate of O(1/r2) for consistent reconstruction
can also be achieved by solving an LP during the dequan-
tization step (Goyal et al., 1998). While this may not be
preferred in practice, we know that if adopted, this matches
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the lower bound of (1/r2), see Ch. 2 in (Goyal et al., 1998).

(b) Another benefit of Frame representations is that recon-
struction can “denoise” using filters available in closed form.
For example, with Tight Frames, it is known that the Wiener
filter provably minimizes the MSE, see Ch. 13 in (Casazza
& Kutyniok, 2012), (Kutyniok et al., 2009). In our exper-
iments, we found that even a diagonal approximation of
the Wiener filter helps. But our experimental results are
reported without utilizing this boost.

3.2. Inference Procedure

During inference, the quantized model is loaded into mem-
ory. At each layer, the inputs to the layer (Ăprev) are first
transformed into their Fusion Frame representations using
the analysis operator PT

prev. The FF representations are then
transformed by the quantized weights (Dl) for this layer into
the FF representations of the output. Finally the synthesis
operator Pl is used to compute the layer outputs. Figure 3
shows this dequantization process and the bit widths of each
of these operations for a single layer in a network.

4. Experiments
We performed an extensive set of experiments comparing
FrameQuant with several quantization baselines for Vision
models and Language models. The goal is to assess (a) per-
formance metrics of different methods on benchmark tasks
and (b) how close low-bit quantization can approach the
full precision performance with a small degree of represen-
tation redundancy. We use image classification task (Deng
et al., 2009) for Vision models and Perplexity for Language
models.

We start with an overview of our experimental setup. We
present the evaluation results of FrameQuant on 15+ Vision
Transformer architectures+configurations for image clas-
sification. Next, we conduct an ablation study on image
classification task to better understand the behavior of dif-
ferent components of FrameQuant. We then present results
on Language models such as OPT (Zhang et al., 2022b) and
Llama2 (Touvron et al., 2023) by comparing perplexity and
accuracy in downstream tasks. The appendix includes many
additional experiments.

4.1. Experimental Setup

We evaluate our method on the ImageNet-1K classification
task. For quantizing the model weights of the pre-trained
models obtained from the Huggingface hub (Wightman,
2019), we use 128 images randomly selected images from
the training dataset as calibration dataset D. We quantize
the parameter matrices of the layers sequentially from shal-
low layers to deep layers, similar to (Frantar et al., 2023).
After quantizing each layer, we pass the inputs to the layer

again and send the output with the quantized weights to the
next layer. Finally, we evaluate the quantized models on the
ImageNet-1K validation dataset and report the top-1 accu-
racy. All our “base” experiments correspond to 2 bits. We
note that one of the baselines, PTQ4ViT (Yuan et al., 2022),
performs activation quantization together with weight quan-
tization, but was not tested in the extreme 2 bit quantiza-
tion setting. To ensure fair comparisons to that method,
we switch off activation quantization in their method and
also add another experiment with 3 bits. For additional ex-
periments with activation quantization, Segmentation and
Object Detection tasks, we refer the reader to the Appendix
sections F, G respectively.

4.2. Results on ImageNet Classification Task

We use model architectures (including ViT (Dosovitskiy
et al., 2021), DeiT (Touvron et al., 2021), DeiT III (Touvron
et al., 2022), and Swin (Liu et al., 2021a)) and model sizes
(including small, medium, large, huge) that are available on
the Huggingface hub (Wightman, 2019). Our main results
for these experiments are shown in Tab. 1–2. Figure 4a
shows the performance of the different classes of models
on the ImageNet-1K dataset. We observed that clipping the
weights at 2σ also helps QuIP (Chee et al., 2023), so we
include it as an additional baseline. Even with a redundancy
factor of r = 1, FrameQuant achieves better accuracy com-
pared to most baselines under consideration. Further, with a
redundancy factor of r = 1.1, FrameQuant outperforms all
baselines by a good margin and is respectably close to the
full precision model, underscoring the robustness of Fusion
Frames in the presence of quantization noise. We observe
that adding more redundancy to the Frame representations
continues to improve the performance of the quantized mod-
els, especially when the models are small. See §A for more
details. We note that the codebase for PTQ4ViT (Yuan et al.,
2022) was not compatible with the Swin-L model, so we
could not report their performance for this model.

4.3. Ablation Study

In this section, we dissect FrameQuant to understand the
contribution of different components of our algorithm. Ta-
ble 3 shows the results of this experiment. We use GPTQ
(Frantar et al., 2023) as our starting point. With GPTQ
(Frantar et al., 2023) alone, the performance drops in the
quantized models are significant: as high as 82% for the
DeiT III (Touvron et al., 2022) Base model. Simply with
the FF representation added (column TFF), we see improve-
ments in performance across all models, with a maximum
improvement of 56% for DeiT III-H. We note that some of
the smaller-sized models are yet to see all the benefits of FF
representations. That is because these models have outliers
in the weights (much larger than the remaining weights)
which results in higher quantization errors. The FF repre-
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Method #bits ViT DeiT Swin
T S S/32 B T S B S B B/384

Full-Precision 32 75.46 81.39 75.99 85.10 72.16 79.85 81.98 82.88 84.67 86.02

PTQ4ViT 2 0.33 0.55 0.71 0.41 1.51 4.47 25.54 12.54 0.15 0.15
GPTQ 2 0.40 0.40 0.39 29.26 1.60 4.23 41.00 43.54 47.38 57.52
QuIP 2 1.42 21.98 19.00 77.54 12.93 51.62 75.51 71.58 74.91 79.85

QuIP (with our 2σ clip) 2 9.10 48.96 41.41 79.54 30.49 65.70 77.69 76.34 79.17 82.40
FrameQuant (r = 1.0) 2 8.92 48.10 41.16 79.53 31.73 66.35 77.62 77.91 80.16 82.44
FrameQuant (r = 1.1) 2.2 25.79 61.51 53.85 80.93 46.48 70.43 78.67 78.77 81.33 83.42

PTQ4ViT 3 18.32 36.18 22.20 21.43 51.73 69.65 75.35 73.01 69.46 70.68

Table 1. ImageNet-1k Top-1 validation accuracy of Tiny to Base sized Vision Transformer-based models when quantized to 2 (or 3) bits
by different methods. FrameQuant with a redundancy factor of r = 1 already performs better or on par with Quip (Chee et al., 2023).
With a slightly higher redundancy factor of r = 1.1, we get the best performance of all the methods under consideration.

