
Discovering Bias in Latent Space: An Unsupervised Debiasing Approach

Dyah Adila * 1 Shuai Zhang 2 Boran Han 2 Yuyang Wang 2

Abstract
The question-answering (QA) capabilities of foun-
dation models are highly sensitive to prompt vari-
ations, rendering their performance susceptible to
superficial, non-meaning-altering changes. This
vulnerability often stems from the model’s prefer-
ence or bias towards specific input characteristics,
such as option position or superficial image fea-
tures in multi-modal settings. We propose to rec-
tify this bias directly in the model’s internal rep-
resentation. Our approach, STEERFAIR, finds the
bias direction in the model’s representation space
and steers activation values away from it during
inference. Specifically, we exploit the observa-
tion that bias often adheres to simple association
rules, such as the spurious association between the
first option and correctness likelihood. Next, we
construct demonstrations of these rules from un-
labeled samples and use them to identify the bias
directions. We empirically show that STEERFAIR
significantly reduces instruction-tuned model per-
formance variance across prompt modifications
on three benchmark tasks. Remarkably, our ap-
proach surpasses a supervised baseline with 100
labels by an average of 10.86% accuracy points
and 12.95 score points and matches the perfor-
mance with 500 labels.

1. Introduction
Large Language Models (LLMs) and Vision-Language Mod-
els (VLMs) show impressive performance on benchmark
question-answering tasks, even in some cases outperform-
ing humans (Chowdhery et al., 2023). However, upon closer
inspection, their performance appears highly contingent on
the input, and can drastically change with minor, superficial
modifications. Recent studies have demonstrated this in-
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Model ScienceQA (2 options) VGR

Original A B yes/no no/yes

LLaVA 64.99% 68.22% 63.15% 82.29% 66.10%
IDEFICS 61.04% 85.10% 34.11% 40.71% 61.26%
InstructBLIP 61.27% 83.57% 37.66% 56.27% 22.01%

Figure 1. Top: Model predictions are sensitive to prompt order
changes. Bottom: Performance of instruction-tuned models on
(1) ScienceQA (2 options) in the original order and with golden
answers moved to A/B, and (2) Visual Genome Relation (VGR)
with prompt variations using ”yes/no” and ”no/yes”

stability – revealing model preferences for specific prompt
orderings or biases towards particular answer positions in
question-answering scenarios (Zhao et al., 2021; Zheng
et al., 2023a; Pezeshkpour & Hruschka, 2023) and unjustly
showing preference or bias against specific demographic
groups (Caliskan et al., 2017). Even widely-used models
like GPT-4 exhibit a bias to the first presented answers when
used as an evaluator (Zheng et al., 2023b; Wang et al., 2023).
This instability can be traced back to the inherent bias in
training data – which can lead models to learn superficial
patterns and associations (Torralba & Efros, 2011). For
instance, Zhao et al. (2021) discovered that GPT-3 is biased
towards generating tokens common in its pretraining distri-
bution. Figure 1 display some examples demonstrating how
bias can manifest in large models.

Eliminating this type of instability and bias is challenging.
Existing methods either lack effectiveness or are character-
ized by high costs and inefficiency. Zheng et al. (2023a)
and Pezeshkpour & Hruschka (2023) revealed that bias to a
certain option position in Multiple Choice Question (MCQ)
tasks persists after incorporating in-context examples in the
prompt. Instead of mitigating the bias, in-context exam-
ples alter the favored position. Solving this issue solely
by relying on more data, as in standard fine-tuning or in-
context learning, is unlikely unless we can ensure bias-free
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training data, an impractical, if not impossible, task (Liang
et al., 2022; Khosla et al., 2012). Post-hoc model interven-
tion during inference has been explored to sidestep data
requirements. Calibration methods (Zheng et al., 2023a;
Pezeshkpour & Hruschka, 2023) seek to debias output to-
ken probabilities to prevent disproportionate allocation of
probability mass to specific tokens. However, this approach
necessitates multiple inferences for the same sample, creat-
ing a computational load that grows exponentially with the
number of presented options. Moreover, solely intervening
in the output space limits our degree of freedom for inter-
vention. A parallel line of research identifies directions in
model’s internal representations that correspond to some de-
sirable trait (e.g., factual correctness) (Li et al., 2023; Burns
et al., 2022; Liu et al., 2023c), and steer activation values
towards this direction. Unfortunately, these works require
label supervision, making them prone to adopt data biases
when applied to model debiasing.

As such, we ask: can we mitigate bias directly in the model
representation space and do so without labeled data? We
propose STEERFAIR, an unsupervised inference-time inter-
vention method designed for this purpose. Our approach
capitalizes on the observation that bias often manifests as
simple association rules, such as "the first option
is likely to be correct". Leveraging this in-
sight, we construct a set of possible association rules and
build a set of demonstrations from unlabeled samples that
exemplify these rules. Subsequently, we identify the direc-
tions in the model representation space corresponding to
these rules. During inference, we shift activations away
from these identified directions.

