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Abstract

We propose a generalization of the classical G-
optimal design concept to non-linear function
classes. The criterion, termed F -design, coin-
cides with G-design in the linear case. We com-
pute the value of the optimal design, termed the
F -condition number, for several non-linear func-
tion classes. We further provide algorithms to
construct designs with a bounded F -condition
number. Finally, we employ the F -design in a va-
riety of interactive machine learning tasks, where
the design is naturally useful for data collection
or exploration. We show that in four diverse set-
tings of confidence band construction, contex-
tual bandits, model-free reinforcement learning,
and active learning, F -design can be combined
with existing approaches in a black-box manner
to yield state-of-the-art results in known problem
settings as well as to generalize to novel ones.

1. Introduction
Developed by pioneers like Fisher and Wald, experimental
design is a foundational area of study in statistics and ma-
chine learning (Cochran & Cox, 1948; Montgomery, 2017;
Casella et al., 2008; Pronzato & Pázman, 2013). In contrast
to vanilla statistical learning, where the data are assumed to
be sampled from a fixed and unknown distribution, exper-
imental design allows the learner to choose a distribution
over the underlying input space to their advantage. Good
experimental designs form the bedrock of efficient data col-
lection and learning in sample-constrained scenarios, with
applications in social and natural sciences, healthcare set-
tings, and beyond (Jackson & Cox, 2013; Keskin Gündoğdu
et al., 2016). More recently, the increasing popularity of
interactive paradigms such as active learning, bandits, and
reinforcement learning have also made experimental design
a key component of machine learning algorithms (Lattimore
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& Szepesvári, 2020; Wagenmaker et al., 2021; Foster et al.,
2021; Agarwal & Zhang, 2022; Mhammedi et al., 2023).
The classical theory of experimental design is most well-
developed when the experimental data is subsequently mod-
eled using (generalized) linear functions. In such cases, the
target is to obtain closed-form expressions or nearly-sharp
bounds for a number of definitions of an optimal design,
along with efficient algorithms for computing them.

The core intuition behind experimental design, when we
subsequently fit data using functions from a particular class,
is the following. We want a small subset of the inputs,
such that querying the values of the desired outputs at these
instances allows us to (approximately) extrapolate to the rest
of the domain, for any function in our class. That is, the set
of query instances serves as a basis tailored to the function
class. When the function class has an underlying linear
structure, the Euclidian basis is always a sufficient (and
without assumptions on the domain, an optimal) design.

When the functions under consideration are non-linear, find-
ing such a minimal set is quite non-trivial, as different func-
tions can have varying degrees of sensitivity in different
parts of the instance space. Consequently, much of the lit-
erature on non-linear experimental design has focused on
local or asymptotic design criteria. In such approaches, we
assume that the functions under consideration have already
been localized to a “small” neighborhood of the optimal
solution, and we seek a good design for this local region of
the parameter space, often using Taylor or other expansions
to reduce the local design problem to a linear one. How-
ever, the availability of such a local region is a stringent
assumption in practice, where no prior knowledge might be
available until we carry out data collection. This is a par-
ticularly pronounced concern in interactive ML scenarios,
where we often start with no initial samples and seed good
models using a limited amount of data.

One notable exception for the non-linear case is the eluder
dimension, which was originally proposed in Russo &
Van Roy (2013) and further refined in several works (Jin
et al., 2021; Foster et al., 2020). Eluder dimension is a
complexity measure of a function class with a similar per-
spective of quantifying how many samples suffice to reliably
evaluate some measure of the fitness of functions from a
class over the entire input space, and we discuss it in more
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Simultaneous
Confidence Bands

Contextual Bandit
(realizable + infinite

actions)

Model-free RL (realizable +
Bellman rank + infinite

actions)

Active
Learning

Objective |f̂(x)− f∗(x)| PAC Regret PAC Regret Query
complexity

Bounds O(
√
V(ρ∗, x)∥f̂ − f∗∥2ρ∗) O(

√
V∗ log |F|/T ) O(log(|F|T )

√
br · V∗H/T ) O(V∗ log |F|)

Table 1. Illustration of the applications enabled by F -design. V∗ denotes the optimal F -condition number for some underlying function
class F that is used in the application, ρ∗ is the optimal F -design and V(ρ∗, x) denotes the F -condition number of ρ∗ on x. For example,
V∗ = d when F is linear. In simultaneous confidence bands, we have regression data sampled from ρ∗ and labeled according to an
unknown f∗ ∈ F and want error bounds at all x, around some estimator f̂ obtained by squared regression. In contextual bandits, we
consider the realizable setting where expected rewards are equal to f⋆ ∈ F , and control the regret of the learned policy after T rounds of
exploration, in terms of optimal F -condition number for potentially infinite action spaces. In RL, the class F models Bellman errors for
an MDP with Bellman rank br, and we bound the PAC regret of the learner’s policy after observing T episodes, to the optimal policy,
again in infinite action settings. In active learning, we use F to model the value of the binary label in a noiseless setting and bound the
query complexity to find a consistent classifier. All our bounds match the best results for the linear class using V∗ = d, but the extension
to the general non-linear case is novel. New results for RL are discussed in the text.

detail in later technical development. A more detailed dis-
cussion of related works that tailor design to several of the
specific applications that we consider, as well as the broader
classical literature on design can be found in Appendix A.

Motivated by the questions above, we take a fresh look at
experimental design in its full generality in this work. We
provide a novel definition of F -design that generalizes the
classical idea of G-design to arbitrary, non-linear function
classes. We also demonstrate the benefits of this gener-
alization with applications in diverse learning scenarios.
Concretely, our paper makes the following contributions:

• We develop theF -condition number to measure the quality
of a design for non-linear function classes. We show that the
classical G-optimal design optimizes F -condition number
when the function class is linear, and the criterion admits
natural bounds for non-linear classes such as Lipschitz or
smooth functions. We further show that the F -condition
number can always be upper bounded in terms of the eluder
dimension up to log terms, but can be exponentially smaller
than it for general function classes.

• We give computationally efficient algorithms, under a
natural argmax oracle, that find a design with an upper
bounded F -condition number.

• We demonstrate applications of our techniques in a variety
of learning settings. Concretely, we show that the optimal
F -condition number can be used to obtain state-of-the-art
guarantees for contextual bandits, reinforcement learning,
and active learning, where we use an optimal F -design to
guide the exploration process. We also show applications
to estimating simultaneous confidence bands in non-linear
regression settings. Given that these applications are some
of the key beneficiaries of classical experimental design,
these results highlight the ability of F -design to serve as
a drop-in replacement in the non-linear setting. Table 1
summarizes the results we get for these applications.

• Our applications are investigated in most detail for the case
of model-free RL, where we match state-of-the art results
in most prior settings, and also provide new results for
sample-efficient RL in some previously unknown settings
that are summarized below, with details in Section 5.3:

– Bellman rank with linearly embedded backups (includes
finite actions, known from (Agarwal & Zhang, 2022)).

– Bellman rank with Q⋆ smooth over actions (new).

– Value-based Linear Quadratic Regulators (also implied
by Agarwal & Zhang (2022)).

2. Preliminaries
We start with a discussion of the experimental design
paradigm and set up some basic notation. In experimen-
tal design, the learner is given the set of instances X , which
is also referred to as the design space, where each instance
is viewed as an elementary experiment that can reveal some
information about the environment. Querying (or, “exper-
imenting with”) an instance x ∈ X generates a stochastic
observation y = f∗(x) + ϵ for some unknown f∗ in a given
function class F : X → R and a zero-mean ϵ. The goal is to
select a distribution (or, a design) ρ ∈ P(X ) on the design
space X to optimize a criterion, to be specified shortly. Here
P(X ) denotes the set of probability measures on X with an
appropriately defined σ-algebra. For simplicity, we focus on
the problem with a finite function class and a finite design
space for the most part, though our ideas easily extend to
more general settings with covering numbers, as some of our
examples illustrate. Various design criteria are considered
in the literature, of which the most relevant is the classical
G-optimal design, proposed in Smith (1918).

G-optimal design. For any bounded X ⊂ Rd, theG-design
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value for any distribution ρ on X is defined as

sup
x∈X

x⊤
(
Ez∼ρzz

⊤)† x. (1)

where (·)† denotes the pseudo inverse (Pronzato & Pázman,
2013). The G-design value corresponds to the maximum
asymptotic variance of the least square predictor over the
design space X . The optimal design is the distribution that
minimizes the design value. The following properties are
well-known for the G-design. The optimal design value
is smaller than or equal to the dimension d (with equality
obtained when linear combinations of X span Rd) (Kiefer
& Wolfowitz, 1960). There exists an optimal design that is
supported on at most Õ(d) instances (Todd, 2016). There is
a Frank-Wolfe style algorithm that can obtain a design with
a value matching the optimal design value up to constant
within Õ(d) number of steps with access to a maximization
oracle over x ∈ X for (1)(Todd, 2016).

For the general non-linear case, the notion of G-optimal
design is also studied (Pronzato & Pázman, 2013) with an
emphasis on local asymptotic optimality. However, the
properties of the linear G-optimal design aforementioned
are not known for the general non-linear extension.

Eluder dimension. In the spirit of controlling worst-case
prediction errors through design, another notable complexity
measure is the eluder dimension, defined below.
Definition 2.1 (Eluder dimension (Russo & Van Roy, 2013)).
For any function class F and ϵ0 > 0, let the eluder dimen-
sion dimE(F ; ϵ0) be the length of the longest sequence of
tuples (x1, f1, f

′
1), ..., (xm, fm, f

′
m) such that there exists

ϵ ≥ ϵ0 and functions fi, f ′i ∈ F for i = 1, ...,m that

|fi(xi)− f ′i(xi)| > ϵ, and
∑
j<i

(fi(xj)− f ′i(xj))
2 ≤ ϵ2.

Suppose (x1, f1, f
′
1), ..., (xm, fm, f

′
m) are the longest se-

quence as in the above definition. The design ρE =
1
m

∑m
i=1 1(xi), where 1(xi) is the point distribution sup-

ported on xi, has the property that for any f, f ′ ∈ F ,
if Ex∼ρE

(f(x) − f ′(x))2 ≤ ϵ20/m, then supx |f(x) −
f ′(x)| ≤ ϵ0. This implication of controlling the infinity
norm through 2-norm by the eluder dimension captures the
number of “directions” for the linear case. But the ratio
between the two norms can be exponentially larger than the
minimal design, as we illustrate in the next section.

Other complexity measures. Other complexity measures
of function classes like the VC dimension, Radermacher
complexity, Decision-Estimation Coefficient and Decou-
pling Coefficient (Foster et al., 2021; Zhang, 2022; Zhong
et al., 2022) are tailored to specific learning tasks and not
comparable in the guarantees obtained. We contrast with
these criteria for suitable applications later in the paper. See
more detailed discussion in Section 6.

Notation We denote by R≥0 = [0,∞). For any integer
T ≥ 1, we denote by [T ] the set {1, 2, ..., T}. For any
positive semi-definite matrix A ∈ Rd×d, the norm ∥·∥A on
Rd is defined as ∥x∥2A := x⊤Ax. We use 1(E) to denote the
indicator function for event E . For any set X , we abuse the
notation 1(x) to also mean the point distribution supported
on x ∈ X . For any set X and function f : X → R, we
denote by ∥f∥∞ = supx∈X |f(x)| the infinity norm of f .
For any distribution ρ ∈ P(X ) and function f , we denote by
∥f∥2ρ,2 = Ex∼ρ(f(x))

2 the 2-norm of f with respect to ρ.
We define O(·), Ω(·), o(·), Θ(·), Õ(·), Ω̃(·), Θ̃(·) following
standard non-asymptotic big-oh notation.

3. General Formulation of Non-linear
Experiment Design

We now introduce the F -condition number (Section 3.1) and
show that it coincides with the G-optimal design criterion
in the linear case. We also give some examples where the
optimal F -condition number can be computed up to con-
stants (Section 3.2), and compare the optimal F -condition
number with the eluder dimension (Section 3.3).

3.1. The F -condition Number and F -design

Let DF = F − F := {f − f ′ : f, f ′ ∈ F}. Let ν0 :
DF → R≥0 be a base functional which is a map from the
class DF to non-negative values. For any function class
F with design space X , any base functional ν0, function
h ∈ DF , design ρ ∈ P(X ) and instance x, the F -condition
number of ρ on x with respect to h is defined as

V(F ,X , ρ, x, h; ν0) :=
h2(x)

ν0(h) + Ex′∼ρh2(x′)
.

(F -condition number)

With h = f − f ′ for some f, f ′ ∈ F , the numerator in this
definition captures the squared error at x, when f∗ = f ′

and we instead use an estimate f . The second term in the
denominator is the same squared error but under the design
ρ. Hence, the ratio relates how well controlling the squared
error under ρ bounds the squared error on some other query
point x, and captures the ability of ρ to cover the space X
effectively from the perspective of the class F . The term
ν0(h) is added for regularity to ensure that the ratio stays
bounded away from zero, and is often set to a small positive
constant independent of h in our applications.