(a) Validation accuracies for different classes of Transformer models for Vision on ImageNet-1K
(b) Weights distribution in a ViT
layer and the 2σ thresholds

Figure 4. (a) Validation accuracies of Vision Transformers on ImageNet-1K dataset. We can see FrameQuant closing the gap between
the full precision model with increasing redundancy. Each dot in the plot corresponds to a model from tables 1-2 combined. (b) shows
the distribution of weights in a ViT layer and the 2σ thresholds for clipping. We see that our thresholding keeps most of the mass while
removing outliers.

Method #bits ViT DeiT III Swin
L H L H L

Full-Precision 32 85.84 87.59 86.97 87.19 85.95

PTQ4ViT 2 37.05 00.18 2.14 55.57 -
GPTQ 2 63.08 42.63 68.43 28.20 71.69
QuIP 2 82.22 84.58 84.76 86.27 83.61

QuIP (our 2σ clip) 2 83.17 85.31 85.48 86.38 84.27
FrameQuant (r = 1.0) 2 83.22 85.49 85.45 86.62 84.25
FrameQuant (r = 1.1) 2.2 83.67 85.99 85.75 86.68 84.42

PTQ4ViT 3 81.26 78.92 83.63 85.39 -

Table 2. ImageNet-1K Top-1 validation accuracy of Large and
Huge sized Vision Transformer-based models when quantized to 2
(or 3) bits by different methods.

sentation yields a nice enough distribution that we can fit a
Normal distribution. So, after we clip these weights at the
±2σ level, we see improvements in performance because
of the outlier removal. Clipping is most effective once the
weights are nicely distributed. A direct application of clip-
ping on the weights has limited efficacy and incurs errors for
weight configurations that are degenerate/poorly distributed,
see D.1 for more details. Finally, we add a redundancy fac-
tor of r = 1.1 and the FF representations take advantage

of this redundancy: we see the best performance across the
board.

Impact of Gaussian assumption on the weights distri-
bution. Figure 4b shows a representative example of the
distribution of weights in a model from the ViT family and
why the 2σ clipping seems reasonable for capturing most
of the mass. The weights distribution for models from DeiT
and Swin Transformer are shown in Figure §13.

4.4. Results on Language Models

In this experiment, we evaluate the perplexity of quantized
models from the OPT (Zhang et al., 2022b) and Llama2
(Touvron et al., 2023) family on two datasets - WikiText2
(Merity et al., 2017) and C4 (Raffel et al., 2020). Figure
5 shows the perplexity of models from the OPT family as
the size is increased. We see that FrameQuant at 1× redun-
dancy performs better than all other quantization methods.
With a redundancy factor of 1.1×, FrameQuant reduces the
performance gap with the full precision models as suggested
by the theory. We see similar results for models from the
Llama2 family as well. We also finetuned the Llama2-7B
model quantized by various methods on diverse downstream
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GPTQ TFF 2σ clip Redundancy ViT DeiT III Swin
r = 1.1 S B H S B H S B L

ON OFF OFF OFF 0.4 29.26 42.63 0.45 8.5 28.2 43.54 47.38 71.69
ON ON OFF OFF 0.88 59.87 68.75 1.48 29.92 84.33 61.01 60.21 79.52
ON ON ON OFF 48.10 79.53 85.49 51.13 77.99 86.62 77.91 80.16 84.25
ON ON ON ON 61.51 80.93 85.99 65.33 80.91 86.68 78.77 81.33 84.42

Full Precision 81.39 85.1 87.59 83.06 85.7 87.19 82.79 84.7 85.95

Table 3. Incremental impact of various steps in FrameQuant on ImageNet-1k accuracy for different Transformer models in Vision

Method #bits acc mm-acc

Full-Precision 32 84.19 84.67

ZeroQuant 4.33 78.69 78.07
ZeroQuant 3.66 54.91 56.45
ZeroQuant 2.66 38.00 38.30

FrameQuant 2.2 80.02 79.37

Table 4. Performance of the BERT model quantized with Zero-
Quant and FrameQuant on the MNLI dataset. FrameQuant per-
forms better than ZeroQuant even with a lower bit-width than
ZeroQuant.

Method bits OPT Llama2
125M 1.3B 2.7B 6.7B 7B 70B

Full-Precision 16 27.65 14.62 12.47 10.86 5.68 3.32

GPTQ 2 5.7e3 8.9e3 9.1e3 3.1e3 6.4e3 140.5
QuIP 2 913.0 37.59 22.86 15.67 26.02 6.21

FrameQuant 2 345.7 30.54 20.67 15.72 14.85 5.50
FrameQuant 2.2 131.2 22.68 15.86 13.53 8.48 4.67

Table 5. Perplexity (lower is better) of Llama2 and OPT models
on WikiText2 dataset when quantized to 2 (or 2.2) bits by different
methods.

tasks and observed a maximum accuracy boost of 41% by
FrameQuant at r = 1.1× compared to vanilla GPTQ. Table
5 summarizes the perplexity of all the models on the Wiki-
Text2 (Merity et al., 2017) dataset. Results on downstream
tasks/additional datasets is in Appendix §H.