Despite not using any label information, STEERFAIR re-
duces three instruction-tuned model performance variability
across different option ordering on three benchmark tasks:
two yes/no questions and one large MCQ dataset by an
average of 10.86% accuracy points and 12.95 score points.
Remarkably, it not only outperforms a supervised baseline
with 100 labels but also matches the performance achieved
with 500 labels. We systematically analyze STEERFAIR
to understand the bias directions it discovers. We empiri-
cally show that steering bias directions does not negatively
impact base model performance, and identified bias direc-
tion is generalizable across different datasets with the same
task. Additionally, only a small number of unlabeled sample
demonstrations are sufficient to identify these bias direc-
tions.

To summarize, our contributions include,

• We propose STEERFAIR, an unsupervised inference-time
activation steering algorithm to mitigate foundation model
bias.

• We demonstrate that STEERFAIR can effectively address

the instability concerning option ordering in question-
answering tasks. Furthermore, our findings demonstrate
that the bias direction pinpointed by STEERFAIR is gen-
eralizable across datasets with the same task.

• Extensive experimental evidence shows improvement
on three instruction-tuned models, with reduced perfor-
mance variability by 10.86% accuracy points across three
datasets.

2. Preliminaries
In this section, we describe our problem setup in more detail
and briefly describe the transformer architecture (Vaswani
et al., 2017) to set notation and context.

2.1. Problem Statement

Given a model T and a set of questions q and q′, each
representing a slight variant of the same prompt with non-
meaning altering changes, for instance:

q = Is Yosemite in California? Answer yes or no

q′ = Is Yosemite in California? Answer no or yes

Our goal is to ensure consistent model outputs T (q) =
T (q′) with the given model T . The question permutation
set, denoted as q, q′, q′′, ..., can also include any number
of variations to the same question. For example, multiple-
choice questions (MCQs) with shuffled options, or, in multi-
modal settings, an image-question pair with changes to the
image that should not influence the model’s answer. For
simplicity, we use q and q′ as our running example, though
STEERFAIR is applicable to any number of variants, as we
will later show in Section 4.

2.2. Model Architecture

Our approach is applicable to any transformer-based
(Vaswani et al., 2017) models. We follow the idea presented
in (Elhage et al., 2021), viewing the inner computations
of transformers as a series of “residual blocks”. During
inference, the token embedding layer initiates the “residual
stream” by projecting tokens into a high-dimensional space
x ∈ RDH . Subsequent layers then handle the flow of infor-
mation within the stream—projecting into its own subspace,
performing computations, and reprojecting its output back
to the original space before feeding it to the next layer.

After the token embedding layer, each layer l is composed of
a multi-head-attention (MHA) module followed by a multi-
layer perceptron (MLP). The MHA module consists of H
attention heads, with each head h independently performing
linear computations in parallel.

We leverage the findings from (Elhage et al., 2021) show-
ing the equivalence of stacking h outputs in the original
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Transformers paper, with taking the sum of h outputs and
projecting it back to the residual stream. For an input x, we
can write the MHA computation as:

MHA(x) = x+

H∑
h=1

Wh
OlAtthl (W

h
V lx),

where H is the set of attention heads h in layer l, Wh
Ol ∈

R
DH×D is the output weight matrix, Wh

V l ∈ RD×DH the
projection matrix to the attention head space, and Att is the
attention operator (which encapsulates multiplication to key
and query weight matrices). To have as many linear prop-
erties as possible, we design our intervention after the Att
output and before Wh

Ol. We denote attention head activation
value of any input x at head h of layer l as θxh,l ∈ RD.

3. STEERFAIR: Unsupervised Inference-Time
Debiasing

We are ready to describe STEERFAIR: an unsupervised
inference-time debiasing method.

In Section 1, we describe how models adopt unwanted
bias towards superficial characteristics in the input, such
as option location. Our goal is to reduce bias directly in
the model’s internal representations without using labeled
data. To achieve this, we exploit the fact that bias often
consists of spurious simple rules, like always choose
the first option. Our method, STEERFAIR, lever-
ages this fact by mimicking bias behaviors (e.g., answering
both q and q′ with the first option) and collecting their rep-
resentations. Next, we identify directions in the model’s
representation space that encapsulate such bias and steer ac-
tivation values away from it during inference. Our approach
is illustrated in Figure 2 and summarized in Algorithm 1.