The F -condition number of ρ and the optimal F -condition
number V∗ are defined by taking supremum over all in-
stances x ∈ X and h ∈ DF :

V(F ,X , ρ; ν0) := sup
x∈X ,h∈DF

V(F ,X , ρ, x, h; ν0) and

V∗(F ,X ; ν0) := min
ρ∈P(X )

V(F ,X , ρ; ν0),

3
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We omit the dependence on X for simplicity when it is
apparent from the context. Our design criteria is to minimize
V(F , ρ; ν0), and the optimal F -design is the minimizer

ρV(F ; ν0) := argmin
ρ∈P(X )

V(F , ρ; ν0). (2)

One powerful implication of (2) is that for any f, f ′ ∈ F :

∥f − f ′∥∞ ≤ V∗(F ,X ; ν0)Ex∼ρV

[
(f(x)− f ′(x))2

]
,

which gives us a “condition number” to convert ℓ2 to ℓ∞
error bounds. We note that one might expect a similar
conclusion from the eluder design ρE using dimE(F ; ϵ0)
instead, but the specifics of Definition 2.1 do not allow this.
In Section 5.1, we utilize a sharper version of this bound
to obtain simultaneous confidence bands for regression. As
a final remark on notation, we use ρV(F ; ϵ0) to denote the
case where ν0(h) ≡ ϵ0 for all h ∈ DF .

3.2. Examples of F -design

We start by showing that the optimal F -design as defined in
Equation 2 is equivalent to the classical G-optimal design
for the linear function class.

Example 1 (Linear class). Let F lin = {fw : fw(x) =
w⊤x,w ∈ Rd, ∥w∥2 ≤ 1}, X = {x : ∥x∥2 ≤ 1∥},
and consider the base functional νlin given by νlin(h) =
λEx∼ρ0h

2(x), with ρ0 being the uniform distribution on
the canonical basis vectors {ei}di=1, for some λ > 0 and
h ∈ DF . We have V∗(F lin; νlin) ≤ d.

Lemma 3.1. The optimal F -design ρV(F lin; νlin) also mini-
mizes the G-design objective (1) with a regularization λ/d:

ρV(F lin; νlin) = argmin
ρ∈P(X )

sup
x∈X

∥x∥2
(Σρ(λ/d))

−1 ,

where Σρ(a)= Ex∼ρxx
⊤+aId and Id is the identity matrix.

Combining Lemma 3.1 with the classical results of Kiefer
& Wolfowitz (1960), we know that the optimal F -condition
number is bounded by the dimension d in the linear case.

Example 2 (Hölder classes). Let U be any bounded set
in Rd with positive volume and let β be a positive number.
For any index k = (k1, ..., kd) ∈ Zd

≥0, the partial derivative
operator Dk := ∂k/∂k1

x1
· · · ∂kd

xd
is termed as of order k The

Hölder class FH
β,d is defined as the set of k = ⌊β⌋ times

differentiable functions f , whose partial derivatives Dkf of
order k satisfy |Dkf(x)−Dkf(y)| ≤ ∥x− y∥β−k for all
x, y ∈ U and all partial derivatives of order less than k are
bounded by 1. For any ϵ0 ≥ 0 as a constant function, we
have V∗(FH

β,d; ϵ0) = Θ(ϵ
−d/(2β+d)
0 ).

The near-optimal design involves a two-stage construction
where we have a uniform design over a covering of the

design space and a local G-optimal design via linearization
for each local region. This approach is pretty representative,
as shown in the next example.

Example 3 (Fractional related class). Let B > 2 be a pos-
itive number. Consider the design space X = [−B,B] ⊂
R and function class Pk,B := {f(x) = p(x)/(1 +
x2) | p(x) is a polynomial with degree at most k.}. We
have V∗(Pk,B ; ϵ0) = O(k logB).

For this function class, we use theG-optimal design to build
an F -design following a similar two-stage construction as
mentioned in the previous example.

Theorem 3.2 (General function class). For any bounded
function class F on any design space X and ϵ0 > 0,
let ϵ > 0 be such that ϵ0 > 4ϵ2/N (DF , ∥·∥∞, ϵ),
where N (DF , ∥·∥∞, ϵ) is the minimum covering number
of the function class F in infinity norm. Then we have
V∗(F ; ϵ0) = O(N (DF , ∥·∥∞, ϵ)).

While the log covering number commonly serves as a
standard for measuring complexity, aligning with the F -
condition number in the linear case and the Hölder classes,
the F -condition number scales with the covering number
in the worst case. This is unavoidable, as seen by choosing
the function class FX := {fx(y) = 1(y = x) | x ∈ X} ⊂
(X → R) for any set X .

Collectively, these examples highlight that the optimal F -
condition number has an expected scaling with the complex-
ity of the underlying function class, and is easily tailored
to different underlying structures. We proceed in the next
section to compare the optimal F -condition number with
the eluder dimension.

3.3. Comparison with the Eluder Dimension

As discussed earlier, for (generalized) linear functions, there
is only a logarithmic gap between the optimal F -condition
number and the eluder dimension, as both scale with the
ambient dimension. In the non-linear case, the optimal F -
condition number is upper bounded by the eluder dimension
up to log terms, but can be exponentially smaller.

Lemma 3.3. For any function class F : X → [−1, 1] and
ϵ0 ∈ (0, 1/4), let dimE(F ;

√
ϵ0) = d. We have

V∗(F ; ϵ0) = O (d log(1/ϵ0) · (log d+ log log(1/ϵ0))) .

This is a corollary of Theorem 4.2. We get dimE(F ;
√
ϵ0)

due to a difference between measuring h2(x) versus h(x)
at the worst-case x between F -condition number and eluder
dimension. On the other hand, we show an exponential gap
between the optimal F -condition number and the eluder
dimension in the following cheating code example. For
an upper bound of the F -condition number by the related
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disagreement coefficient (Foster et al., 2020), we refer to
Proposition D.3 in Appendix D.4.

Example 4 (Cheating code (Jun & Zhang, 2020)). For any
integer k ≥ 1, suppose the design space X = Ak ∪ Bk

consists of two sets Ak = {a0, ..., a2k−1} and Bk =
{b0, ...bk−1}, where the first has exponentially more arms
than the second. Consider the function class given by
Fk = {f i|i ∈ {0, ..., 2k − 1}} with{
f i(aj) = 1(i = j) for all j ∈ {0, ..., 2k − 1},
f i(bl) =

1
2 · (the l-th bit of i) for all l ∈ {0, . . . , k − 1}.

Lemma 3.4. For the Example 4, let ν0 > 0 be any
positive base functional and ϵ0 ∈ (0, 1). We then have
V∗(Fk; ν0) ≤ 4k and dimE(Fk; ϵ0) ≥ 2k − 1.

We note that this exponential gap also exists for the disagree-
ment coefficient and the star number (Foster et al., 2020).
Interested readers can refer to Appendix D.4 for details.

Having established these favorable properties of F -design,
we next investigate algorithms to construct designs with a
good F -condition number.

4. Computational Properties
So far, we have motivated that the F -condition number
provides a meaningful complexity measure tailored to the
underlying function class. However, leveraging its proper-
ties in practice requires the ability to approximate a near-
optimal design computationally. In this section, we focus
on these computational aspects. Our computational results
largely resemble those for the linear G-optimal design and
we address the connections during our discussion. While
Definition (2) considers all possible distributions ρ over the
design space X , representing and sampling from an arbitrar-
ily dense distribution can be intractable when |X | is large.
To this end, we begin with a basic sparsification argument
that shows that any design’s F -condition number can be
well approximated with another design, that is only sup-
ported on a sparse subset of X . We then proceed to give
algorithms for constructing sparse designs with a bounded
F -condition number under a natural computational oracle.

4.1. Existence of Sparse Designs

One of the most favorable properties of the linearG-optimal
design is that the optimal design can be approximated in the
design value by designs with sparse support (of size Õ(d)).
We now show that any design can always be approximated
by a sparse one, even in the non-linear case, through a
probabilistic sparsification argument.

Lemma 4.1. For any bounded function class F , suppose
that the base functional ν0 is such that ν0(h) > 0 for all

Algorithm 1 Greedy optimization of F -condition number
Require: Design space X , function class F , time horizon

T , parameter ϵ0 > 0.
1: for t = 1, . . . , T do
2: Find xt ∈ X such that

xt = argmax
x∈X

sup
h∈DF

h2(x)

Tϵ0 +
t−1∑
s=1

h2(xs)

.

3: end for
4: return ρT = 1

T

∑T
t=1 1(xt).

h ∈ DF . Let δ ∈ (0, 1). Then for any design ρ if we sam-
ple x1, ..., xn from ρ, with n = O(V(F , ρ; ν0) log(|F|/δ)),
then with probability at least 1− δ, we have V(F , ρ̂; ν0) ≤
4V(F , ρ; ν0), where ρ̂ = 1

n

∑n
i=1 1(xi).

This argument allows us to restrict attention to finitely sup-
ported sparse designs computationally. We now describe
such an algorithm and analyze the design it constructs.

4.2. Computation with Argmax Oracle

Another favorable property of the linearG-optimal design is
that the optimal design can be approximated in design value
up to constants efficiently with access to an argmax oracle.
The argmax oracle takes an input design ρ and outputs the
worst instance x under that design. For classical G-design,
this is the x at which the norm in Equation 1 is maximized.
We give the analogous definition for the general case below.

The argmax oracle The oracle computes the hardest in-
stance x for any given design ρ ∈ P(X ), i.e., it computes

x = argmax
x′

sup
h∈DF

V(F , ρ, x′, h; ν0).

This oracle is natural since it resembles the maximization
oracle required by the Frank-Wolfe algorithm in the linear
G-design case (Todd, 2016). Approximate oracles are suffi-
cient for Algorithm 1 and implementation of such an oracle
in the linear case can be found in Walsh (2022).

Using this oracle, Algorithm 1 gives a greedy approach to
construct a design. The algorithm begins with an initially
empty design, and at each iteration, finds the point xt which
is returned by the argmax oracle for the design ρt−1. The
design ρt after t iterations is simply the uniform distribution
over the points {xi : i = 1, . . . , t}. This algorithm enjoys
the following guarantee on the F -condition number of ρT .

Theorem 4.2. For any function class F : X → [−1, 1],
ϵ0 ∈ (0, 1/4), let dimE(F ;

√
ϵ0) = d and let T =

Cd log(1/ϵ0)(log d + log log(1/ϵ0)) for C large enough.
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Then Algorithm 1 returns a distribution ρT such that

V(F , ρT ; ϵ0) = O (d log(1/ϵ0) · (log d+ log log(1/ϵ0))) .

In words, the F -condition number of ρT is bounded in
terms of the eluder dimension of F , but not V∗(F ; ϵ0)

1.
This guarantee is reasonable for classes like the (general-
ized) linear classes since there is no essential gap between
dimE(F ; ϵ0) and V∗(F ; ϵ0), both of which scale with the
dimension. On the other hand, it can be highly suboptimal
in cases such as Example 4. As we show in Appendix E.3,
the bound in Theorem 4.2 is unimprovable in the worst case
for a class of algorithms which construct designs only sup-
ported on the convex hull of the points xt that are returned
from all previous queries to the argmax oracle. Neverthe-
less, the algorithm would run into trouble only when the
x’s returned by the argmax oracle are not the ones with the
most information. Concretely, if one alters the cheating
code example by setting the value for cheating arms to be
f i(bl) = 2 · (the l-th bit of i), then the argmax oracle would
return the cheating arms and obtain the F -condition number
which is exponentially smaller than the eluder dimension in
the altered cheating code.

Remark 4.3 (Approximate optimality via subgradient de-
scent). The F -condition number, as a supremum of convex
functions with respect to the design, is convex in the design.
Hence, with a slightly stronger argmax oracle (in that the
supremum achieving functions are also required) defined in
Appendix E.4, we can use projected subgradient descent to
guarantee convergence to the optimal F -condition number
V∗(F ; ϵ0). This approach requires Ω(|X |) computation and
hence is only suitable for small design spaces X .

5. Applications
In this section, we study several applications of F -design.

5.1. Simultaneous Confidence Bands for Regression

We can use the F -design approach to compute the Simulta-
neous Confidence Bands (SCBs) for least squares regression.
This is natural as the definition of F -design encodes trans-
ferring an average squared loss under the design ρ to a
worst-case (ℓ∞) error bound over the design space X .