4.5. Comparision with Mixed-precision Quantization

A redundancy factor of 1.1 is the same as an average bit-
width of 2.2 per weight parameter. Mixed-precision quan-
tization methods can achieve fractional bit-widths by us-
ing different bit-widths for different weights in the model.
We compare FrameQuant with a recent Mixed-precision
method, ZeroQuant (Yao et al., 2022). We test FrameQuant
with a bit-width of 2 and a redundancy factor of 1.1 relative
to ZeroQuant at different fractional bit-widths. As shown in
Table 4. FrameQuant performs favorably with ZeroQuant,
even at low bit widths.

(a) Perplexity on WikiText2 (b) Perplexity on C4

Figure 5. Perplexity of models from OPT family on WikiText2
and C4 datasets. FrameQuant performs better than all other quan-
tization methods under consideration. We can also see that the
performance gap between the quantized models and the unquan-
tized model goes down as the size of the models increases.

Llama2 7B Llama2 13B

Original model 13G 25G
FrameQuant 2.1G 3.6G

Table 6. Size of original and quantized model with FrameQuant.

5. Other Practical Considerations
5.1. Storage requirements

Weight quantization has a direct improvement on the storage
needs of the models. Table 6 shows the sizes of compressed
Llama2 models. FrameQuant reduces the size of the models
by around 85% on average.

5.2. Inference speeds

Since FrameQuant involves additional operations to com-
pute and transform the weights from the low-bit Fusion
Frame representations to the regular weight space, the raw
inference speed is expected to be lower than GPTQ. On the
other hand, at 2 bits, the accuracy/perplexity of FrameQuant
is much better than GPTQ. So, there is a trade-off. Table
7 shows the inference speeds of the quantized models on a
Nvidia A100 GPU. Here, we used the block diagonal struc-
ture of Fusion Frames and a Hadamard transform-based
fast random projection based on (Dao, 2023; Zeng et al.,
2023) for the rotation matrices. This inference speed can be
improved by using efficient kernels to load the weights into
the GPU and perform the transformations.
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Method Llama2 7B Llama2 13B

GPTQ 1425.07t/s 844.03t/s
FrameQuant 974.20t/s 607.01t/s

Table 7. Inference speed in tokens/sec (t/s) of quantized models
with GPTQ and FrameQuant.

6. Discussion
We cover a few additional aspects that were not explicitly
discussed thus far. (1) Can we reduce to one bit? We per-
formed experiments with redundancy of 1.8× with 1 bit
per weight but were unsuccessful. For one bit, once the
redundancy has exceeded r = 2, it makes more sense to
just use two bits. (2) Can FrameQuant run as QuIP? For
each layer, if we choose a Fusion Frame with a redundancy
factor r = 1 and the random orthonormal basis Pl, Pprev,
we get a setup similar to QuIP (Chee et al., 2023) after
removing the 2σ weight clipping. This is also why when
QuIP is augmented with our 2σ clipping we see similar
results to FrameQuant with 1× redundancy. (3) Additional
storage needed?: Since there are efficient deterministic al-
gorithms to generate Fusion Frames, during inference, only
knowledge of (k, ρ, d) is needed. For rotations, we only
need knowledge of the seed. Also, since many layers in a
Transformer model have the same shape, these parameters
can be shared across layers. Additional details on the stor-
age benefits are in §K.1 (4) Why is flexibility useful? If the
performance hit at the two-bit level is unacceptable for an
application, the only recourse currently is to move up to
three bits for existing methods (50% increase). However,
FrameQuant allows flexibility through the choice of the re-
dundancy factor r. (5) Higher bitwidths? The main focus
of this work is to evaluate 2-bit quantization of the weights
in Vision and Language models and to check the benefits
of applying Fusion Frames in terms of flexible bit-widths.
Higher bit widths such as 3 or 4-bit quantization have been
studied (Frantar et al., 2023; Chee et al., 2023) and also used
in practice (Gerganov, 2023). (6) Computational complexity
during Inference: The core FF-related compute is similar to
alternatives (Chee et al., 2023) with a small overhead related
to the number of subspaces k. During inference, we need an
additional compute of O(d2(kr + log d)) for transforming
the weights from the Fusion Frame representation space to
the regular weight space. Any quantization scheme in the
low-bit regime will incur a cost of O(d2) to transform the
quantized weights by scaling and shifting them. More de-
tails are provided in §K.2. (7) Quantization aware training:
FrameQuant can be modified to be applicable during QAT
although we do not include such experiments here. One
option is to use it during fine-tuning where the quantization
loss is simulated, which can then be used to regularize the
loss to make it more robust to quantization. Fusion Frames
can meaningfully inform this bias, via an estimate of the
“out of subspace error” to minimize degradation due to quan-

tization. (8) Scaling laws vis-à-vis FrameQuant? During
quantization, the number of parameters does not change.
Instead, each parameter has a lower degree of freedom since
the number of states it can represent is reduced. We can use
the (number of parameters × bit-width) as a proxy for the
degree of freedom for each (quantized) model. Taking the
quantization bit width into account, a line plot of test loss
(on the vertical-axis) as a function of (number of parameters
× bit-width) on the horizontal axis may have a different
slope compared to (Kaplan et al., 2020), Fig. 1. (9) Ratio-
nale for clipping: Let u be a vector in p dimensions. Let P
be a projection onto a random subspace in p′ dimensions.
Projecting u using P gives v as v = Pu. Assume that the
entries in u have finite mean and variance and are uncorre-
lated. Then each entry of v is effectively a sum of many
scaled random variables. The distribution of these entries
(sum of scaled variables, suitably standardized) approaches
a normal distribution as the dimensionality p grows. Weak
dependence or mixing can also be handled.

7. Conclusions
This paper describes FrameQuant, a Frames based algorithm
for flexible low-bit quantization. Quantization is motivated
by the need to efficiently serve Large Language Models
on heterogeneous devices and flexibility here means that
while we retain the option to go as low as two bits; depend-
ing on the needs of the downstream task, the user also has
the flexibility to seek models with a net footprint of 2.x
bits on average. Across most widely used Vision Trans-
former models and Large Language models, we find that
effective quantization is possible with only a small loss in
performance relative to the full-precision model. Further,
flexibility for a minor increase in redundancy is available
and uniformly helps close the gap with full precision models.
We observe, consistent with the literature, that quantization
to low bit width is more favorable for larger models (in
terms of a performance hit) than a similar quantization ap-
plied to smaller models. While some benefits (e.g., model
loading time, loading larger models) are immediate, tighter
integration with the hardware can unlock far more efficiency
gains. The code is publicly available.