3.1. Enumerating Bias Association Rules

We capitalize on the intrinsic property of bias, that
it comprises of simple, imitable rules. To leverage
this property, we begin by enumerating the possible
association rules the model might adopt. In question
answering task with m options, this is straightforward:
{"Always choose the jth option"} ,∀j ∈
{1, ...m}. We refer to this set as the bias rule set
r = {r1, r2, ..., rm}. In our running example, the set has
two rules: the bias to the first option and to the last option,
denoted as: r = {r1, r2}. Although models may adopt
more intricate bias rules, like preferring some option tokens
in specific positions, we assume these are highly correlated
and influenced by position.

3.2. Constructing Bias Demonstrations

For each rule, we then construct demonstrations by col-
lecting a set of question-answer pairs that mimic the bias.
Recall that in our running example, q’s first option is “yes”
and last option is “no”, and q′’s option order is flipped, this
yields:

s1(q) = q + “Answer: yes” s2(q) = q + “Answer: no”
s1(q

′) = q′ + “Answer: no” s2(q
′) = q′ + “Answer: yes”,

where sj(q) is the demonstration of the jth rule with
question q. We will refer to the set of demonstrations
as the demonstration set. In this specific example, we
have two demonstration sets: S1 = {s1(q), s1(q′)} and
S2 = {s2(q), s2(q′)}.

Transitioning from our synthetic example, let’s now form a
bias rule set and demonstration set for a dataset of yes/no
questions {q1, ..., qN}. Similar to the synthetic case, our
bias rule set is r = {r1, r2}, representing biases towards the
first and last options. The resulting demonstration sets are:

S1 = {s1(qi), s1(q′i)}
S2 = {s2(qi), s2(q′i)}

∀i ∈ {1, . . . N}

. Construction of bias rule set and demonstration set is con-
ducted without any label supervision. For simplicity, as an
example we present the straightforward case of yes/no ques-
tions with two possible bias rules. Extending this to cases
like multiple-choice questions (MCQ), where we may have
more than two rules, is straightforward. We elaborate on
MCQ rule and demonstration construction in Appendix C
and present STEERFAIR performance on both yes/no ques-
tions and MCQ in Section 4.

3.3. Identifying Bias Directions from Demonstrations

Our goal in this step is to identify directions in the atten-
tion head space for each bias rule. Given a bias rule set
r with m rules, the input to this step is the demonstration
sets {S1, ...,Sm}, and the output is m bias directions per
attention head per layer.

Specifically, we collect the attention activation values of
all demonstration set Sj elements at the last token position.
This will result in a collection of latent state vectors denoted
as

Hj
h,l :=

[
θ
sj(q1)
h,l

∣∣∣. . .∣∣∣θsj(qN )
h,l

]T
,

with Hj
h,l ∈ RN×D. Next, we find the direction correspond-

ing to each bias rule by performing PCA on Hj
h,l, and take

the first principal direction (PCA1). We denote the resulting
bias direction at attention head h of layer l as vjh,l ∈ RD,
which can be expressed as

vjh,l = PCA1(Hj
h,l) (1)
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Figure 2. STEERFAIR finds bias directions ṽh,l (top) and steer attention head values (bottom) away from it during inference.

3.4. Combining Multiple Bias Directions

In each attention head h of layer l, we now have a set of
vectors

{
v1
h,l, .., vmh,l

}
, where each corresponds to the direc-

tions in activation space that best represents a bias rule in r.
The remaining question is how to aggregate these directions
so that steering them away from activation values during
inference does not cause excessive disruption. Summation
may produce large values with a large m, and a few highly
correlated directions can dominate the average. To circum-
vent this, we use standard matrix decomposition methods,
specifically QR decomposition, to obtain the orthonormal
basis of the directions and take their average.

ṽh,l =
1

m
QR

[
v1h,l

∣∣. . .∣∣vmh,l]T (2)

This way, we remove correlations between bias directions.

3.5. Shifting Activation during Inference

During inference, we steer the activation values in the last
token away from ṽh,l, written as

MHA(x) = x+

H∑
h=1

Wh
Ol(Atthl (W

h
V lx)− αṽh,l), (3)

where α is a hyperparameter that controls the strength of
intervention. Finally, to preserve the model’s original ca-
pabilities as much as possible, we normalize the updated
latent states to match the l2 norm of the latent states before
the update.

3.6. Selecting Attention Heads to Intervene

To be minimally invasive, we select the top K attention
heads with the highest average projected values in the first
principal components. Intuitively, this is equivalent to se-
lecting heads whose bias direction is mostly captured by
the first principal component, and thus, our procedure will
be the most effective. In section 5.2, we empirically show
that setting α = 1 and setting K = all heads still produces
improvement over baselines, but we can get a noticeable
boost by hyperparameter tuning.