In the SCBs problem, the learner is given the function class
F with the instance space X . The learner can choose a
design ρ ∈ P(X ), and sample n samples x1, . . . , xn i.i.d.
according to the design. The corresponding measurements
yi that the learner observes for each sample xi, satisfy
E[yi|xi] = f⋆(xi) for some (unknown) f⋆ ∈ F . We fur-

1The parameter ϵ0 serves as a small regularization. In the linear
case, it can be chosen to recover the G-optimal design to be 0. For
all the downstream tasks mentioned in Section 5, ϵ0 is usually
chosen to be less than 1/T .

ther assume that |f(x)| ≤ B for all f ∈ F . The goal of
the learner is to find a design ρ, such that for any estima-
tor f̂ we can upper bound the worst-case prediction error
|f̂(x)− f∗(x)| over any query point x ∈ X . The SCBs are
first constructed in Bickel & Rosenblatt (1973) and are ex-
tensively studied in the literature (see e.g. (Johnston, 1982;
Härdle, 1989; Xia, 1998; Wang & Yang, 2009; Cai et al.,
2014; 2019) and references therein).

For this problem, we can choose the design as the opti-
mal F -design ρV := ρV(F , ν0) according to (2) for some
base functional ν0. We further define the F -condition
number of any design ρ on x to be V(F , ρ, x; ν0) :=
suph∈DF V(F , ρ, x, h; ν0) for the following result where
we omit further the dependence on F and ν0 for brevity.

Theorem 5.1. Suppose sup∆f∈DF ν0(∆f) ≤ ϵ0. For the
optimal F -design ρV , we have for all f̂ ∈ F and x ∈ X ,

|f̂(x)− f∗(x)| = O
(√

V(ρV , x)(ϵ0 + ∥f̂ − f∗∥2ρV ,2)

)
.

For instance, if f̂ = f̂n is the least squares estimator on
n samples drawn i.i.d. according to ρV , then we have
∥f̂n − f∗∥2ρV ,2 = O(B log(|F|/δ)/n), with probability
1 − δ. When applied to the optimal F -design for the
class F lin, this yields confidence intervals which scale as
Õ(d/

√
n), since both V∗(F lin,X ) and N (F lin, 1/n) (the

ℓ∞ covering number of F lin to accuracy 1/n in the ℓ∞
norm) scale as O(d). This is inferior to confidence bounds
for i.i.d. problems by a factor of

√
d (Wainwright, 2019).

Understanding the optimality of the SCBs implied by F -
design is an interesting future direction.

5.2. Pure Exploration for Contextual Bandits

A contextual bandit (CB) problem is a class of reinforce-
ment learning problems where the learning agent repeatedly
interacts with an environment, but there are no long-term
consequences of its actions. We focus on the stochastic ver-
sion of the problem in the pure exploration setting (Audibert
& Bubeck, 2010; Jamieson & Nowak, 2014), although adver-
sarial settings and regret minimization are also considered
in the literature (Bubeck et al., 2012b).

In pure exploration, the learner interacts with the environ-
ment for T rounds. At round t, the learner observes some
context zt ∼ D,2 chooses an action at ∈ A in response
and receives a reward rt ∈ [0, 1], and we assume that
rt ∼ D(·|zt, at) for some unknown distribution D for all
rounds t. With a slight abuse of notation, we also useD to re-
fer to the joint distribution over z, r, where r = (r(a))a∈A
is a function specifying rewards for all actions. We make

2We denote contexts by z rather than the more standard choice
of x to avoid confusion with the elements of the design space.
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the following assumption, often called realizability, in this
section.

Assumption 5.2 (CB Realizability). There exists a function
f⋆ ∈ F such that E[r|z, a] = f⋆(z, a) for all z ∈ Z, a ∈ A.

Since the rewards are in [0, 1], we also assume that f(z, a) ∈
[0, 1] for all f ∈ F , z ∈ Z and a ∈ A. The goal of the
learner is to use the samples (zt, at, rt) collected over the
T rounds and find a policy πT : Z → A to minimize

Reg(πT ) := Ez∼D

[
max

a
f⋆(z, a)− f⋆(z, πT (z))

]
. (3)

With the optimal F -design, we can achieve this goal through
the following process. Upon observing zt, we let ρV(·|zt)
denote the optimal design as per our objective (2) for some
base functional ν0, with the design space X = A and the
function class Fzt = {fzt(a) = f(zt, a) : f ∈ F} as the
projection of F onto the observed context. Then for the
dataset from T rounds, suppose the estimator f̂T satisfies,
with probability at least 1− δ, an upper bound EstOff(T, δ):

Ez∼D,a∼ρV(·|z)[(f̂T (z, a)− f⋆(z, a))2] ≤ EstOff(T, δ). (4)

The greedy policy πT (z) := argmaxa f̂T (z, a) satisfies:

Theorem 5.3. Suppose ν0 is such that suph∈DFz
ν0(h) ≤

ϵ0 and V∗(Fz,A; ν0) ≤ d for all z ∈ Z . Let πT be the
greedy policy of the function f̂T that satisfies (4). Then for
any δ ∈ (0, 1), we have with probability at least 1− δ:

Reg(πT ) = O
(√

d · (EstOff(T, δ) + ϵ0)
)
.

For example, using f̂T = argminf∈F
∑T

t=1(f(zt, at) −
rt)

2, we have with probability at least 1−δ, EstOff(T, δ) =
O(log(|F|/δ)/T ), which is the bound we use for Table 1.
For details, please see Lemma F.2 in the appendix.

The result reduces to known optimal results (Agarwal et al.,
2012; Dani et al., 2008) in the finite-action and (generalized)
linear cases. For a detailed discussion of related approaches
using the PAC DEC criterion in the general case, we refer
the reader to Appendix F.2.1. Our results can be applied to
Lipschitz or smooth function classes as shown in Section 3.2,
and there is extensive literature on regret minimization in
such non-parametric bandit settings (Kleinberg et al., 2019;
Bubeck et al., 2011).

Lipschitz bandit If we directly apply Theorem 5.3 with
covering numbers, the PAC regret guarantee scales with the
rate T (2d+1)/(2d+2) where the optimal is T (d+1)/(d+2) for
non-contextual Lipschitz bandits with dimension d. The
gap is due to the fact that in the non-contextual case, we can
get direct guarantees on the L∞ norm of f̂ − f⋆. Because

on each of the discretized points of a Lipschitz bandit as an
action, we can count the number of pulls and obtain an L∞

norm bound between f̂ and f⋆ without going through the
L2 norm. The detour from the L2 norm to the L∞ norm
causes the degradation in the rate. Meanwhile, we mention
in passing that a slight improvement can be done by replac-
ing the covering number bound by the chaining bound for
bounding the estimation error EstOff . This obtains a match-
ing regret bound when d <= 4 and a suboptimal bound
of T 1−2/(3d) when d > 4. In a nutshell, our algorithm is
designed for contextual cases where the L∞ norm bound
is hard to obtain in general, which leads to our approach of
going through the L2 norm.

5.3. Model-free Reinforcement Learning

In this section, we study the more general setting of
long-horizon reinforcement learning (RL), with the goal
of finding a near optimal policy in a Markov Decision
Process (MDP) (Puterman, 2014). Concretely, we con-
sider an episodic, finite horizon MDP with a horizon
H , which is a stochastic process parameterized by the
tuple (D, {Zh}h∈[H], {Ah}h∈[H], {Ph}h∈[H]{Rh}h∈[H]).
In this setting, the agent interacts with its environment
over episodes t = 1, 2, . . .. The episode t begins with
an initial state z1t ∼ D. At each step h ∈ [H], the agent
chooses an action aht , observes a reward rht and the next
state zh+1

t ∼ Ph(·|zht , aht ) according the unknown transi-
tion dynamics P of the MDP. Here zh ∈ Zh, ah ∈ Ah

and E[rh|zh, ah] = Rh(zh, ah). The goal is to find a policy
which maximizes the H-step return, that is:

π⋆ = argmax
(π1,...,πh)

E
[ H∑
h=1

rh|ah ∼ πh(·|zh)
]
,

with z1 ∼ D and zh+1 ∼ Ph(·|zh, ah). Given a policy
π, which refers to an H tuple (π1, . . . , πH), we define the
Q-value function:

Qh
π(z, a) = E

[ H∑
h′=h

rh
′
|ah

′
∼ πh′

, zh = z, ah = a
]
.

Define V h
⋆ (zh) = Qh

⋆(z
h, πh

⋆ (z
h)), where Qh

⋆ := Qh
π⋆

.
We try to approximate Q⋆ using functions from F =
(F1, . . . ,FH), and make the following assumption.
Assumption 5.4 (Q⋆ Realizability). ∀ h ∈ [H], Qh

⋆ ∈ Fh.

Given a function f = (f1, . . . , fH) ∈ F , a common ap-
proach in model-free RL is to evaluate the Bellman consis-
tency of f as a surrogate for how well it approximates Q⋆.
That is, we define the Bellman error for any h, z, a as:

Eh(f, z, a) = fh(z, a)− E[rh + max
a′∈Ah+1

fh+1(z′, a′)|z, a]. (5)

In particular, it is well know that Eh(Qh
⋆ , z, a) = 0 for all

z ∈ Zh, a ∈ Ah and h ∈ [H] (Jiang et al., 2017).
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For the model-free RL setting studied here, a large number
of algorithms search for functions f with a small Bellman er-
ror under samples zh, ah collected by some exploratory poli-
cies at each h ∈ [H]. Examples include Q-learning (Dayan
& Watkins, 1992), where the policy is simply ϵ-greedy with
respect to the current f , as well as a large number of al-
gorithms with bounded sample complexity under various
structural conditions (Jiang et al., 2017; Du et al., 2021; Jin
et al., 2021; Agarwal & Zhang, 2022; Foster et al., 2023b),
all of which use carefully construct their exploration policies.
These algorithms have sample complexity guarantees under
some structural conditions over the MDP, and we build upon
the Bellman rank introduced in Jiang et al. (2017).

Assumption 5.5 (Bellman factorization and Bellman rank).
We assume that for all f, f ′ ∈ F , and h ∈ [H], there exist
(unknown) functions uh, ψh−1 : F → Rbrh and an inner
product ⟨·, ·⟩ such that for any starting state z1 ∈ Z

Ezh∼πf′ |z1E(f, zh, πf (zh)) =
〈
ψh−1(f ′, z1), uh(f, z1)

〉
.

We assume that supf∈F,z1∈Z∥uh(f, z1)∥2 ≤ B1. The Bell-
man rank is defined as br :=

∑H
h=1 br

h−1.

Prior work gives sample-efficient RL algorithms under As-
sumptions 5.4 and 5.5, for finite action spaces (Jiang et al.,
2017), as well as linearly embedded Bellman errors in infi-
nite action spaces (Agarwal & Zhang, 2022).

The last result is particularly relevant to our development,
as it essentially combines the Bellman rank machinery with
G-optimal design to handle infinite action spaces in certain
linear settings. Here, we extend this to general non-linear
scenarios. To proceed further, note that both the OLIVE
algorithm of Jiang et al. (2017) and the TS2-D algorithm
of Agarwal & Zhang (2022) use an exploration policy ρh for
the first h− 1 steps, to effectively explore over the states at
step h. They subsequently invoke a policy πh

exp at step h for
one-step exploration in the action space, which is uniform
over actions in OLIVE and a G-optimal design in TS2-D.

To apply F -design to this problem, we first choose an appro-
priate function class. Like the contextual bandit example,
given some state zh at step h, we define πh

exp = ρV(Fzh ; ν0),
where Fzh = {f(zh, ·) : f ∈ F} and ν0a base functional.
To analyze this approach, we need the following additional
assumption, which is quite common in the literature.

Assumption 5.6 (Bellman completeness). ∀h ∈ [H] and
fh+1 ∈ Fh+1, ∃ a function ghf ∈ Fh such that ∀ z ∈ Zh

and a ∈ Ah, we have gh(z, a) = E[rh + fh+1(z′)|z, a].

Informally, the assumption says that the class F can ex-
press one step Bellman backups of all functions f ∈ F .
Importantly, under this assumption, the class DF used in
our design objective is a superset of all the Bellman errors,
which is critical for our analysis.

With these concepts, we give Algorithm 6 in Appendix F.3,
which is a modification of Algorithm 2 in Agarwal &
Zhang (2022) with F -design instead of G-design. Replac-
ing Lemma 32 of their paper with the more general analog,
Lemma F.7, in their proof immediately gives the result.
Theorem 5.7. Under Assumptions 5.4, 5.5 and 5.6, suppose
further that for any state z ∈ Zh and all function class Fh

z ,
we have V∗(Fh

z ; 0) ≤ d. Then there exists an algorithm
that interacts with the environment for T rounds starting
at state z1t and outputs one function ft (and greedy policy
πt = πft ) at each time step t ∈ [T ] that achieves

E

[
T∑

t=1

V 1
⋆ (z

1
t )− V 1

πt
(z1t )

]
= O

(
log(|F|T )

√
br · dHT

)
,

The dependence on br, d, andH matches the best previously
known results in the special cases studied in prior works.

On Bellman completeness. Note that while the Bellman
completeness assumption is not needed in many prior works,
this is because both finite action and linearly embedded
Bellman error settings allow a good design for πh

exp without
this assumption. Eliminating Assumption 5.6 in the general
non-linear setting is an interesting question for future study.