Impact Statement
This paper introduces a low precision quantization method
for inference. The objective is to decrease memory needs
and facilitate the implementation of larger models on less
powerful devices, thereby reducing costs (economic impact)
and the carbon footprint (environmental impact). We have
not identified any particular ethical issues that need to be
emphasized.
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Appendix
In this Appendix, we provide additional details related to the experiments reported in the main paper. This Appendix
is organized as follows. In Section A we analyze the impact of redundancy on the performance of the model in terms
of classification accuracy on the ImageNet-1K dataset. In Section B, we study this effect on the performance of Vision
Transformer models, evaluated using activation maps. Next, in Section C, we study the effect of the size of the calibration
data used for quantizing various Vision Models. In Section D, we analyze the choice of the 2σ threshold for clipping the
weights during quantization. We provide empirical evidence for different classes of Vision models. We also show that
2σ clipping alone cannot improve quantization performance. On the contrary, it can degrade the performance for weight
configurations that are poorly distributed. Section E shows the distribution of weights in the DeiT and Swin Transformer
models. In Section F, we present a framework for quantizing activations and show how the FF representation of activations
inherently addresses the key pain points described in previous works. We follow this with a simple experiment with
activation quantization enabled. In Section G, we provide experiments on Segmentation and Object detection tasks. In
Section H, we present more experiments on Language models on different datasets and downstream tasks as mentioned in
the main paper. Then, in Section I, we provide an expanded synopsis of the theoretical results that apply to our setting, as
briefly described in the main paper. In Section J we provide a brief synopsis of the algorithm used to generate a TFF for the
curious reader. Finally in Section K we give a detailed analysis of the storage benefits of FrameQuant and the computational
complexity during inference.

A. Impact of redundancy in representations
We consider the impact of redundancy in our Frame representation moving forward from 2 bits, incrementally increasing
redundancy. Table 8 shows the performance of different models at different levels of redundancy. We observe that for
large models, the original performance without any redundancy was already high, and adding redundancy did not impact
their performance significantly. However, this is not the case for smaller models. Here, we see significant performance
improvements (around +21% for the ViT-S model).

Redundancy bits ViT DeiT III Swin
S B H S B H S B L

r = 1.00 (2.0 bits) 48.10 79.53 85.49 51.13 77.99 86.62 77.91 80.16 84.25
r = 1.05 (2.1 bits) 56.19 79.97 85.67 58.74 79.59 86.58 78.47 80.41 84.26
r = 1.10 (2.2 bits) 61.51 80.93 85.99 65.33 80.91 86.68 78.77 81.33 84.42
r = 1.15 (2.3 bits) 65.17 81.27 86.04 69.54 81.69 86.67 78.87 81.88 84.51
r = 1.20 (2.4 bits) 66.53 81.59 86.11 71.07 81.98 86.61 79.56 82.02 84.56
r = 1.25 (2.5 bits) 68.57 81.74 86.06 73.48 82.51 86.55 79.99 82.26 84.51
r = 1.30 (2.6 bits) 69.02 81.77 85.99 74.40 82.54 86.38 79.92 82.39 84.65

Full Precision - 81.39 85.1 87.59 83.06 85.7 87.19 82.79 84.7 85.95

Table 8. Performance of various quantized models on ImageNet-1K classification task as the redundancy in FrameQuant is increased. We
see that increasing the redundancy closes the gap between the performance of the quantized model and the Full precision model

B. Does redundancy impact attention maps?
In the main paper, we discussed how the performance of the models improves as we increase the redundancy in the Fusion
Frames during quantization. In this section, we provide additional details on how redundancy affects the attention maps of
Vision Transformers from different classes. We will focus mainly on the small and base models where we see significant
improvement in the validation accuracy on ImageNet, as we increase the redundancy. Figures 6, 7 and 8 show the attention
maps of Vit-S, DeiT III -S, and Deit III - B models respectively. These models show an improvement in the range of 4.55%
to 23.27% as we increase the redundancy from r = 1 to r = 1.3. This is reflected in the attention maps as well. We see
that as the redundancy is increased, the attention regions concentrate around the objects of interest systematically. This is
consistent with the improvement in accuracy and can also be seen in Figure 9.
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Figure 6. Effect of flexibility/redundancy on activation maps for ViT-S. Figure showing attention maps of ViT-S as the redundancy is
increased from r = 1 to r = 1.3 in the increments of 0.1 from left to right. The first column shows the image and the ground truth label,
and the rest of the columns show the regions that the model is attending to in the final transformer block. We see that as the redundancy is
increased, the model gets more focused, with the attention regions concentrating on the objects of interest.

#images ViT DeiT III Swin
S B H S B H S B L

128 48.10 79.53 85.49 51.13 77.99 86.62 77.91 80.16 84.25
200 51.48 79.84 85.62 53.74 78.38 86.61 77.66 80.19 84.09
256 51.69 79.84 85.74 54.73 79.06 86.47 77.96 80.68 84.31

Table 9. ImageNet-1K Top-1 validation accuracies of models from different classes as the number of calibration images is increased.