Algorithm 1 Identifying bias direction with STEERFAIR

1: Parameters: Foundation model with l layers and h attention
heads per layer, Dataset of questions with different prompt
orderings {(q1, ..., qN ), (q′1, ..., q

′
N ), (q′′1 , ..., q

′′
N ), ...},

strength hyperparameter α
2: Enumerate set of rules r = {r1, r2, .., rm}
3: for j ∈ {1, 2, ..m} do
4: Construct demonstration sets

Sj = {sj(qi)} ∀i ∈ {1, . . . , N}
5: Collect attention head values Hj

h,l

6: Identify direction vj
h,l = PCA1(Hj

h,l)
7: end for
8: Combine directions ṽh,l =

1
m

QR
[
v1
h,l

∣∣. . .∣∣vm
h,l

]
9: Attention steering

MHA(x) = x+
∑H

h=1 W
h
Ol(Atthl (W

h
V lx)− αṽh,l)

10: Returns: (intervened) foundation model
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Dataset Model Vanilla ITI (supervised 100) ITI (supervised 500) STEERFAIR (unsupervised)

Avg%(↑) Std(↓) Avg%(↑) Std(↓) Avg%(↑) Std(↓) Avg%(↑) Std(↓)

ScienceQA
LLaVA (13B) 64.28% 0.024 64.22% 0.029 64.05% 0.015 65.46% 0.017
IDEFICS (9B) 58.99% 0.181 54.74% 0.079 56.03% 0.125 58.70% 0.152
InstructBLIP (13B) 56.32% 0.213 55.43% 0.257 55.38% 0.259 56.92% 0.092

MME
LLaVA (13B) 1333.43 65.42 1350.19 47.42 1334.87 10.43 1333.56 2.72
IDEFICS (9B) 1044.70 49.92 1011.31 6.00 1023.55 1.78 1035.83 2.39
InstructBLIP (13B) 1175.85 15.09 1184.30 5.58 1180.37 0.75 1185.93 15.03

VGR
LLaVA (13B) 71.04% 0.126 65.91% 0.079 71.63% 0.091 71.46% 0.054
IDEFICS (9B) 52.59% 0.151 52.17% 0.286 50.53% 0.051 52.07% 0.060
InstructBLIP (13B) 51.38% 0.242 50.32% 0.303 50.27% 0.172 50.31% 0.006

Table 1. Order bias results. Best method in bold, runner-up underlined. We compare against ITI (Li et al., 2023) with 100 and 500 labels

Figure 3. Left to right: ScienceQA, VGR, MME. STEERFAIR reduces standard deviation across prompt ordering while maintaining
average accuracy.

4. Empirical Evaluation
In this section, we empirically verify the effectiveness of
STEERFAIR with regard to:

• Mitigating Order Bias (Section 4.1): Our unsupervised
method mitigates model’s tendency to choose options at
specific positions and is competitive to (and sometimes
outperforms) supervised methods (Li et al., 2023).

• Generalization Capability (Section 4.2): We show that
the bias direction identified by STEERFAIR is generaliz-
able across datasets with the same task.

Baselines. We compare STEERFAIR against vanilla infer-
ence of instruction-tuned models: LLaVA (13B) (Liu et al.,
2023b;a), IDEFICS (9B) (Laurençon et al., 2023) (open-
source Flamingo (Alayrac et al., 2022)), and InstructBLIP
(13B) (Dai et al.). For the order bias task, we include a com-
parison with Inference-Time Intervention (ITI) (Li et al.,
2023), a supervised attention steering method.

Experimental Setup. We use a separated unlabeled train-
ing set for finding bias directions and testing. Unless stated
otherwise, we follow the default split for each dataset. The
results in this section are based on 1000 random unlabeled
samples from the separated training set, with the exception
of the MME Benchmark (Fu et al., 2023), where we use 100

samples due to its smaller size. We provide the full dataset
and prompt details in Appendix D and E.

4.1. Mitigating Order Bias

Setup. We test our method on three Multiple Choice Ques-
tion (MCQ) and yes/no question-answering datasets: Sci-
enceQA (Lu et al., 2022), MME Benchmark (Fu et al.,
2023), and Visual Genome Relation (VGR) (Lin et al., 2014).
On yes/no questions, we record the performance across dif-
ferent option orderings (i.e., “answer with a yes/no” and
“answer with a no/yes”). To test this bias in MCQ dataset, we
employ the answer-moving attack evaluation from (Zheng
et al., 2023a), by always moving the golden answers to a
specific position.

Metrics. We report the average accuracy across option
orders (Avg%) and the corresponding standard deviation
(Std). In the case of MME Benchmark, we adhere to the
evaluation score proposed in the original work. Note that
the score is not in percentage form, resulting in a higher
scale of standard deviation. A model with less bias to option
order will have a high Avg% and low Std.