For concrete examples of interest, we consider MDPs with
the following low-rank transition structure.
Definition 5.8 (Low-rank MDP ((Jiang et al., 2017; Jin
et al., 2020))). An MDP has a low-rank transition struc-
ture if for any h ∈ [H], there exist d and an unknown
feature map ϕh : Z × A → Rbrh and (signed) measures
µh+1 = (µh+1,1, ..., µh+1,brh) over Zh+1, such that for any
(zh, ah) ∈ Zh ×Ah, we have

Ph(zh+1|zh, ah) =
〈
ϕh(zh, ah), µh+1(zh+1)

〉
,

we assume maxh,zh+1∥µh+1(zh+1)∥ ≤ B1.

The MDPs with the low-rank transitions have a Bellman
rank at most br =

∑
h dim(ϕh) (Jiang et al., 2017). We

consider ϕh ≡ ϕ for all h ∈ [H] for simplicity here.
Example 5 (Low-rank MDP + realizable + Bellman com-
plete with Hölder function class). Consider any low-rank
MDP class with A ⊂ Rd a bounded set. Furthermore, sup-
pose F is realizable and Bellman complete with Fh

z ⊂ FH
β,d

for all z ∈ Z .
Corollary 5.9. For the example above, there exists an
algorithm that achieves a PAC regret upper bounded by
O
(
(Hbr)1/2T (β2+4βd+d2)/((β+d)(2β+d))

)
which is sublin-

ear whenever β > d.

Example 6 (LQR). Our results give a value-based method
to learning in Linear Quadratic Regulators, since the optimal
value functions are quadratic and admit efficient design, and
LQRs have a bounded Bellman rank (Jiang et al., 2017).
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In this section, we mainly consider the application of the
F -design in model-free reinforcement learning. For model-
based reinforcement learning where the F -design is applied
to obtain online regret minimization guarantees, we refer to
Appendix B.1.

5.4. Pool-based Active Learning

In this section, we consider active learning in the pool-based
model, where an unlabeled pool of data is made available
to the algorithm, and the goal is to query labels on a subset
of the data to achieve the same statistical performance as if
training were carried out on the entire pool.

We consider the binary realizable classification problem. We
denote by X the instance space, by Y = {±1} the output
space, and by D an unknown distribution over X × Y . The
corresponding random variables are denoted by x and y.
We also denote by DX the marginal distribution of D over
X . Given a hypothesis f mapping X to Y , the population
loss (often referred to as risk) of f is denoted by L(f), and
defined as L(f) = E(x,y)∼D[ℓ(f(x), y)], where ℓ(y, y′) =
1(y = y′) is the binary loss function.
Assumption 5.10 (Realizability for binary classification).
There exists a hypothesis f∗ ∈ F such that almost surely
for any (x, y) ∼ D, we have y = f∗(x).

In this setting, we apply F -design to the function class F ,
with the design space U as the pool of unlabeled instances
x1, . . . , xT that are given to us. We subsequently query
labels yi at n points sampled according to the optimal de-
sign ρV for this class3, and define f̂ to be any function in
F that achieves a misclassification error of 0 on these sam-
ples. Combining the definition of F -condition number with
standard arguments, we get the following result.
Theorem 5.11. To achieve with probability at least 1− δ
that: L(f̂) ≤ O ((VCdim(F) log T + log(1/δ))/T ) un-
der Assumption 5.10, we need a sample size at most

n = O(V∗(F ,U ; 0) log(|F|/δ)).

Here VCdim(F) is the VC dimension of F .

Application of G-optimal design in active learning has been
considered by (Hazan & Karnin, 2014) for linear cases with
a hard margin. Our result extends to the non-linear cases.
Similar settings of active learning have been considered in
the literature (Balcan et al., 2007; Balcan & Long, 2013;
Zhang & Li, 2021; Gentile et al., 2022). For the most
recent result of Gentile et al. (2022), the number of queries
they require for the non-linear case scales with the eluder
dimension. Thus they may require an exponentially larger
number of samples than the optimal F -condition number.

3We sample with replacement. If an instance xi is sampled
more than once, the label yi would remain the same each time xi

is sampled. This does not hurt the guarantee we obtain.

6. Discussion
Our work introduces the non-linear F -design and applies
it to several learning tasks. We close with two general
directions for future research.

Computing the optimal design efficiently. In this paper,
we can compute a F -design with the F -condition number
scaling with the eluder dimension in an oracle-efficient way.
However, it is not known how to compute/approximate the
optimal F -design while also scaling sublinearly (ideally
as log) in |X |. In Appendix E.3, we show that a broader
class of algorithms depending on the argmax oracle cannot
achieve this, suggesting we need a different approach.

Other optimal design criteria In this paper, we mainly
study non-linear G-optimal design and its application to
various learning tasks. It would be interesting to study po-
tential extensions of other classical design criteria in future
research, as they might have complementary benefits.

Online regret minimization and relation to the DEC For
online regret minimization, there are naive cases where the
F -design is suboptimal. For instance, in the case where
every function agrees with the optimal action, the regret
minimization problem is trivial, but the F -design aims to
control the L∞ divergence, which is non-trivial. Neverthe-
less, theF -design can be used for online regret minimization
by bounding the DEC as shown by Theorem B.4. At the
current stage, applying the F -design for regret minimization
remains largely unexplored, and we hope to reveal deeper
links in our future work.
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A. Related Works
Design-based methodology and applications are extensively considered in the literature mostly with applications in linear
cases. In the following, we describe several related works in this regard.

Decomposition and Spanners John’s decomposition (John, 2014; Ball, 1997) shows that for any bounded convex set in
the d-dimensional space, there exists a set of bases with size at most O(d2) that can span the convex set with coefficients in
certain forms. Bubeck et al. (2012a) leverage this decomposition for exploration in linear bandits and obtains the minimax
optimal rate. The idea of John’s decomposition is extended by the barycentric spanners and the volumetric spanners which
are proposed with similar motivations for finding a set of bases in the linear class for any bounded convex set (Awerbuch &
Kleinberg, 2008; Hazan & Karnin, 2016). The barycentric spanner tries to find a set of bases where all vectors in the set can
be written as linear combinations of the spanner with each coefficient bounded by [−1, 1]. Despite the original motivation of
online linear optimization, it is applied to problems that include contextual bandits and RL (Foster et al., 2021; Zhu et al.,
2022). The volumetric spanner tries to find a set of bases where all vectors in the set can be written as linear combinations
of the spanner with coefficients that lie in a unit ball. The volumetric spanner has applications in experimental design and
linear bandits (Hazan & Karnin, 2016). Both of these spanners are developed with a focus on linear applications. We refer
the reader to the texts (Bubeck et al., 2015; Lattimore & Szepesvári, 2020) for a more in-depth discussion on the uses of
design in the bandit literature.

Applications of Linear G-Optimal Design Applications of linear G-optimal design to linear bandits and low-rank MDPs
are also considered (Foster et al., 2021; Wagenmaker et al., 2021). In such cases, the G-optimal design offers a strategy for
exploration that is sufficiently balanced to cover all the actions. More related to our RL results, Agarwal & Zhang (2022)
apply G-optimal design within an optimistic posterior sampling algorithm for a subclass of the problems that we address
here. These applications are again restricted to the linear case.

Design-Based Approach for Active Learning Katz-Samuels et al. (2021) consider the agnostic pool-based PAC active
classification task where the learner iteratively queries samples from the environment for obtaining a classifier with a given
performance guarantee. For this task, they design querying strategies based on a design value which is the ratio between the
number of disagreements expected to be observed and the difference in error. Gentile et al. (2022) consider the pool-based
batch active-learning as we describe in Section 5.4. They propose a design principle in the spirit of the eluder dimension, i.e.,
iteratively finding the worst sample in terms of the ratio between square loss and the sum of all the square losses with respect
to all the samples chosen in history. As we show in our Section 5.4 such a method can be improved in a pool-dependent
fashion and possibly exponentially due to the exponential gap between the F -condition number and the eluder dimension.

Non-linear Experimental Design Many classical design criteria, such as A,c,D,G,L-design , are studied in the statistics
literature (Pronzato & Pázman, 2013). These design criteria originate from controlling different aspects of the (asymptotic)
variance of the linear least squares predictor over the design space X . The natural extensions of these criteria to the
non-linear cases are thus local and asymptotic (Pronzato & Pázman, 2013). Global and non-asymptotic minimax criteria are
also considered in the most general form (Pronzato & Pázman, 2013, Section 8.4) with difficulties in terms of existence.

B. Additional Results
B.1. Model-based Reinforcement Learning

In this section, we continue the study of reinforcement learning following the model-based approach where a class M of
MDPs are given, where the MDP models in M share the same (known) (D, {Zh}h∈[H], {Ah}h∈[H]) while paramentrized by
M = ({Ph}h∈[H]{Rh}h∈[H]). The optimal policy for each model M ∈ M is denoted by πM . The Q-value function is de-
noted byQh

M,π . The optimal value function is defined as V h
M(zh) = Qh

M(zh, πM(zh)) whereQh
M(zh, ah) = Qh

M,πM
(zh, ah).

We also denote JM(π) = Ez1∼D[Q1
M,π(z

1, π(z1))] and Reg
M
(π) = JM(πM)− JM(π) for all M ∈ M and π ∈ Π. In the

model based approach, we try to estimate the true model M⋆ with the following realizability assumption.

Assumption B.1 (M⋆ Realizability). M⋆ ∈ M.

For any two models M,M ′ ∈ M, policy π and h ∈ [H], we abuse the notation and define similarly the model-based
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Bellman error as

Eh(M,M ′, π) := EM,π
[
Qh

M′(zh, ah)− rh − V h
M′(zh+1)

]
,

where EM,π denote the expectation running policy π in model M .

For the model-based setting, algorithms have been developed to search for M ′ such that Eh(M⋆,M
′, π) is small for all π

(Du et al., 2021; Foster et al., 2021). For such a setup, we define the following adaptation of F -condition number.

Definition B.2 (Regret F -condition number). For any RL model class M, M ∈ M, and any parameter η ≥ 0, consider

the function class Fh
η (M) =

{
Eh(M,M,·)√
1+η·RegM (·)

|M ∈ M
}

⊂ (Π → R). For any base measure ν0 : ∪h∈[H]Fh
η → R≥0, the

regret F -condition number is defined as

V⋆
η (M;M,ν0) := sup

h∈[H]

inf
ρ∈∆(Π)

sup
f∈Fh

η (M),M∈M

f2(πM)

ν0(f) + Eπ∼ρ[f2(π)]
.

The regret F -condition number differs from the F -condition number in that the supreme on nominator is only taken over the
possible optimal policies ΠM = {πM |M ∈ M}, whereas the design can be chosen on the whole policy class. The regret
F -condition number is bounded by the dimension d for the cases where

Eh(M,M, πM′) =
〈
Xh(M

′;M),Wh(M ;M)
〉
,

for some functions Xh(·;M),Wh(·;M) : M → Rd following Example 1. These classes include MDPs with linear Q⋆/V⋆
(Du et al., 2021), MDPs with low occupancy measure (Du et al., 2021), and linear mixture MDPs (Modi et al., 2020). For all
such models, we have the following theorem.

Theorem B.3. Suppose supf ν0(f) ≤ 1/T and V⋆
0 (M;M,ν0) ≤ d. There exists an algorithm that interacts with the true

model for T rounds and returns a policy πT that achieves

E
[
V 1
⋆ (z

1)− V 1
πT

(z1)
]
= O

(√
H2d log |M|

T

)
.

This shows that the F -condition number captures a wide range of structural properties. Varying the parameter η in the
defintion of regret F -condition number, we can also obtain guarantees for online regret minimization. For this we have the
following theorem.

Theorem B.4. Suppose supf ν0(f) ≤ 1/T , V⋆
η (M;M,ν0) ≤ d for some η = Θ(H

√
dT/ log |M|). There exists an

algorithm that interacts with the true model for T rounds with policy πt at round t for t ∈ [T ] that achieves

T∑
t=1

E
[
V 1
⋆ (z

1)− V 1
πt
(z1)

]
= O

(√
H2d log |M| · T

)
.

C. Technical Tools
C.1. Subgradient Descent

Proposition C.1 ((Shor, 2012)). Let d > 0 be any interger. For any L-Lipschitz convex function l defined on a closed
bounded convex set C ⊂ Rd and any initial point x1, the iteration

xt+1 = PC(xt − gt/
√
t),

where PC(x) = argminy∈C∥x− y∥ is the projection map and gt ∈ ∂l(xt) satisfies

min
s≤t

l(xs)−min
x∈C

l(x) ≤ ∥x1 − x∗∥2 + L2 log t√
t

,

where x∗ = argminx∈C l(x).
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C.2. ERM Guarantee

Lemma C.2. For any distribution ρ ∈ ∆(X ), if we sample x1, ..., xn i.i.d. from ρ, then we have that with probability at
least 1− δ,

Ex∼ρ(f̂n(x)− f⋆(x))2 = O
(
B log(|F|/δ)

n

)
,

for any δ ∈ (0, 1/2), where f̂n is the ERM estimator.