C. Does the calibration set size matter?
In the main paper, we noted that a small calibration set size was sufficient. In this section, we report on experiments varying
the number of calibration images and observe the performance of different classes of models on ImageNet-1K. We use a
redundancy factor of r = 1 in this experiment. Table 9 shows the validation accuracies for different classes of models as the
number of calibration images is increased from 128 to 256. We can see that the performance improvement is seen only in
the small-sized models from the ViT and DeiT III classes. So, we will focus on reporting results for these models. Figure 10
shows the accuracies of ViT-S and DeiT III-S models as the number of calibration images is increased from 128 to 512. We
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Figure 7. Effect of flexibility/redundancy on activation maps for DeiT III-S. Figure showing attention maps of DeiT III -S as the
redundancy is increased from r = 1 to r = 1.3 in the increments of 0.1 from left to right.

can see that there is a small improvement as the number of images is increased from 128 to 200, but the benefits taper off
quickly as we increase it further. This shows that if access to the calibration is not limited, a small increase in the number of
images used for quantization can benefit the final accuracies of the models, especially for smaller models.

D. How does 2σ clipping affect performance?
In the main paper, we discussed a simple clipping threshold at the 2σ level. In this section, we analyze the benefits of this
choice and its effect on the performance of different classes of models on ImageNet-1K. As in the previous section, we use a
redundancy factor of r = 1 for these experiments and focus on the impact of clipping the weights at different levels based
on their distribution. Figure 11 shows the accuracies of different classes of models as the threshold for the weights is varied
from ±σ to ±3σ. We can see that the performance of all the models peaks in the neighborhood of ±2σ. Clipping at ±σ
restricts the range of the weights too aggressively, incurring errors. At ±3σ level, which is close to allowing the entire range,
we are stretching the effective scale of the weights to allow all the extreme entries to be represented within the range. This,
in turn, increases the width of the quantization levels, which affects the majority of the weights impacting performance.
±2σ seems to be the sweet spot.
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Figure 8. Effect of flexibility/redundancy on activation maps for DeiT III-B. Figure showing attention maps of DeiT III -B as the
redundancy is increased from r = 1 to r = 1.3 in the increments of 0.1 from left to right.
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Figure 9. Trend of accuracies in small size models as we increase the redundancy
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Figure 10. Trend of accuracies in small size models as we increase the number of calibration images

Model Quantization method WikiText2 C4

Llama2 7B GPTQ without clipping 6.40e3 2.27e3
Llama2 7B GPTQ with clipping 9.45e3 7.40e3
Llama2 7B FrameQuant with clipping 14.85 19.62

Llama2 70B GPTQ without clipping 140.5 68.83
Llama2 70B GPTQ with clipping 2.08e3 1.12e3
Llama2 70B FrameQuant with clipping 5.5 7.85

Table 10. Table showing the impact of clipping on GPTQ. FrameQuant computes the FF representations of the weights that are nicely
distributed and can take advantage of clipping to remove outliers.
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(c) Accuracies of Large models

Figure 11. Figure showing the impact of clipping at different thresholds based on σ

D.1. Does 2σ clipping alone improve performance?

From our alation study 4.3, it might seem that 2σ clipping is doing the heavy lift in improving the performance. However,
clipping is most effective once the weights are nicely distributed. A direct application of clipping on the weights has limited
efficacy and incurs errors for weight configurations that are degenerate/poorly distributed. Projecting onto a space-filling
basis makes clipping effective. To demonstrate this point quantitatively, we run GPTQ on Llama2 models with the 2σ
clipping applied directly to the weights. Table 10 shows that the performance degrades when the weights are clipped instead
of their Fusion Frame representations as in FrameQuant.

E. Distribution of weights in the DeiT and Swin Transformer models
This section presents the distribution of the weights in the DeiT and Swin Transformer models. Figure 13 shows the
distribution of weights in a linear layer from the DeiT and Swin Transformer families. We can see that the distribution is
well behaved and the 2σ threshold captures most of the mass well.
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(a) Activations of the first block in ViT-M (b) Activation FF representations of the first block in ViT-M

Figure 12. Activations of the first Transformer Block of Vit-M model and their FF representations. We can see the outliers in the activations
(shown in red) on the left, while the FF representations are well-behaved.

(a) Weight distribution in DeiT (b) Weight distribution in Swin Transformer

Figure 13. Weights distribution in DeiT and Swin Transformer models.

F. FrameQuant for Activation Quantization?
In the main paper, we restricted the experimental setup of Vision Transformer models to weight quantization for meaningful
comparisons to recent PTQ papers. This is because activation quantization in this low-bit regime has not been reported and
each baseline will need modifications to report the best possible results. In this section, we provide some details regarding
applying FrameQuant for activation Quantization with the caveat that a comprehensive head-to-head comparison to all
reported baselines is difficult for the reasons above.

Rounding activations to the nearest. For smaller Transformer models, the inference efficiency bottleneck also largely lies
in activations. So, we focus on these models to consider activation quantization. We performed activation quantization on
ViT-S/B models with a simple rounding to the nearest, and we found that even when the weights are quantized to 2 (or 2.2)
bits using FrameQuant, the performance drops are not large. This is promising and shows that FrameQuant is robust in
preserving activations even at a 2.x bit level for weights. Table 11 shows the ImageNet-1K accuracy at different bit-widths
for weights and activations.

Benefits of well-behaved FF representations. Since we operate in the FF representation space, we can first compute the FF
representations of the previous layer activations,

Cprev = PT
prevAprev (10)
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Method bits ViT-S ViT-B

Full Precision W32/A32 81.39 85.10

FrameQuant W2/A32 48.17 79.53
FrameQuant W2.2/A32 61.51 80.93

FrameQuant W2/A8 48.02 79.51
FrameQuant W2.2/A8 60.96 80.64

FrameQuant W2/A6 47.41 78.59
FrameQuant W2.2/A6 58.35 80.14

Table 11. Performance of quantized ViT-S and ViT-B models on ImageNet-1K validation set. We used FrameQuant to quantize the
weights while the activations are rounded to the nearest.

and quantize these directly. Also, since activation quantization happens dynamically, during inference time, we keep the
activation quantization procedure simple and just use the nearest rounding method. This can be written as:

C̄prev = ⌊Cprev

∆C
⌉, ∆C =

max |Cprev|
2N−1 − 1

(11)

where C̄prev is in INT8 form and is the quantized version of the FF representations of the activations (Cprev). ⌊·⌉ represents
nearest rounding. We can substitute with ⌊·⌋ or ⌈·⌉ to get the floor or the ceil operation.