Results. Table 1 shows that STEERFAIR significantly
reduces bias to option order while often improving the
average accuracy. Remarkably, our unsupervised method

5



Discovering Bias in Latent Space: An Unsupervised Debiasing Approach

surpasses ITI (supervised) performance on 100 labels and is
comparable, and sometimes surpasses with 500 labels. This
suggests that our method effectively reduces bias influence
on the model’s predictions, forcing the model to rely on
relevant knowledge.

Figure 3 shows the non-averaged results on the LLaVA
model. On the VGR and MME datasets, STEERFAIR signif-
icantly reduces the standard deviation (as indicated by the
box plot height) while maintaining the average accuracy. A
similar pattern is observed on the ScienceQA dataset, partic-
ularly for options 2 and 3. However, STEERFAIR’s impact
is more limited for a larger number of options. We hypothe-
size that this is caused by STEERFAIR’s simple averaging
approach to combine multiple bias directions (Section 3.4),
as the number of bias directions grows with the number
of options. This indicates potential areas for improvement
in this part of our approach. Comprehensive non-averaged
results for all models are provided in Appendix G.

4.2. Generalization Capability

Setup. Next, we study the generalization property of bias
directions identified by STEERFAIR. Specifically, we test
whether attention steering using directions identified from a
different dataset with the same task (e.g., VGR and MME)
can produce similar results as using identified direction from
the same dataset. Intuitively, the order bias problem is not
domain-specific, so the bias directions should generalize.

Results. The results in Table 2 illustrate that STEERFAIR
with directions transferred from another dataset (TD) con-
sistently enhances the base model, demonstrating reduced
performance variance and improved average accuracy. How-
ever, exceptions exist in cases where STEERFAIR with direc-
tions from the same dataset (OD) fails to produce significant
improvement, as observed, for instance, in the case of In-
structBLIP on the MME dataset. This shows that the bias
direction identified by STEERFAIR generalizes across
datasets with the same task.

5. Analysis
This section presents analyses of STEERFAIR components
and provides empirical characterizations.

5.1. Sensitivity to hyperparameters α and K

In Figure 4 (left), we observe that Avg Acc% is insensitive
to hyperparameters, shown by similar accuracies across
different parameter values. Once both α and K are large
(α >= 5 K >= 1000), the steering changes the original
activation values too much, causing accuracy to decline.

The standard deviation plot (Figure 4 (right)) shows good
performance regime below the diagonal for α > 0.1. This

Figure 4. Effect of hyperparameters α (x-axis) and number of in-
tervened attention heads K (y-axis). Left: Acc%; Right: Std%.
Performance recorded for VGR dataset.

shows that a combination of more number of heads inter-
vened, with moderate α values yields the most effective bias
reduction. Notably, across various parameter settings, the
Std% consistently matches or surpasses ITI’s and outper-
forms the vanilla model.

5.2. Can we get away without hyperparameters?

Here we test STEERFAIR performance without any hyperpa-
rameter tuning. We intervene all attention heads (K = all),
and set the strength hyperparameter α = 1. Table 3 shows
that hyperparameter tuning produces the best results. How-
ever, it is worth noting that STEERFAIR without tuning still
improves the performance of the vanilla model.

5.3. How do bias directions in the activation space look?

Figure 5. Kernel density estimate plots of STEERFAIR-identified
bias directions on the VGR dataset, projected onto the first 2 PCs.

Figure 5 illustrates the geometry of bias directions identified
by STEERFAIR before the combination step, projected onto
the first two principal components. Two crucial observations
emerge. Firstly, there is minimal overlap between distinct
bias directions, indicating their simplicity and separability
with just two principal components. Secondly, the maxi-
mum variance directions in the two density plots (blue and
orange) are nearly orthogonal. This underscores the advan-
tage of decomposing ‘bias’ into multiple rules rather than
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Model Dataset Vanilla Original Direction (OD) Transferred Direction (TD)

Avg%(↑) Std(↓) Avg%(↑) Std(↓) Avg%(↑) Std(↓)

LLaVA (13B) VGR 71.04% 0.126 71.46% 0.054 73.19% 0.015
MME 1333.43 65.42 1333.56 2.72 1305.57 56.54

IDEFICS (9B) VGR 52.59% 0.151 52.07% 0.060 52.76% 0.144
MME 1044.70 49.92 1035.83 2.39 1060.94 11.35

InstructBLIP (13B) VGR 51.38% 0.242 50.31% 0.006 50.10% 0.212
MME 1175.85 15.09 1185.93 15.03 844.37 54.78

Table 2. STEERFAIR generalization performance. STEERFAIR with original direction (OD) uses direction identified using the dataset,
STEERFAIR with transferred direction (TD) uses direction identified from another dataset of the same task. Best bolded, second best
underlined.