Proof of Lemma C.2. The proof is standard. We include this for completeness.

n∑
i=1

(f∗(xi)− f̂n(xi))
2 =

n∑
i=1

(
(f̂n(xi)− yi)

2 − (f∗(xi)− yi)
2 + 2(f̂n(xi)− f∗(xi))(yi − f∗(xi))

)
≤ 2

n∑
i=1

(f̂n(xi)− f∗(xi))ϵi,

where the last inequality is by the definition of f̂n and ϵi := yi − f∗(xi) is mean-zero and bounded in [−B,B]. Then by
Azuma’s inequality, we have with probability at least 1− δ/2,

n∑
i=1

(f̂n(xi)− f∗(xi))ϵi ≤ 4B

√√√√ n∑
i=1

(f̂n(xi)− f∗(xi))2 log(2|F|/δ).

Thus,

n∑
i=1

(f̂n(xi)− f∗(xi))
2 ≤ 16B2 log(2|F|/δ).

Then by Bernstein inequality, we have with probability at least 1− δ/2 for any f, f ′ ∈ F ,

Ex∼ρ(f(x)− f ′(x))2 ≤ 1

n

n∑
i=1

(f(xi)− f ′(xi))
2 +

√
2Var ((f(x1)− f ′(x1))2) log(2|F|/δ)

n
+
B log(2|F|/δ)

3n

≤ 1

n

n∑
i=1

(f(xi)− f ′(xi))
2 +

√
2B2Ex∼ρ(f(x)− f ′(x))2 log(2|F|/δ)

n
+
B log(2|F|/δ)

3n

≤ 1

n

n∑
i=1

(f(xi)− f ′(xi))
2 +

1

2
Ex∼ρ(f(x)− f ′(x))2 +

2B log(2|F|/δ)
n

,

where the second inequality is by Var
(
(f(x1)− f ′(x1))

2
)
≤ Ex∼ρ(f(x)− f ′(x))4 ≤ B2Ex∼ρ(f(x)− f ′(x))2 and the

third inequality is by Cauchy-Schwarz inequality. In all, we have with probability at least 1− δ/2 that

Ex∼ρ(f̂n(x)− f∗(x))2 ≤ 2

n

n∑
i=1

(f̂n(xi)− f∗(xi))
2 +

4B log(2|F|/δ)
n

.

Finally, by the union bound, we have with probability at least δ,

Ex∼ρ(f̂n(x)− f∗(x))2 ≤ 36B log(2|F|/δ)
n

.
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D. Proofs from Section 3
D.1. Equivalence with G-optimal Design in the Linear Case

Proof of Lemma 3.1. Let Bd refer to the Euclidian unit ball in Rd. By the definition of F lin, we have that for any fixed ρ,

V(F lin, ρ; ν0) = sup
x∈X

sup
w,w′∈Bd

(
(w − w′)⊤x

)2
(w − w′)⊤Σρ(λ/d)(w − w′)

.

Now we note that the objective is invariant to the norm of w − w′, so the objective is equivalent to

V(F lin, ρ; ν0) = sup
x∈X

sup
u̸=0

(
u⊤x

)2
u⊤Σρ(λ/d)u

= sup
x∈X

sup
v ̸=0

(v⊤Σρ(λ/d)
−1/2x)2

∥v∥22
= sup

x∈X
∥x∥2Σρ(λ/d)−1 ,

where the final step uses the closed form expression for the maximizing v = Σρ(λ/d)
−1/2x. This last term is exactly the

residual variance on the point x, given data from ρ, and forms the objective for classical G-design. This completes the
proof.

D.2. Optimal F -condition Number for Example Function Classes

Proof of Example 2. Without loss of generality, assume U ⊂ [0, 1]d. Let h ∈ (0, 1) be some width to be determined and let
1/h be an integer. Divide U into N = (1/h)d cubes each with width h. Consider the design space of

Xh =

(xk1
1 · · ·xkd

d

)
(k1,...,kd)∈Zd

≥0

k1+···+kd≤⌊β⌋

| (x1, ..., xd) ∈ [0, h]d

 ⊂ R(⌊β⌋+1)d .

For this design space in R(⌊β⌋+1)d , we can consider the corresponding G-optimal design πh which corresponds naturally to
a distribution on [0, h]. Let T j(x) = (x1 + j1h, x2 + j2h, ..., xd + jdh) for x = (x1, ..., xd) ∈ [0, 1]d be the translation
map for any j = (j1, ..., jd) ∈ {0, 1, ..., 1/h− 1}d. Then we consider the distribution

ρ =
1

N

∑
j∈{0,1,...,1/h−1}d

T j
#πh,

where T j
# denote the push-forward map induced by T j . For this ρ, we have

V(FH
β,d, ρ; ϵ0) = sup

g∈DFH
β,d

∥g∥2∞
ϵ0 +

∫
g2dρ

.

For any g ∈ DFH
β,d, let xg attain the maximum in the infinity norm. Furthermore, for any j = (j1, ..., jd) ∈ {0, 1, ..., 1/h−

1}d, let xj = (j1h, j2h, ..., jdh). Suppose m ∈ {0, 1, ..., 1/h− 1}d satisfies for xg = (xg1, ..., x
g
d) that xgl ∈ [xml , x

m
l + h)

for each coordinate l ∈ [d]. Then we let the polynomial approximation of g up to degree ⌊β⌋ be

pg(x) =
∑

k=(k1,...,kd)∈Zd
≥0

k1+···+kd≤⌊β⌋

Dkg(xm)

k1! · · · kd!
(x1 − xm1 )k1 · · · (xd − xmd )kd .

Then, since g is Holder, we have

|g(xg)− pg(x
g)| ≤ Cβ,dh

β .
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Furthermore, since πh is G-optimal and pg is linear in the Xh, we have

p2g(x
g) ≲ (β + 1)d

∫
p2gdTm

# πh.

Combine with the inequality that a2 ≥ b2/2 − 3(a − b)2 and we will choose h small comparing with ϵ0 to ensure the
positivity of the denominator, we have

∥g∥2∞
ϵ0 +

∫
g2dρ

≲
(g(xg)− pg(x

g))2 + p2g(x
g)

ϵ0 + (
∫
p2g/2− 3|g − pg|2dTm

# πh)/N

≲
C2

β,L,dh
2β +

∫
p2gdTm

# πh

ϵ0 − 3C2
β,L,dh

2β/N +
∫
p2gdTm

# πh/(2N)

≲ N,

where we choose ϵ0 = C · h2β/N for C large enough, we have N = (1/h)d = O(ϵ
−d/(2β+d)
0 ).

For the lower bound side, we adopt the lower bound example from Tikhomirov (1993). We assume L is large enough.
Otherwise, we only need to scale accordingly. Consider

ϕ(x) =

{
a
∏d

i=1(1 + xi)
β(1− xi)

β , if |xi| ≤ 1, i ∈ [d],

0 otherwise,

where a ≥ 0 is a scaling factor. This function belongs to FH
β,d (Tikhomirov, 1993) for a small enough. For any ϵ0 sufficiently

small, let ϵ = ϵ
β/(2β+d)
0 . For any set U of non-empty interior, choose a set of points x1, ..., xN that satisfies |xik −xjk| > 2∆

for all i, j ∈ [N ], k ∈ [d], and ∆ = (ϵ/a)1/β . By volumetric argument, we can find such a set with N = Ω(ϵ−d/β).
Consider functions

H :=

{
hr(x) := ∆βϕ

(
x− xr

∆

)
| r ∈ [N ]

}
.

The function set H ⊂ DFH
β,d for L large enough. Consider the cubes Cr = {x | supk∈[d] |xk − xrk| ≤ ∆} for r ∈ [N ].

Since these cubes are disjoint, then for any design ρ, there exists r ∈ [N ] such that ρ(Cr) ≤ 1/N . Then we have,

V⋆(FH
β,d; ϵ0) ≥

∥hr∥2∞
ϵ0 +

∫
(hr)2dρ

≥ ϵ2/24dβ

ϵ0 + ϵ2/(24dβ ·N)

≳
ϵ
β/(2β+d)
0

ϵ0 + ϵ
β/(2β+d)
0 · ϵd/(2β+d)

0

= Ω(ϵ
−d/(2β+d)
0 ),

where the second inequality is by the fact that ∥ϕ∥∞ = a/22βd and the definition of ∆ and the third inequality is by the
definition of ϵ and N .

Proof of Example 3. We first separate the interval [−B,B] into O(logB) number of subintervals. Concretely, let Il =
[2l, 2l+1], Jl = [−2l+1,−2l] for l ≥ 1, and U = [−2, 2]. For each interval in I ∈ I = {Il}l∈[logB] ∪ {Jl}l∈[logB] ∪ {U}.
maxx∈I(1 + x2) ≤ 5minx∈I(1 + x2). And for the polynomial function class Pk with degree bounded by k on interval I ,
there exists a design ρk,I such that V(Pk, ρk,I ; 0) ≤ k. Finally, we consider ρ = 1

|I|
∑

I∈I ρk,I and obtain an upper bound
of V∗(Pk,B ; ϵ0) = O(k logB).
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Proof of Theorem 3.2. For every h ∈ DF , find any xh such that 2|h(xh)| ≥ ∥h∥∞. For any ϵ that satisfies the assumption
in the statement. Consider the minimum covering DFϵ of DF in ∥·∥∞ and the uniform design ρ on the set Xϵ := {xh|h ∈
DFϵ}. Let N = N (DF , ∥·∥∞, ϵ) = |DFϵ|. Then for any h ∈ DF , suppose ĥ ∈ DFϵ is such that ∥h− ĥ∥∞ ≤ ϵ. We have

∥h∥2∞
ϵ0 +

∫
h2dρ

≤ 2∥h− ĥ∥2∞ + 2∥ĥ∥2∞
ϵ0 + h2(xĥ)/N

≤ 2∥h− ĥ∥2∞ + 2∥ĥ∥2∞
ϵ0 − 3(h− ĥ)2(xĥ)/N + ∥ĥ∥2∞/(4N)

≤ 2ϵ2 + 2∥ĥ∥2∞
ϵ0 − 3ϵ2/N + ∥ĥ∥2∞/(4N)

≤ 2ϵ2 + 2∥ĥ∥2∞
ϵ2/N + ∥ĥ∥2∞/(4N)

≤ 8N.

where the second inequality is by a2 ≥ b2/2− 3(a− b)2 and |ĥ(xĥ)| ≥ ∥ĥ∥∞/2, the third inequality is by the definition of
ĥ, and the fourth inequality is by the assumption that ϵ0 > 4ϵ2/N .

D.3. Exponential Gap with Eluder Dimmension

Proof of Lemma 3.4. Let ρk = Unif(Bk), then we have

V∗(Fk; ν0) ≤ V∗(ρk; ν0)

= sup
x,h∈X×DF

h2(x)

ν0(h) + Ex′∼ρk [h(x′)2]
.

For any 0 ̸= h ∈ DF , there exists l such that |h(bl)| = 1
2 . Together with the fact that supx,h h(x)

2 ≤ 1, we have

V∗(Fk; ν0) ≤
1

1
kh(b

l)2
= 4k.

On the other hand, it is easy to verify that the sequence of (at, f0, f t) for t ∈ [2k − 1] with ϵ = 3/4 satisfies the condition
in the definition of eluder dimension (Definition 2.1). Thus we have

dimE(Fk; ϵ0) ≥ 2k − 1.

D.4. Exponential Gap for Disagreement Coefficient

Definition D.1 (Disagreement coefficient (Foster et al., 2020)). The disagreement coefficient for function class F and
positive numbers ∆0, ϵ0 ∈ (0, 1) is defined as

θ(F ,∆0, ϵ0) = sup
ρ∈P(X )

sup
∆≥∆0,ϵ≥ϵ0

{
∆2

ϵ2
· Px∼ρ

(
∃f ∈ F : |f(x)| > ∆,Ex∼ρf

2(x) ≤ ϵ
)}

∨ 1.

Proposition D.2. For any integer k ≥ 1, ϵ0 = 1/2k, and ∆0 ∈ (ϵ0, 1), we have for the cheating code function class Fk,

θ(Fk,∆0, ϵ0) ≥ 22k.

Proof of Proposition D.2. Take ρ = Unif(Ak), thus for any ai ∈ Ak, f i satisfies |f i(ai)| > ∆0, Ex∼ρf
2(x) ≤ ϵ0. Thus

we have

θ(Fk,∆0, ϵ0) ≥
1

ϵ20
= 22k
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Proposition D.3. For any ∆0, ϵ0 ∈ (0, 1) and function class F bounded in [−1, 1], we have

V∗(F ; ϵ0) ≤ V∗(F ; ϵ0) ≤ 2θ(F ,∆0,
√
ϵ0) log(1/ϵ0) log(1/∆0) +

∆2
0

ϵ0
+ 1.