As noted by (Xiao et al., 2023), we also observe that the activations have large outliers in some of the channels whose
values are more than 100× larger than the activations of other channels on average and this behavior is consistent across
the tokens. This is shown in Figure 12a. So, to quantize the outliers, we need a large-scale factor ∆C , which will quantize
all small values to zero. The other option is to use per-channel quantization – where we have different scale factors for
different channels. This would solve the outlier problem, but it is not ideal because we cannot use integer kernels for
matrix multiplications in the Linear Layers. To use integer arithmetic for the matrix multiplications in the Linear layers,
we can only perform per-token quantization for the activations and per-channel quantization for the weights. To solve this
problem, (Xiao et al., 2023) shifts the scale from activations to weights that are well-behaved. They dynamically search for
different amounts of shifts between the weights and activations using a calibration set and use that during inference. Since
we operate in the FF representation space, we observe that after we compute the FF representations of the activations, they
are well-behaved. Figure 12b shows the FF representation of activation of the first Transformer block in the ViT-M model.
So, we do not need to perform further scaling to reduce the range. This makes FrameQuant to be amenable to activation
quantization if necessary in practice.

G. Quantizing Segmentation and Object Detection models
We used FrameQuant to quantize the Swin backbone for Object Detection and Segmentation Models. We compare our
results with RepQ-ViT (Li et al., 2023), one of the state-of-the-art publicly available quantization methods in this regime.
Since our primary focus is quantizing the weights of the Transformer, for a fair comparison, we use RepQ-ViT to quantize
the rest of the parameters, such as activations and norm layers. From Table 12, we can see that FrameQuant performs
similarly to RepQ-ViT, and the main benefits of frameQuant kick in at very low bit widths.

H. Additional Experiments on Language models
H.1. Evaluation on the C4 dataset

This section is a continuation of section 4.4. Here, we present the perplexity of different models from OPT and Llama2
classes on the C4 (Raffel et al., 2020) dataset. Consistent with our previous experiments, we see that FrameQuant with
1× the redundancy performs better than all the methods under consideration. With an additional redundancy of r = 1.1×,
FrameQuant closes the gap between the full precision model across all the sizes from different families of Large Language
Models. The results are shown in table 13.
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Method Precision
of Swin
Backbone

Precision of
rest of the
network

MoBY Mask
RCNN w. Swin-T
(APbox / APmask)

MoBY Cascade Mask
RCNN with Swin-T
(APbox / APmask)

Full Precision W32/A32 W32/A32 43.6/39.6 48.1/41.5

RepQ-ViT W6/A6 W6/A6 42.6/39.0 47.7/41.3
FrameQuant W6/A6 W6/A6 42.7/39.0 47.8/41.3

RepQ-ViT W4/A4 W4/A4 34.2/32.3 43.8/38.6
FrameQuant W4/A4 W4/A4 34.5/32.5 44.3/39.1

RepQ-ViT W3/A4 W4/A4 27.5/26.4 38.9/34.8
FrameQuant W3/A4 W4/A4 29.3/27.9 41.2/36.7

RepQ-ViT W3/A4 W3/A4 16.9/16.9 32.4/29.2
FrameQuant W3/A4 W3/A4 21.7/21.5 35.2/31.4

Table 12. Performance of quantized models with Swin-T backbone on the Object Detection and Segmentation tasks. We can see that
FrameQuant performs similarly to RepQ-Vit at higher bit widths. The main benefits of Frame representations kick in at very low
bit-widths.

Method #bits OPT Llama2
125M 350M 1.3B 2.7B 6.7B 7B 70B

Full-Precision 16 26.56 22.58 16.07 14.34 12.71 7.26 5.71

GPTQ 2 2203.89 5325.65 4139.91 4058.41 528.41 2265.09 68.83
QuIP 2 543.63 432.56 28.91 21.49 16.92 26.61 8.65

FrameQuant (r = 1.0) 2 226.15 95.38 27.90 20.74 17.28 19.62 7.85
FrameQuant (r = 1.1) 2.2 91.29 47.62 22.39 17.75 15.33 11.23 6.86

Table 13. Perplexity (smaller the better) of Llama2 and OPT models on C4 dataset when quantized to 2 (or 2.2) bits by different methods.

Method #bits ARC (challenge) ARC (easy) BoolQ HellaSwag PIQA WinoGrande

Full-Precision 16 43.43 76.35 77.71 57.16 78.07 69.06

GPTQ 2 22.44 24.58 41.19 25.93 51.85 50.43
QuIP 2 22.27 42.76 50.31 34.04 61.75 52.64

FrameQuant (r = 1.0) 2 23.98 55.39 63.52 36.76 66.65 55.80
FrameQuant (r = 1.1) 2.2 31.91 65.53 67.95 46.46 73.07 63.61

Table 14. Evaluating Llama2-7B model quantized with different methods on a range of downstream tasks.

H.2. Perplexity of Quantized Llama2 7B

Figure 14 shows the perplexity of Llama2-7B model quantized by different quantization schemes. We see that FrameQuant
with a redundancy of 1x already performs better than all other methods. With increasing redundancy, the performance
becomes closer to the Full precision model.

H.3. Performance on Downstream tasks

In this experiment, we finetune the Llama2-7B model on downstream tasks. We ran experiments on ARC challenge,
ARC easy (Clark et al., 2018), BoolQ (Clark et al., 2019), HellaSwag (Zellers et al., 2019), PIQA (Bisk et al., 2020) and
WinoGrande (Sakaguchi et al., 2021). We used LM-evaluation harness (Gao et al., 2023) for running our experiments on
these diverse tasks. The results are presented in table 14. We can see that again in line with our previous experiments, the
LLM quantized with FrameQuant with no redundancy already performs better than all the other methods on the downstream
tasks. With added redundancy, this performance goes up across all the tasks under consideration. Based on our previous
experiments and as observed in (Chee et al., 2023), we expect the performance gap between the full precision model and the
quantized model to go down as the size of the models increases.
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(a) Perplexity of Llama2-7B model on WikiText2 dataset (b) Perplexity of Llama2-7B model on C4 dataset

Figure 14. Perplexity of Llama2-7B model on WikiText2 and C4 datasets. FrameQuant performs better than all quantization methods
tested. With increasing redundancy, we see that the performance of the model also improves as indicated by the theory.