Dataset Model Vanilla With tuning No tuning

Avg%(↑) Std(↓) Avg%(↑) Std(↓) Avg%(↑) Std(↓)

SQA
LLaVA 64.28% 0.024 65.46% 0.017 62.00% 0.017
IDEFICS 56.32% 0.213 56.92% 0.092 53.54% 0.210
InstructBLIP 56.32% 0.213 56.92% 0.092 57.75% 0.148

VGR
LLaVA 71.04% 0.126 71.46% 0.054 67.03% 0.023
IDEFICS 52.59% 0.151 52.07% 0.060 51.16% 0.023
InstructBLIP 51.38% 0.242 50.31% 0.006 52.06% 0.203

Table 3. Comparison with STEERFAIR without tuning α and K. Best numbers in bold, second best underlined STEERFAIR without
tuning still produces improvement over the vanilla model.

treating it as a singular component.

5.4. How many unlabeled samples do we need?

We vary the number of unlabeled samples N to find bias
direction and see the impact on performance in Figure 6.
On the top figure, it is evident that Avg% remains relatively
stable, exhibiting performance fluctuations within the range
of ±2% across different values of N . Intriguingly, even with
a small sample size (N < 100), the accuracy is preserved,
underscoring the non-intrusive nature of our intervention
technique. On the bottom figure, we observe an interesting
trend: there is no (negative) correlation between N and
resulting Std. The lowest standard deviation is achieved
between N = 300 and N = 1000. This suggests that bias
direction can be effectively approximated with a relatively
small number of key samples.

It is surprising that larger N does not yield better perfor-
mance. We hypothesize this is because more samples in-
clude more information, and thus bias direction extracted
is more noisy. To validate this hypothesis, we examine the
captured variance ratio in the first principal component (PC)
across different N values in Figure 7. It is evident that for
both small and large values of N (N < 100 and N > 1000),
the captured variance in the first PC, and hence the informa-
tiveness of STEERFAIR bias direction, is smaller than for

300 ≤ N ≤ 1000, supporting our hypothesis.

6. Related Work
6.1. Foundation Model Bias and Robustness

Foundation model robustness is a heavily studied area (Adila
et al., 2023; Zhang & Ré, 2022; Yang et al., 2023). The
majority of these works are tailored to embedding-based
models, such as CLIP, and are designed for scenarios with
access to single embeddings per sample. This poses chal-
lenges when extending these approaches to next-word pre-
diction transformer-based models, where the notion of sin-
gle embedding is less straightforward.

On next-word prediction models, works such as (Zheng
et al., 2023a; Pezeshkpour & Hruschka, 2023) address vul-
nerabilities to superficial prompt modifications (Zhao et al.,
2021; Zheng et al., 2023b), such as non-meaning altering
changes in token order. Specifically targeting the model’s in-
clination to favor particular options in MCQ settings, (Zheng
et al., 2023a) and (Pezeshkpour & Hruschka, 2023) propose
methods involving the calibration of model probabilities at
the option token level, with final predictions based on the
calibrated output. Our approach, STEERFAIR, distinguishes
itself in two crucial aspects: (1) it allows more flexible inter-
vention by modifying the model’s internal activations, and
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Figure 6. Impact of number of unlabeled sample N (x-axis) on
performance (y-axis). Performance across 10 random seeds.

(2) STEERFAIR is versatile, applicable to a broader types of
tasks and biases.

6.2. Extracting LLM Knowledge in the Latent Space

Progress has been made in extracting and understanding
latent knowledge of LLMs. Burns et al. (2022) find truth-
fulness direction by identifying a direction in the model’s
internal representation such that the probabilities assigned
to truthful vs. non-truthful answers adhere to logical con-
sistencies. Gurnee et al. study how high-level interpretable
features are represented in the models’ internal workings.
Moschella et al. (2022) discover that learned representations
remain invariant across stochastic factors in different train-
ing runs. Li et al. (2022) present evidence indicating that a
GPT variant trained to generate moves in the Othello game
learns a representation of game states. Furthermore, Liu
et al. (2023c) identify a direction in the latent space that
effectively summarizes knowledge from in-context samples.
Building upon insights from these techniques, we search
for where and how bias is learned in the model’s internal
representation space.