Proof of Proposition D.3. We follow the proof of Lemma E.2 of Foster et al. (2021).

V∗(F ; ϵ0) = inf
ρ
sup
h,x

h2(x)

ϵ0 + Ex′∼ρh2(x′)

= inf
ρ
sup
µ

Ex∼µ

[
sup

h∈DF

h2(x)

ϵ0 + Ex′∼ρh2(x′)

]
≤ sup

µ
Ex∼µ

[
sup

h∈DF

h2(x)

ϵ0 + Ex′∼µh2(x′)

]
≤ ∆2

0

ϵ0
+ sup

µ
Ex∼µ

[
sup

h∈DF

h2(x)−∆2
0

ϵ0 + Ex′∼µh2(x′)

]
.

We fix any design µ. Then since for any ϵ0 ≤ X ≤ 1, we have

1

X2
= 2

∫ 1

X

1

t3
dt+ 1 = 2

∫ 1

ϵ

1

t3
1(t ≥ X)dt+ 1.

Since |f | ≤ 1, we have

Ex∼µ

[
sup

h∈DF

h2(x)−∆2
0

ϵ0 + Ex′∼µh2(x′)

]
≤ 1 + 2Ex∼µ

[
sup

h∈DF

∫ 1

√
ϵ0

h2(x)−∆2
0

ϵ3
1
(
Ex′∼µh

2(x′) ≤ ϵ2
)
dϵ

]
.

Similarly, we have for any ∆0 ≤ X ≤ 1

X2 −∆2
0 =

∫ 1

∆2
0

1(X2 > t)dt = 2

∫ 1

∆0

1(X > t)tdt.

This leads to the upper bound

2Ex∼µ

[
sup

h∈DF

∫ 1

√
ϵ0

h2(x)−∆2
0

ϵ3
1
(
Ex′∼µh

2(x′) ≤ ϵ2
)
dϵ

]

≤ 4Ex∼µ

[
sup

h∈DF

∫ 1

√
ϵ0

∫ 1

∆0

δ

ϵ3
1
(
|h(x)| > δ ∧ Ex′∼µh

2(x′) ≤ ϵ2
)
dδdϵ

]

≤ 4Ex∼µ

[∫ 1

√
ϵ0

∫ 1

∆0

δ

ϵ3
1
(
∃h : |h(x)| > δ ∧ Ex′∼µh

2(x′) ≤ ϵ2
)
dδdϵ

]

≤ 4

∫ 1

√
ϵ0

∫ 1

∆0

δ

ϵ3
Px∼µ

(
∃h : |h(x)| > δ ∧ Ex′∼µh

2(x′) ≤ ϵ2
)
dδdϵ

≤ 4θ(F ,∆0,
√
ϵ0)

∫ 1

ϵ0

∫ 1

∆0

1

δϵ
dδdϵ

≤ 2θ(F ,∆0,
√
ϵ0) log(1/ϵ0) log(1/∆0).

In all, we have

V∗(F ; ϵ0) ≤ 2θ(F ,∆0,
√
ϵ0) log(1/ϵ0) log(1/∆0) +

∆2
0

ϵ0
+ 1.
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Definition D.4 (Star number (Foster et al., 2020)). For any function f∗ ∈ F , the value function star number Sf⋆(F , ϵ0) is
the length of the longest sequence of pairs x1, . . . , xm such that there exists ϵ > ϵ0, where for all i, there exists fi ∈ F such
that

|fi (xi)− f⋆ (xi)| > ϵ, and
∑
j ̸=i

(fi (xj)− f⋆ (xj))
2 ≤ ϵ2.

Proposition D.5. For any integer k ≥ 1 and ϵ0 ∈ (0, 1), we have for the cheating code function class Fk, for any f∗ ∈ Fk

such that

Sf∗(Fk, ϵ0) ≥ 2k − 1.

Proof of Proposition D.5. Without loss of generality, take f∗ = f0, take xi = ai for i ∈ [2k − 1] and fi = f i in the
definition of star number. We have Sf∗(Fk, ϵ0) ≥ 2k − 1.

E. Proofs from Section 4
E.1. Proof of Design Sparsification

Proof of Lemma 4.1. For any h ∈ DF , by Bernstein’s inequality, we have with probability at least 1− δ′,

Ex∼ρ(h(x))
2 − 1

n

n∑
i=1

(h(xi))
2 ≤

√
2Varρ(h2) ln(1/δ)

n
+

ln(1/δ′)

3n
· sup

x
(h(x))2.

Since Varρ(h
2) ≤ Ex∼ρ(h(x))

2 · supx(h(x))2, we have√
2Varρ(h2) ln(1/δ)

n
≤
√

2Ex∼ρ(h(x))2 · supx(h(x))2 ln(1/δ′)
n

≤ 1

2
Ex∼ρ(h(x))

2 +
ln(1/δ′)

n
· sup

x
(h(x))2,

where the second inequality is by AM-GM inequality. Together we have

Ex∼ρ(h(x))
2 − 1

n

n∑
i=1

(h(xi))
2 ≤ 1

2
Ex∼ρ(h(x))

2 +
2 ln(1/δ′)

n
· sup

x
(h(x))2.

Reorganizing, we have

Ex∼ρ(h(x))
2 ≤ 2 ·

(
1

n

n∑
i=1

(h(xi))
2

)
+

4 ln(1/δ′)

n
· sup

x
(h(x))2.

Furthermore, by the choice of n = 16V(F , ρ; ν0) log(|DF|/δ) ≤ 32V(F , ρ; ν0) log |F|, δ′ = δ
|DF| and the definition of

V(ρ; ν0), we have

Ex∼ρ(h(x))
2 ≤ 2 ·

(
1

n

n∑
i=1

(h(xi))
2

)
+

4 ln(1/δ′)

n
· sup

x
(h(x))2

≤ 2 ·

(
1

n

n∑
i=1

(h(xi))
2

)
+

supx(h(x))
2

2V(F , ρ; ν0)

≤ 2 ·

(
1

n

n∑
i=1

(h(xi))
2

)
+

1

2

(
ν0(h) + Ex∼ρ(h(x))

2
)
.

Reorganizing, we have with probability at least 1− δ/(2|DF|),

Ex∼ρ(h(x))
2 + ν0(h) ≤ 4 ·

(
1

n

n∑
i=1

(h(xi))
2 + ν0(h)

)
.
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Finally, by the union bound we conclude that with probability at least 1− δ that the empirical distribution ρ̂ = 1
n

∑n
i=1 1(xi)

satisfies

V(F , ρ̂; ν0) = sup
h,x

(h(x))2

ν0(h) + Ex′∼ρ̂(h(x′))2
≤ 4V(F , ρ; ν0).

E.2. Proofs of Theorem 4.2 and Lemma 3.3

Definition E.1 (Smoothed eluder dimension). For the function class F , T > 0 and ϵ0 > 0, let {(xt, ht) : t = 1, . . . , T} be
an arbitrary sequence in X ×DF . We can define

d̃imE(F , ϵ0) = sup
{(xt,ht)}T

t=1

T∑
t=1

ht(xt)
2

Tϵ0 +
∑t

i=1 ht(xi)
2
.

Lemma E.2. For any function class F , ϵ0 > 0, and θ > 0, suppose the sequence {(xt, ht) : t = 1, . . . , T} satisfies
ht(xt) ∈ (θ, 2θ] for all t ∈ [T ]. Let dimE(F ; θ) = d We have

T∑
t=1

ht(xt)
2

Tϵ0 +
∑t

i=1 ht(xi)
2
≤ 8d log(T/d).

Proof of Lemma E.2. Consider the following bucketing process as in Algorithm 2:

Algorithm 2 Bucketing
1: Initialize a list of buckets L1 = ∅
2: for t = 1, . . . , T do
3: for l = 1, . . . , |Lt| do
4: if the l-th bucket Bl,t ∈ Lt satisfies

∑
x∈Bl,t

h2t (x) < θ2 then
5: Let lt = l
6: Update Bl,t+1 = Bl,t ∪ {xt}
7: break
8: end if
9: end for

10: If xt is not added not any of the bucket in Lt, then create a new bucket in the list Lt+1 = Lt ∪{B|Lt|+1,t+1 = {xt}}
and let lt = |Lt|+ 1.

11: For l ̸= lt, maintain the bucket Bl,t+1 = Bl,t.
12: end for

For any l ∈ [|LT |] and element xt that lies in the bucket Bl,T in the end, we have

ht(xt)
2

Tϵ0 +
∑t

i=1 ht(xi)
2
≤ 4θ2

Tϵ0 + lθ2
.

Furthermore, by the definition of dimE(F , θ), each bucket can not contain more than dimE(F , θ) elements. Finally, by
monotonicity of the upper bound 4θ2

Tϵ0+lθ2 with respect to the bucket number l, thus we have

T∑
t=1

ht(xt)
2

Tϵ0 +
∑t

i=1 ht(xi)
2
≤ 4d

T/d∑
l=1

θ

Tϵ0 + lθ
≤ 8d log T.
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Lemma E.3. For any function class F bounded by 1 and ϵ0 ∈ (0, 1), we have

d̃imE(F , ϵ0) ≤ 9 log2(1/ϵ0) · dimE(F ;
√
ϵ0).

Proof of Lemma E.3. Let K = log(1/ϵ0) then we have 2K
√
ϵ0 ≥ 1. For any sequence {(xt, ht) : t = 1, . . . , T}, we have

T∑
t=1

ht(xt)
2

Tϵ0 +
∑t

i=1 ht(xi)
2

=

T∑
t=1

ht(xt)
2

Tϵ0 +
∑t

i=1 ht(xi)
2
1(ht(xt) ≤

√
ϵ0) +

K∑
k=1

T∑
t=1

ht(xt)
2

Tϵ0 +
∑t

i=1 ht(xi)
2
1(2k−1√ϵ0 < ht(xt) ≤ 2k

√
ϵ0)

≤ 1 +

K∑
k=1

T∑
t=1

ht(xt)
2

Tϵ0 +
∑t

i=1 ht(xi)
2
1(2k−1√ϵ0 < ht(xt) ≤ 2k

√
ϵ0).

For any fixed k ∈ [K], we can apply Lemma E.2. Thus we have
T∑

t=1

ht(xt)
2

Tϵ0 +
∑t

i=1 ht(xi)
2
≤ 1 + 8 log T

K∑
k=1

dimE(F ; 2k−1√ϵ0))

≤ 9K log T · dimE(F ;
√
ϵ0)),

where the last inequality is by noting that the eluder dimension is monotonic in its second argument. Taking supremum on
the sequence yields the desired result.

Proof of Theorem 4.2. We first show that the maximization in line 2 of Algorithm 1 is equivalent to the related maximization
problem:

xt = argmax
x∈X

sup
h∈DF

h2(x)

Tϵ0 + h2(x) +
t−1∑
s=1

h2(xs)

(6)

The equivalence happens because the functions z/a and z/(a+ z) are maximized at the same argument z for any a > 0 by
monotonicity. For the rest of the proof, we consider the form of xt from Equation 6, as it is more amenable to our analysis.

We note that d̃imE(F , ϵ0) < T by definition. This is because

d̃imE(F , ϵ0) = sup
{(xt,ht)}T

t=1

T∑
t=1

ht(xt)
2

Tϵ0 +
∑t

i=1 ht(xi)
2

≤ sup
{(xt,ht)}T

t=1

T∑
t=1

ht(xt)
2

Tϵ0 + ht(xt)2
< T.

For any t ∈ [T ] and arbitrary xT+1, we have

sup
h∈DF

h(xt+1)
2

Tϵ0 +
∑t+1

s=1 h(xs)
2
= sup

h∈DF

h(xt+1)
2

Tϵ0 + h(xt+1)2 +
∑t

s=1 h(xs)
2

≤ sup
h∈DF

h(xt+1)
2

Tϵ0 + h(xt+1)2 +
∑t−1

s=1 h(xs)
2

≤ sup
x

sup
h∈DF

h(x)2

Tϵ0 + h(x)2 +
∑t−1

s=1 h(xs)
2

= sup
h∈DF

h(xt)
2

Tϵ0 + h(xt)2 +
∑t−1

s=1 h(xs)
2

= sup
h∈DF

h(xt)
2

Tϵ0 +
∑t

s=1 h(xs)
2
,
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where the first inequality is by the fact that
∑t

s=1 h(xs)
2 >

∑t−1
s=1 h(xs)

2, the second inequality is by viewing xt+1 as a
variable then replace it with its supreme and the second equality is by the definition of xt. With these inductive inequalities,
we further have for any t ∈ [T ],

sup
h∈DF

h(xT+1)
2

Tϵ0 +
∑T+1

s=1 h(xs)
2
≤ sup

h∈DF

h(xt)
2

Tϵ0 +
∑t

s=1 h(xs)
2
.