I. Robustness guarantees
We provide additional details on two specific results (mentioned in the main paper) that apply to our construction. We
encourage the interested reader to refer to (Christensen, 2018; Casazza & Kutyniok, 2012) for a more comprehensive
treatment of the topic.
LMMSE estimation from fusion frame measurements. For a given layer l FrameQuant quantizes the transformed weights
matrix Dl which is given by Dl = PT

l (ΘlPprev). We can treat D̂l as a projection of ΘlPprev which is corrupted by noise.
During inference, the activations of this layer are given by Zl = PlD̂lCprev. But, can we do better? Instead of directly
applying the synthesis operator Pl to compute Zl from its FF representations D̂lCprev, we can design a simple linear filter F
that minimizes the MSE in Zl because we are using a quantized D̂l. The final expression for the computation of the output
of the layer will be Zl = FD̂lCprev. This linear MSE minimizer F is known to be the Wiener Filter and has a closed-form
expression with various levels of approximation. The following theorem states that the Wiener filter minimizes MSE when
the Fusion Frame is tight.

Theorem I.1. (Kutyniok et al., 2009) For the model described above, the MSE in linearly estimating the signal from its
noisy projections is minimized when the Fusion Frame is tight

Consistent Reconstruction. Assuming the same mode of representing the modified weights Dl as above, during inference,
we can get a consistent estimate of the weights (Θ̂l) from D̂l if one were to solve a linear program for X̂[

Pl

−Pl

]
X̂l ≤

[
∆
2 + D̂l
∆
2 − D̂l

]
,

where ∆ is the quantization level. Here, the constraints in the Linear Program make sure that X̂ belongs to the regions
where valid unquantized values must lie, thereby removing the out-of-sub-space error (Goyal et al., 1998). We can get the
estimated weights from X̂l as Θ̂l = X̂lP

T
prev. Using this consistent reconstruction yields estimates with an MSE which is

upper bounded by O(1/r2) (Goyal et al., 1998)

J. Synopsis of Construction of Tight Fusion Frames
Here, we give a brief synopsis of an algorithm for generating Tight Fusion Frames for the curious reader. (Casazza et al.,
2011) was the first to introduce a systematic method for constructing UNTFs (Unit Norm Tight Frames) that play a key
role in constructing Tight Fusion Frames. They also characterize the (k, ρ, d) values for which a Tight Fusion Frame exists.
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Whenever such a TFF exists, we can construct Tight Fusion Frames by using their algorithm. There are two main parts to
the algorithm.

1. Play Spectral Tetris to generate a UNTF of d elements in Cρ

2. Modulate this UNTF with complex roots of unity to generate a (k, ρ, d) TFF for Cd

So, the first step is to generate a “smaller” frame and in the next step, we modulate the smaller frame to generate a “larger”
Tight Fusion Frame. After generating a TFF for Cd we can easily extend it to the Real Field by applying the entrywise map

x+ iy 7→
[
x −y
y x

]
. We describe the algorithm with the help of an example for the simplicity of explanation. We aim to

construct a (5,4,11) TFF. So, k = 5, ρ = 3, d = 11.

J.1. Spectral Tetris

As the name suggests UNTFs are Tight frames where each frame vector has a unit norm. We construct a 4× 11 matrix F
whose columns are the frame vectors for C4 which satisfies

• Columns of unit norm
• Orthogonal rows, meaning FF ∗ is diagonal
• Rows of constant norm, meaning FF ∗ is a constant multiple of identity matrix with the constant being 11

4

We start with a matrix

F =


1 1 ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ? ? ?


This leaves a norm of 11

4 − 2 = 3
4 to be filled in the first row. This can easily be added using a 2× 2 matrix T (x) where

x = 3
4 . T (x) is defined as:

T (x) :=
1√
2

[ √
x

√
x√

2− x −
√
2− x

]
, T (x)T ∗(x) =

[
x 0
0 2− x

]
After inserting T (x), F is now

F =


1 1

√
3√
8

√
3√
8

0 0 0 0 0 0 0

0 0
√
5√
8

−
√
5√
8

? ? ? ? ? ? ?

0 0 0 0 ? ? ? ? ? ? ?
0 0 0 0 ? ? ? ? ? ? ?


Then we continue adding ones in row two until the norm becomes less than 11

4 .

F =


1 1

√
3√
8

√
3√
8

0 0 0 0 0 0 0

0 0
√
5√
8

−
√
5√
8

1 ? ? ? ? ? ?

0 0 0 0 0 ? ? ? ? ? ?
0 0 0 0 0 ? ? ? ? ? ?