6.3. Modifying LLM Attention

Modifying LLM attention space has shown remarkable suc-
cess in steering model behavior toward desirable traits with-
out fine-tuning. This includes style transfer (Subramani
et al., 2022), enhancing truthfulness (Li et al., 2023), achiev-
ing more controllable and effective in-context learning and
transfer learning, as demonstrated in (Liu et al., 2023c) and
(Shi et al., 2023), and improving instruction-following capa-

Figure 7. Explained variance ratio in the first principal component
(PC) of bias to the first (blue) and last options (orange) directions
identified by STEERFAIR (y-axis) across the number of unlabeled
samples N (x-axis). Performance across 10 random seeds.

bilities (Zhang et al., 2023). Ours shares a similar spirit with
these works; we design an attention-steering mechanism
specifically to mitigate model bias. Notably, our method
leverages the inherent properties of the targeted desirable
trait (i.e., reduced bias) rather than relying on label supervi-
sion.

7. Conclusion
We introduce STEERFAIR, an approach for unsupervised
mitigation of bias in question-answering models, operating
directly in the model representation space. Our technique
improves instruction-tuned model performance across vari-
ous benchmark tasks, surpassing supervised baselines, and
matching more amount labeled data scenarios. The com-
prehensive experimental analysis highlights the method’s
versatility, showing generalization properties of the identi-
fied bias directions and demonstrating efficacy with only a
small number of unlabeled samples. The limitations of our
work are discussed in Appendix B.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here. As of now, we are not aware
of additional potential societal impacts beyond the typical
implications associated with LLMs in question-answering
scenarios.
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A. Glossary
The glossary is given in Table 4.

Symbol Definition

q, q′ question string, same question with modified option positions
r bias rule set
rj jth rule in bias rule set
sj(q) demonstration of jth bias rule from q
Sj demonstration set of jth rule (rj)
x input vector in model layers
l model layer
h model single attention head
H matrix of stacked attention head activation values
θxh,l attention head h of layer l activation value of input x
vjh,l jth rule bias direction at head h of layer l
ṽh,l combined bias direction at head h of layer l
α hyperparameter to control intervention strength
K hyperparameter: how many attention heads to intervene
N number of samples in dataset

Table 4. Glossary of variables and symbols used in this paper.

B. Limitations
Our work comes with several limitations that merit attention. Firstly, the accurate identification of bias directions by
STEERFAIR depends on the existence of directions in activation space that effectively summarize bias. This necessitates
a reasonable separation between usable knowledge and bias within the model’s learned representation. The precise
circumstances under which these conditions hold remain unclear.

Secondly, we acknowledge the absence of theoretical characterizations for hyperparameters and the required number
of unlabeled samples. While addressing this theoretical gap would enhance our understanding, there are also practical
improvements to be made in STEERFAIR. One avenue is the extension of our method to accommodate non-enumerable bias.
For instance, exploring latent directions associated with harmful text generation, misinformation, or other forms of bias,
utilizing principles derived from our work. We provide initial evidence of the potential of this direction in Appendix ??.

C. Constructing Bias Demonstrations For MCQ Dataset
This section details the bias rule set r and demonstration set S construction for MCQ datasets.

Enumerating Bias Rules. Similar to yes/no questions case we demonstrated in Section 3, MCQ questions with m options
have m rules. For example, when we have 3 options: (A/B/C), our rule set r items are:

r1 = Always choose (A)

r2 = Always choose (B)

r3 = Always choose (C)

Constructing Bias Demonstrations. Unlike yes/no questions, where there are only 2 possible option orderings (“yes/no”
and “no/yes”), the number of orderings for MCQ questions grows in factorial order with the number of presented options
m (number of possible orders = m!). While our method requires only the model’s output to identify bias direction (no
decoding necessary), conducting m! forward passes to cover all permutations is computationally intractable. Therefore, we
adopt a practical alternative: cyclic permutation, reducing the permutations from m! to a manageable m. For example, if
our question q = “Which city is located in Asia? (A) London (B) Chennai (C) Buenos Aires ” with three options (A/B/C),
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we have the following permutations:

q′ = Which city is located in Asia? (A) Buenos Aires (B) London (C) Chennai
q′′ = Which city is located in Asia? (A) Chennai (B) Buenos Aires (C) London

The demonstration set S1 = {s1(q), s1(q′), s1(q′′)} is

s1(q) = q + “Answer: (A) London”
s1(q

′) = q′ + “Answer: (A) Buenos Aires”
s1(q

′′) = q′′ + “Answer: (A) Chennai”

. Similarly, for S2 = {s2(q), s2(q′), s2(q′′)} and S3 = {s3(q), s3(q′), s3(q′′)}, we append q, q′, q′′ with the answers (B)
and (C) respectively.

D. Dataset Statistics and Setup
D.1. Option bias datasets

Table 5 shows dataset statistics for option bias.