Summing up both sides for t ∈ [T ], we have

T sup
h∈DF

h(xT+1)
2

Tϵ0 +
∑T+1

s=1 h(xs)
2

≤
T∑

t=1

sup
h∈DF

h(xt)
2

Tϵ0 +
∑t

s=1 h(xs)
2

= sup
(ht)Tt=1∈(DF)⊗T

T∑
t=1

ht(xt)
2

Tϵ0 +
∑t

s=1 ht(xs)
2

≤ sup
{(xt,ht)}T

t=1

T∑
t=1

ht(xt)
2

Tϵ0 +
∑t

i=1 ht(xi)
2
= d̃imE(F , ϵ0),

where the first equality is because that ht are independently maximizing each summand and the the second inequality is by
viewing xt as variables and then replacing them by the supreme with abuse of notation. Recall that xT+1 can be arbitrary.
This implies that for any h and x,

T
h(x)2

Tϵ0 + h(x)2 +
∑T

s=1 h(xs)
2
≤ d̃imE(F , ϵ0).

Changing the formulation we have

(T − d̃imE(F , ϵ0))h(x)2 ≤ T

(
ϵ0 +

1

T

T∑
s=1

h(xs)
2

)
d̃imE(F , ϵ0) = T (ϵ0 + Ex′∼ρT

h(x′)2)d̃imE(F , ϵ0).

Moving terms around and taking supreme over x, h, we can obtain

V(F , ρT ; ν0) ≤
T

T − d̃imE(F , ϵ0)
· d̃imE(F , ϵ0).

Combine the above result with Lemma E.3 and the assumption that 18 log(1/ϵ0) log T · dimE(F ;
√
ϵ0) ≤ T , we have

V(F , ρT ; ν0) ≤
T

T − d̃imE(F , ϵ0)
· d̃imE(F , ϵ0)

≤ 2d̃imE(F , ϵ0)
≤ 18 log(1/ϵ0) log T · dimE(F ;

√
ϵ0).

Finally, 18 log(1/ϵ0) log T · dimE(F ;
√
ϵ0) ≤ T is achieved when T = Cd log(1/ϵ0)(log d+ log log(1/ϵ0)) for C large

enough. Thus plug in this T on the right-hand side, and we have

V(F , ρT ; ϵ0) = O (d log(1/ϵ0) · (log d+ log log(1/ϵ0))) .
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Algorithm 3 FW algorithm for F -design
Require: Design space X , function class F , time horizon T , base measure ν0 > 0, stepsizes η1, . . . , ηT ∈ [0, 1]

1: ρ0 = Unif(X )
2: for t = 1, . . . , T do
3: Find xt ∈ F so that

xt = argmax
x∈X

sup
h∈DF

h2(x)

ν0(h) + Ex′∼ρt−1
h2(x′)

.

4: Update ρt = (1− ηt)ρt−1 + ηt1(xt).
5: end for
6: Return ρT .

E.3. Hardness with Argmax Oracle

We consider the generalization of FW algorithm for linear G-optimal design (Todd, 2016) which is motivated by the Frank-
Wolfe algorithm to a more general form of Algorithm 1 as shown in Algorithm 3. This algorithm reduces to Algorithm 1 if
the learning rates ηt = 1

t for all t ∈ [T ].

A more favorbale property of Algorithm 3 is that by choosing {ηt}Tt=1 more adaptively, the algorithm can converge in
O(d(log log |X |+ log d)) (Todd, 2016) steps in the linear case. However, in this section, we show that it is not possible
to achieve V(F , ρT ; ν0) ≤ O(V∗(F ; ν0)) within Õ(V∗(F ; ν0)) number of steps. In fact, for the cheating code example
(Example 4), the algorithm will not converge to O(V∗(F ; ν0)) at all for any T ≥ 1.

Theorem E.4. For any integer k > 1, let Fk be the cheating code class as in Example 4. Then for any choice of {ηt}Tt=1

(possibly adaptively) and t ∈ [T ], the ρt in Algorithm 3 satisfies

V(Fk, ρt; ν0) ≥ min

{
2k

k + 2
,

1

suph∈DFk ν0(h)

}
.

This result suggests that we need to consider a different class of algorithms for obtaining near-optimal designs efficiently.

Proof of Theorem E.4. For any fixed k and design ρ,

x̂ = argmax
x∈X

sup
f,f ′∈Fk

(f(x)− f ′(x))2

ν0(f − f ′) + Ex′∼ρt−1
(f(x′)− f ′(x′))2

= argmax
x∈X

(f i(x)− f j(x))2,

where f i, f j are the two functions that achieve the inner supreme. It is clear that f i ̸= f j , thus x̂ = ai or aj . Thus we have
xt ∈ Ak for any t ∈ [T ]. Therefore, for any chosen sequence of {ηt}Tt=1, we know that the mass on Ak will only increase,
i.e.,

ρT (Ak) ≥ ρT−1(Ak) ≥ · · · ≥ ρ0(Ak) =
2k

2k + k
.

Thus there exists i, j such that ρT (ai) + ρT (aj) ≤ 1
2k−1 by pigeohole, and also we have ρT (Bk) ≤ k

2k+k
. Thus

V(Fk, ρT ; ν0) ≥
(f i(ai)− f j(ai))

2

ν0(f i − f j) + Ex′∼ρT
(f i(x′)− f j(x′))2

≥ 1

suph∈DF ν0(h) +
1

2k−1 + k
2k+k

≥ min

{
2k

k + 2
,

1

suph∈DF ν0(h)

}
.
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Algorithm 4 Subgradient descent for non-linear G-optimal design
Require: Function class F , C = P(X ), time horizon T

1: Set ρ0 = Unif(X ).
2: for t = 1, 2, . . . , T do
3: Find xt ∈ X , ht ∈ HF so that

xt, ht = argmax
x,h

h2(x)

ν0(h) + Ex′∼ρt−1
h2(x′)

.

4: Let gt =
h2
t (xt)

(ν0(ht)+Ex′∼ρt−1
h2
t (x

′))2
· h2t .

5: Let ρt = PC
(
ρt−1 + gt/

√
t
)
.

6: end for
7: return ρ̂T = argminρ∈{ρs}T

s=1
V(F , ρ; ν0).

E.4. Projected Subgradient Descent with Argmax Oracle

Theorem E.5. Suppose function class F is bounded by 1 and the base measure ν0 is lower bounded ν0(h) ≥ ϵ > 0 for all
h ∈ DF . Then Algorithm 4 ensures that

V(F , ρ̂T ; ν0)− V∗(F ; ν0) ≤
2ϵ4 + 256|X | log t

ϵ4
√
t

.

Proof of Theorem E.5. To apply Proposition C.1, we first verify that V(F , ρ; ν0) is a Lipschitz convex function in ρ. For
convexity, we have since

V(F , ρ; ν0) = sup
h∈Df,x∈X

h(x)2

ν0(h) + Ex′∼ρh(x′)2

is a supreme of convex functions. For the Lipschitzness, we have that for any fixed h, x ∈ DF ×X , the gradient is bounded
by ∥∥∥∥∂ρ h(x)2

ν0(h) + Ex′∼ρh2(x′)

∥∥∥∥ =

∥∥∥∥∥ h2(x)h2(·)
(ν0(h) + Ex′∼ρh2(x′))

2

∥∥∥∥∥
≤ 16

ϵ2
∥e∥ ≤ 16

ϵ2

√
|X |,

where e = (1, . . . , 1) ∈ RX . Thus as V(F , ρ; ν0) as a supreme of such functions also has the same Lipschitz constant.
Finally, since V(F , ρ; ν0) is a supreme of convex functions, by Danskin’s theorem, we verify that

− h2t (xt)h
2
t (·)

(ν0(ht) + Ex′∼ρt−1
h2t (x

′))2
= ∂ρ

h2t (xt)

ν0(ht) + Ex′∼ρt−1
h2t (x

′)

is indeed a subgradient of the function V(F , ρt−1; ν0). Combine above and invoke Proposition C.1 we have

V(F , ρ̂T ; ν0)− V∗(F ; ν0) ≤
2 + 256|X | log t/ϵ4√

t
=

2ϵ4 + 256|X | log t
ϵ4
√
t

.

The above result shows that with an argmax oracle, we can approximate the non-linear G-optimal design in principle.
Nevertheless, the computation is not ideal since each time we have to update the policy ρt in a very complicated way which
in the worst case has a computation complexity that scales with the number of possible instances |X |.
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F. Proofs from Section 5
F.1. Proofs for Simultaneous Confidence Bands

Proof of Theorem 5.1. By the definition of ρV , we have for all x ∈ X ,

|f̂n(x)− f⋆(x)| ≤
√
ν0(f̂n − f⋆) + Ex∼ρV (f̂(x)− f∗(x))2 ·

√
V(F , ρ∗, x; ν0)

≤O
(√

ϵ0 + ∥f̂ − f∗∥2ρV ,2 ·
√

V(F , ρV , x; ν0)
)
.

F.2. Proofs for Contextual Bandits

Lemma F.1. Let fT be as defined as satisfying (4) and πT be its greedy policy. Then we have

Ez∼D [f⋆(z, a⋆(z))− f⋆(z, πT (z))] ≤ 2

√
Ez∼D

[
max
a∈A

(
f⋆(z, a)− f̂T (z, a)

)2]

≤ 2

√√√√Ez∼D

[∑
a∈A

(
f⋆(z, a)− f̂T (z, a)

)2]
.

Proof. We adapt the proof from Agarwal et al. (2012). Let a⋆(z) = maxa f
⋆(z, a). By Jensen’s inequality, we have

Ez∼D [f⋆(z, a⋆(z))− f⋆(z, πT (z))] ≤

√
Ez∼D

[(
max

a
f⋆(z, a)− f⋆(z, πT (z))

)2]

=

√
Ez∼D

[(
f⋆(z, a⋆(z))± f̂T (z, πT (z))− f⋆(z, πT (z))

)2]

≤

√
Ez∼D

[(
f⋆(z, a⋆(z))− f̂T (z, a⋆(z)) + f̂T (z, πT (z))− f⋆(z, πT (z))

)2]
,

where the last inequality follows since f⋆(z, a⋆(z)) − f⋆(z, πT (z)) ≥ 0 and fT (z, πT (z)) ≥ fT (z, a
⋆(z)). Proceeding

further, we have by Cauchy-Schwarz inequality

Ez∼D [f⋆(z, a⋆(z))− f⋆(z, πT (z))]

≤

√
2Ez∼D

[(
f⋆(z, a⋆(z))− f̂T (z, a⋆(z))

)2
+
(
f̂T (z, πT (z))− f⋆(z, πT (z))

)2]

≤

√
2Ez∼D

[
2max

a∈A

(
f⋆(z, a)− f̂T (z, a)

)2]
.

Proof of Theorem 5.3. The proof is relatively simple given assumption (4) and Lemma F.1. By definition of optimal design,
we have for any z ∈ Z and a ∈ A:

(f̂T (z, a)− f⋆(z, a))2 ≤d
(
ν0(f − f∗) + Ea′∼ρV(·|z)[(f̂T (z, a

′)− f⋆(z, a′))2]
)

≤ d
(
ϵ0 + Ea′∼ρV(·|z)[(f̂T (z, a

′)− f⋆(z, a′))2]
)
.
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Take expectation over z ∼ D, and combine with assumption (4), we have with probability at least 1− δ,

Reg(πT ) = Ez∼D [f⋆(z, a⋆(z))− f⋆(z, πT (z))]

≤

√
2Ez∼D

[
2max

a∈A

(
f⋆(z, a)− f̂T (z, a)

)2]
≤ 4

√
d
(
ϵ0 + Ez∼D,a∼ρV(·|z)[(f̂T (z, a)− f⋆(z, a))2]

)
= O

(√
d · (EstOff(T, δ) + ϵ0)

)
.

Lemma F.2. Let (zt, at, rt)Tt=1 be samples where zt
i.i.d.∼ D, at ∼ ρV(·|zt), and rt ∼ D(·|zt, at). Then for the least-squares

regressor f̂T defined as:

f̂T = argmin
f∈F

T∑
t=1

(f(zt, at)− rt)
2,

we have with probability at least 1− δ:

Ez∼D,a∼ρV(·|z)[(fT (z, a)− f⋆(z, a))2] = O
(
log(|F|/δ)

T

)
.

Proof of Lemma F.2. The distribution of the joint input of (zt, at) are i.i.d., thus we can apply Lemma C.2.

F.2.1. CONNECTIONS TO CONTEXTUAL PAC DEC

In this section, we show that the offset version of the Probably Approximately Correct (PAC) version of the Decision
Estimation Coefficient (DEC) (Chen et al., 2022; Foster et al., 2023a) for contextual bandits can be upper bounded by the
F -condition number. However, the minimax PAC regret upper bound obtained from Theorem 5.3 and that obtained from the
PAC DEC are not comparable. We start by introducing the definition of PAC DEC as follows.