Now we insert T (x) with the remaining norm. We repeat this process until all the rows are filled. The Final F is given by

F =


1 1

√
3√
8

√
3√
8

0 0 0 0 0 0 0

0 0
√
5√
8

−
√
5√
8

1
√
2√
8

√
2√
8

0 0 0 0

0 0 0 0 0
√
6√
8

−
√
6√
8

1
√
7√
8

√
7√
8

0

0 0 0 0 0 0 0 0
√
7√
8

−
√
7√
8

1
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1 1
√
3√
8

√
3√
8

0 0 0 0 0 0 0

1 ω
√
3√
8
ω2

√
3√
8
ω3 0 0 0 0 0 0 0

1 ω2
√
3√
8
ω4

√
3√
8
ω 0 0 0 0 0 0 0

1 ω3
√
3√
8
ω

√
3√
8
ω4 0 0 0 0 0 0 0

1 ω4
√
3√
8
ω3

√
3√
8
ω2 0 0 0 0 0 0 0

0 0
√
5√
8

−
√
3√
8

1
√
2√
8

√
2√
8

0 0 0 0

0 0
√
5√
8
ω2 −

√
3√
8
ω3 ω4

√
2√
8

√
2√
8
ω 0 0 0 0

0 0
√
5√
8
ω4 −

√
3√
8
ω ω3

√
2√
8

√
2√
8
ω2 0 0 0 0

0 0
√
5√
8
ω −

√
3√
8
ω4 ω2

√
2√
8

√
2√
8
ω3 0 0 0 0

0 0
√
5√
8
ω3 −

√
3√
8
ω2 ω

√
2√
8

√
2√
8
ω4 0 0 0 0

0 0 0 0 0
√
6√
8

−
√
6√
8

1
√
7√
8

√
7√
8

0

0 0 0 0 0
√
6√
8

−
√
6√
8
ω ω2

√
7√
8
ω3

√
7√
8
ω4 0

0 0 0 0 0
√
6√
8

−
√
6√
8
ω2 ω4

√
7√
8
ω

√
7√
8
ω3 0

0 0 0 0 0
√
6√
8

−
√
6√
8
ω3 ω

√
7√
8
ω4

√
7√
8
ω2 0

0 0 0 0 0
√
6√
8

−
√
6√
8
ω4 ω3

√
7√
8
ω2

√
7√
8
ω1 0

0 0 0 0 0 0 0 0
√
7√
8

−
√
7√
8

1

0 0 0 0 0 0 0 0
√
7√
8
ω3 −

√
7√
8
ω4 1

0 0 0 0 0 0 0 0
√
7√
8
ω −

√
7√
8
ω3 1

0 0 0 0 0 0 0 0
√
7√
8
ω4 −

√
7√
8
ω2 1

0 0 0 0 0 0 0 0
√
7√
8
ω2 −

√
7√
8
ω 1



Table 15. (5,4,11)-TFF for C11. Here, ω = ei2π/5. Each pair of rows belongs to the same subspace if their indices differ by a multiple
of 5

J.2. Modulation

In the second step, we modulate the F matrix with complex roots of unity, one subspace at a time. So, for each ki =
0, 1, 2, . . . k − 1, we construct a row vector

wki
=

[(
e

i2πki
k

)0 (
e

i2πki
k

)1 (
e

i2πki
k

)2

. . .
(
e

i2πki
k

)d−1
]

We multiply each row of F with wki
to generate the orthogonal basis for different subspaces indexed by ki. Theorem 14 by

Casazza et al. (2011) proves that the Fusion Frames generated by this algorithm are Tight. The Final Fusion Frame vectors
are shown in Table 15.

K. Storage benefits and Computational complexity during inference
K.1. Storage benefits

Consider an example where we are quantizing a weight matrix Θl of dimension 1024 × 1024 using FrameQuant with a
redundancy factor of r = 1.1×. The size of the original matrix using FP32 is 4MB. After transforming the weights to map
within the FF representation space, the transformed weights Dl have dimensions 1126× 1126, which are quantized and
represented using 2 bits. This quantized weight D̂l has a size of 0.3MB. Along with the quantized weights, we need to store
the bias and scale values for each row leading to an additional storage of 1024 FP32 values, which will incur an additional
cost of 0.007MB. All this sums up to a storage of 0.307MB from an initial 4MB giving a savings of 13x in the storage
requirements. Since we can generate the Fusion Frames on the fly, we just need to store the (k, ρ, d) values, and a seed to
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generate the random rotation matrix which incurs negligible storage costs. Table 6 shows the sizes of Llama2 models when
compressed with FrameQuant.

K.2. Computational Complexity during Inference

Consider a linear layer in a transformer model with weights Θl of dimensions d × d. Using FrameQuant these weights
are transformed to Dl and the quantized weights D̂l are stored. Let the parameters of the TFF used for quantization be
(k, ρ, d). As a recap, k is the number of subspaces, ρ is the dimension of each subspace and d is the dimension of the
Hilbert space we are operating in. So, the redundancy in Frame representations is r = kρ

d . Let, Tl, Tprev ∈ Rd×kρ be the
vectorized Orthonormal basis for the current layer, and the previous layer respectively. During inference, the quantized
weights D̂l are transformed to the weight space as Θ̂l = PlD̂lP

T
prev. Here, Pl = Rl(Tl), Pprev = Rprev(Tprev), where

Rl, Rprev ∈ Rd×d denote the rotation matrices for the current and the previous layers respectively. So, the overall operation
is Θ̂l = RlTlD̂lTprev

TRT
prev.

Let us first look at the D̂lTprev
T operation. Tprev

T is a block diagonal matrix constructed as defined in section 2.2. It
has ρ blocks along the diagonal, each with k rows and at most ⌈d

ρ⌉+ 2 columns. The order of the computations required

to generate this matrix is O(dk). The computation complexity of D̂lTprev
T is O(dρkρdr) = O(d2kr). So, the overall

computational complexity for the computation of Tprev
T and multiplication with D̂l is O(d2kr).

Now, consider the left multiplication with Tl. Tl is again a block diagonal matrix similar to Tprev
T . But it is multiplying a

quantity with dimensions kρ× d. Hence this multiplication has a computational complexity of O(d2k). The worst-case
computational complexity of multiplication with the TFF orthonormal basis of current and previous layers is O(d2kr).
The final Rl, R

T
prev are orthogonal rotation matrices which can be efficiently computed in O(d2 log d) time using random

projections such as (Le et al., 2013) or any other efficient implementation. Combining all these calculations, the overall
computational complexity of transforming the weights during inference is O(d2(kr + log d)). Note that since all of these
are matrix operations, they run on GPU in a vectorized manner. Table 7 shows the inference speeds of the quantized models
on a Nvidia A100 GPU.
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