Dataset Type # Options # Test samples # Samples for finding direction

ScienceQA MCQ

2 2228

10003 971
4 1004
5 38

MME yes/no 2 1,542 100

VGR yes/no 2 9,576 1000

Table 5. Dataset statistics for option bias

Originally, the VGR dataset was a 2 choice options dataset. We are an image and 2 choices: one option is the correct caption
of the given image (e.g., “The cow is eating the grass”), and the other is a false caption (e.g., “The grass is eating the cow”).
We convert this dataset into a yes/no question by turning each caption into 2 questions (e.g., “Is this the correct caption for
the image? answer with a yes or no. The cow is eating the grass”). For ScienceQA, we use default test samples from the
original dataset. For MME, we randomly sample 100 samples to find bias direction and use the rest for evaluation. For
VGR, we randomly split the dataset 80:20 train/validation:test split, and randomly sample 1000 samples from the train split
to find bias direction.

For ScienceQA, since the number of test samples varies significantly between each # of options, we report the weighted
average accuracy (by the number of sample). Other datasets are pretty balance so we report the non-weighted accuracy.

E. Prompt Details
We use each model’s default system prompts for formatting, detailed as follows:

LLaVA
prompt = A chat between a curious human and an artificial intelligence assistant.
The assistant gives helpful, detailed, and polite answers to the human’s questions.
Human: [QUESTION]
Assistant: [ANSWER]

For inference, we leave the part after “Assistant:” empty for the model’s answers. For collecting activation values (section
3), we append the answers based on the constructed demonstration set after “Assistant:”.
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IDEFICS

We use the recommended system prompt from IDEFICS Huggingface (Wolf et al., 2020) page
https://huggingface.co/HuggingFaceM4/idefics-9b-instruct.

prompt = [
[

f"User: {QUESTION}",
"<end_of_utterance>",
f"\nAssistant: {ANSWER}",

],
]

For inference, we leave the part after “Assistant:” empty for the model’s answers. For collecting activation values (section
3), we append the answers based on the constructed demonstration set after “Assistant:”.

InstructBLIP

We follow InstructBLIP usage from Huggingface page https://huggingface.co/Salesforce/instructblip-vicuna-13b. , where
there is no system prompt. We only use the question string as it is, followed by the answer.

prompt = "[QUESTION] [ANSWER]"

Similarly for the previous two cases, we leave the part after the question empty for inference, and fill the answers based on
the constructed demonstration set for collecting activation values.

F. Implementation Details
F.1. Compute details

There is no Transformer model training or fine-tuning conducted in this paper’s experiments. We use 8 Test V100 GPUs for
hyperparameter tuning and evaluation.

F.2. STEERFAIR implementation

We use IDEFICS and InstructBLIP models from HuggingFace (Wolf et al., 2020) and LLaVA from the author’s repository
(Liu et al., 2023b). We provide pseudocode for collecting model activation values in Algorithm table 2.

Algorithm 2 Pseudocode for collecting activation values H

1: Parameters: Demonstration sets S1, . . .Sm, model T , attention head index h, layer index l, question sets
{q1, . . . qN}, {q′1, . . . q′N}, ...

2: for i ∈ {1, . . . , N} do
3: for j ∈ {1, . . . ,m} do
4: Hj = []
5: for {sj(qi)} ∈ Sj do
6: θ

sj(qi)
h,l = T(sj(qi))[“hidden states”][-1][l, h]

7: Hj .append(θsj(qi)h,l )
8: end for
9: Hj = np.vstack(Hj)

10: end for
11: end for
12: Returns: H1, . . .Hm.

F.3. Baselines implementation

This section presents implementation details for baseline methods.
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Option bias Vanilla inference is done with prompts detailed in Appendix E. ITI (Li et al., 2023) code is adapted from the
author’s original repository https://github.com/likenneth/honest llama. The 100 and 500 samples are randomly sampled
from the datasets training splits.

Stereotypical bias Vanilla inference is done with prompts detailed in Appendix E. Prompting baseline uses the following
prompt prepended to each question: “Do not stereotype.”

F.4. Hyperparameter search

We perform hyperparameter search for both STEERFAIR and ITI. We list the hyperparameter search space in Table 6

Method Intervention strength α number of heads K

ITI {1, 5, 10, 15, 20, 25, 30, 40, 50} {1, 10, 20, 30, 40, 50, 100}
STEERFAIR {0.1, 0.5, 1, 2, 5, 10, 15, 20, 25} {10, 30, 50, 100, 200, 500}

Table 6. Hyperparameter search space

We follow the initial hyperparameter space for for as suggested in the original paper (Li et al., 2023). We try a larger number
of K in STEERFAIR because we use l2 normalization post-intervention (Section 3). The best hyperparameter is chosen
based on the best performance on the validation set (minival split for ScienceQA).

G. Supplementary Results
We present exhaustive, non averaged results in this section.

Figure 8. ScienceQA results
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Figure 9. VGR results
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Figure 10. MME results
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