Definition F.3 (Offset PAC DEC for contextual bandit). For any function class F and parameter γ > 0, the offset version of
PAC DEC for context bandit with square loss is defined as

p-decγ(F)≜ sup
f̄ ,z

inf
p,q

sup
f∈Fz

f(z, πf (z))− Ea∼p(z)f(z, a)− γEa∼q(z)(f(z, a)− f̄(z, a))2,

where πf (z) := argmaxa f(z, a), p, q are any map from Z to P(A) and f̄ is any function from Z ×A to [0, 1].

We can bound the offset PAC DEC via the F -condition number.

Theorem F.4. For any function class F , let supz V∗(Fz,A; ν0) ≤ d and suph∈DFz
ν0(h) ≤ ϵ0, then we have

p-decγ(F) ≤ d

γ
+ 2
√
dϵ0.

Proof of Theorem F.4. For any context z, f, f̄ ∈ Fz , we have

f(z, πf (z))− f(z, πf̄ (z)) = f(z, πf (z))− f̄(z, πf (z)) + f̄(z, πf (z))− f̄(z, πf̄ (z)) + f̄(z, πf̄ (z))− f(z, πf̄ (z))

≤ 2 sup
a

|f(z, a)− f̄(z, a)|,

where πf (z) := argmaxa f(z, a) and πf̄ (z) := argmaxa f̄(z, a) are defined as the greedy policy with respect to f and f ′

and the inequality is by f̄(z, πf (z)) ≤ f̄(z, πf̄ (z)).
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Thus for any f̄ and z, take p = πf̄ and q = ρV(F ,X ; ν0), we have

p-decγ(F)≜ sup
f̄ ,z

inf
p,q

sup
f∈Fz

f(z, πf (z))− Ea∼p(z)f(z, a)− γEa∼q(z)(f(z, a)− f̄(z, a))2

≤ sup
f̄ ,z

sup
f∈Fz

sup
a′

2|f(z, a′)− f̄(z, a′)| − γEa∼q(z)(f(z, a)− f̄(z, a))2

≤ sup
f̄ ,z

sup
f∈Fz

2
√
d
(
ν0(f − f̄) + Ea∼q(z)(f(z, a)− f̄(z, a))2

)
− γEa∼q(z)(f(z, a)− f̄(z, a))2

≤ 2
√
dϵ0 +

d

γ
,

where the second inequality is by the definition of q and the final inequality is by Cauchy-Schwarz inequality.

To bound the minimax PAC regret through the PAC DEC, the results in Foster et al. (2023a); Chen et al. (2022) require, as a
sub-procedure, an online estimation oracle AlgEst. Suppose at step t, the learner chooses policy qt : Z → A. This oracle,
at each step t, takes the input of z1, a1, r1, ..., zt−1, at−1, rt−1, then outputs a predictor f̂t such that with probability at least
1− δ,

1

T

T∑
t=1

Ez∼D,a∼qt(·|z)[(f̂t(z, a)− f⋆(z, a))2] ≤ EstOn(T, δ), (7)

where EstOn(T, δ) is an known upper bound.

Proposition F.5 ((Chen et al., 2022)). For any parameter γ > 0, with the online oracle AlgEst, there is an algorithm that
achieves with probability at least 1− δ,

Reg(πT ) = O
(
p-decγ(F) + γ ·EstOn(T, δ)

)
for δ ∈ (0, 1).

Algorithm 5 Contextual Explorative E2D
Require: Exploration parameter γ > 0, online estimation oracle AlgEst.

1: for t = 1, 2, · · · , T do
2: Receive context zt.
3: Obtain the estimation from the estimation oracle, f̂t = AlgEst

(
{(zi, ai, ri)}t−1

i=1

)
.

4: Define
pt, qt := argmin

p,q:Z→P(A)

sup
f∈Fz

f(z, πf (z))− Ea∼p(z)f(z, a)− γEa∼q(z)(f(z, a)− f̂t(z, a))
2.

5: Sample decision at ∼ qt(·|zt) and update estimation oracle with (zt, at, rt).
6: end for
7: return πT = 1

T

∑T
t=1 pt

Proof of Proposition F.5. We go through the contextualization in section 8 of Foster et al. (2021) for Theorem 10 of Chen
et al. (2022). By the definition of the PAC DEC, we first have

max
a

f⋆(z, a)− f⋆(z, πT (z)) =
1

T

T∑
t=1

Ea∼pt(z)[f
⋆(z, π∗(z))− f⋆(z, a)]

≤ γ

T

T∑
t=1

Ea∼qt(z)

[(
f⋆(z, a)− f̂t(z, a)

)2]
+ p-decγ(F).
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Thus we have

Reg(πT ) = Ez∼D

[
max

a
f⋆(z, a)− f⋆(z, πT (z))

]
≤ p-decγ(F) +

γ

T

T∑
t=1

Ez∼D,a∼qt(z)

[(
f⋆(z, a)− f̂t(z, a)

)2]
= O

(
p-decγ(F) + γ ·EstOn(T, δ)

)
,

with probability at least 1− δ for δ ∈ (0, 1).

As an example, the exponentially-weighted aggregating forecaster (Cesa-Bianchi & Lugosi, 2006) using the square loss
achieves with probability at least 1− δ, a known upper bound of EstOn(T, δ) = O(log(|F|/δ)/T ).
Lemma F.6. The exponentially weighted aggregating forecaster of

f̂t =
∑
f∈F

µt(f)f, where µt(f) ∝ exp

(
−

t−1∑
s=1

(f(zs, as)− rs)
2

)
,

achieves with probability at least 1− δ

T∑
t=1

Ez∼D,a∼qt(z)

[(
f⋆(z, a)− f̂t(z, a)

)2
| Ft−1

]
≤ 2 log |F|+ 16 log(1/δ),

for δ ∈ (0, 1).

Proof of Lemma F.6. The proof is standard and we follow the development of Foster & Rakhlin (2020) with only the
difference in the choice of the filtration. The exponential weight aggregation with square loss (Proposition 3.2 of Cesa-
Bianchi & Lugosi (2006)) satisfies

T∑
t=1

(f̂t(zt, at)− rt)
2 −

T∑
t=1

(f∗(zt, at)− rt)
2 ≤ log |F|.

Consider the filtration:

Ft−1 = σ((z1, a1, r1), ..., (zt−1, at−1, rt−1)).

Define Mt = (f̂t(zt, at)− rt)
2 − (f∗(zt, at)− rt)

2 and Zt = E[Mt|Ft−1]−Mt. Then we have |Zt| ≤ 1 and

E[Z2
t | Ft−1] ≤ E[M2

t | Ft−1]

= E[(f̂t(zt, at)− f∗(zt, at))
2(f̂t(zt, at) + f∗(zt, at)− 2rt)

2 | Ft−1]

≤ 4E[(f̂t(zt, at)− f∗(zt, at))
2 | Ft−1]

= 4E[Mt | Ft−1].

Then by Lemma 1 of (Foster & Rakhlin, 2020), take η = 1/8, we have

T∑
t=1

Ez∼D,a∼qt(z)

[(
f⋆(z, a)− f̂t(z, a)

)2
| Ft−1

]
≤ 2 log |F|+ 16 log(1/δ).

Although the PAC DEC can be upper bounded via the optimal F -condition number, the bounds obtained from Theorem 5.3
and from Proposition F.5 are not comparable as EstOff(T, δ) and EstOn(T, δ) might differ.
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F.3. Proofs for Model-free RL

An upshot of Assumption 5.6 is that it gives us a function class to express the possible Bellman errors, since for any h and
f ∈ F , we can write Eh(f, z, a) = fh(z, a)− gh(z, a) for some gh ∈ Fh. This allows us to obtain a one-step exploration
policy πh

exp by choosing the optimal F -design (2) with sample space Z = A and function class Fh
z = {fh(z, a) : fh ∈ Fh},

for each z ∈ Z . For this approach, we have the following lemma.
Lemma F.7. Let suph∈DFh

z
ν0(h) ≤ ϵ0 for some ϵ0 and πh

z = ρV(Fh
z ; ν

h
0 ) be an optimal F -design. Suppose that

V(Fh
z , π

h
z ; ν0) ≤ dh for all z ∈ Z . Then we have for all f ∈ F

max
a∈A

Eh(f, z, a)2 ≤ dhEa∼πh
z
Eh(f, z, a)2 + dhϵ0.

Proof of Lemma F.7. By the definitions (2), we know that under the conditions of the lemma, for any z ∈ Z and f, g ∈ Fh
z ,

we have

max
a∈A

(f(z, a)− g(z, a))2 ≤ dh
(
νh0 (f − g) + Ea∼πh

z
(f(z, a)− g(z, a))2

)
.

In particular, choosing g(z, a) = E[r + fh+1(z′)|z, a] and take supreme over the space of f − g ∈ DFh
z completes the

proof.

Definition F.8. For any f ∈ F , we define the set F(ϵ, f) =
{
g ∈ F : supz,a,h |Eh(g, f ; z, a)| ≤ ϵ

}
of functions that have

a small Bellman error with f for all z, a. Further assume that F has an L∞ cover f1, . . . , fN ∈ F for N = N(ϵ), so that
∀f ∈ F , mini supz,a |f(z, a)− fi(z, a)| ≤ ϵ. Then we define κ(ϵ) = supf∈F − ln p0(F(ϵ, f)) and κ′(ϵ) = lnN(ϵ).
Proposition F.9 (Theorem 9 of Agarwal & Zhang (2022)). Under Assumptions 5.2, 5.5 and 5.6, suppose further that for
any state z ∈ Zh and all function class Fh

z , we have V∗(Fh
z ; ϵ0) ≤ d(ϵ0) for ϵ0 > 0. Suppose we run TS2-ND (Alg. 6) with

parameters γ = 0.1 and η ≤ c/(κ(ϵ) + κ′(ϵ) + log T ) for a universal constant c. Then for any ϵ > 0, and λ ≤ η we have

E

[
T∑

t=1

V 1
⋆ (z

1
t )− V 1

πt
(z1t )

]
= O

(
1

λ
(ϵT + κ(ϵ) + κ′(ϵ)) + T · ϵ̃(λ/η)

)
,

where ϵ̃(λ/η) := λbrHd(ϵ0)
η + ϵ0η

λ for all ϵ, ϵ0 > 0.

Proof of Proposition F.9. We introduce some notations from Agarwal & Zhang (2022). We define the Bellman residual of
f ∈ F using another g ∈ F as:

Eh(g, f, zh, ah) = g(zh, ah)− T hf(zh, ah),

where T hf(zh, ah) := E[rh + f(zh+1, πf (z
h+1)) | zh, ah]. At any round t of the algorithm, using the observed tuple

(xht , a
h
t , r

h
t , x

h+1
t ), we define

∆̂h
t (g, f) = g(xht , a

h
t )− rht − f(xh+1

t ), (8)

With these definitions, we consider Algorithm 6. For Algorithm 6, which is a modification of Algorithm 2 in Agarwal &
Zhang (2022). Following their analysis, but replacing Lemma 32 of their paper with the more general analog in Lemma F.7
immediately gives this proposition.

Proof of Theorem 5.7. Apply Proposition F.9 with p0 being the uniform distribution on F and ϵ = 0 in Definition F.8 . This
gives κ(0) = κ′(0) = log |F|. Let the base functional ν0 = 0, we have

E

[
T∑

t=1

V 1
⋆ (z

1
t )− V 1

πt
(z1t )

]
= O

(
log |F|
λ

+ T · λbrHd(ϵ0)
η

)
Choose η = c/(κ(ϵ) + κ′(ϵ) + log T ) = 1/ log(|F|T ) and balancing λ, we have

E

[
T∑

t=1

V 1
⋆ (z

1
t )− V 1

πt
(z1t )

]
= O

(
log(|F|T )

√
br · dHT

)
.
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Algorithm 6 Two timeScale Thompson Sampling with Non-linear Design (TS2-ND)
Require: Function class F , prior p0 ∈ P(F), learning rates η, γ and optimism coefficient λ.

1: Set S0 = ∅.
2: for t = 1, . . . , T do
3: Observe z1t ∼ D and draw ht ∼ {1, . . . ,H} uniformly at random.
4: Define qt(g) = p(g|f, St−1) ∝ p0(g) exp(−γ

∑t−1
s=1 ∆̂

hs
s (g, f)2). ▷ Inner loop TS update

5: Define Lh
t (f) = η∆̂h

t (f, f)
2 + η

γ lnEg∼qt

[
exp(−γ∆̂h

t (g, f)
2)
]
. ▷ Likelihood function

6: Define pt(f) = p(f |St−1) ∝ p0(f) exp(
∑t−1

s=1(λf(z
1
s) − Lhs

s (f))) as the posterior.
▷ Outer loop Optimistic TS update

7: Draw ft ∼ pt from the posterior. Let πt = πft and execute aht = πt(z
h
t ) for h = 1, . . . , ht − 1 to observe zht

t .
8: Let ρt = ρV(Fht(zht

t ),A; 0) ∈ ∆(A) be the non-linear G-optimal design for Fht(zht
t ) Draw atht

∼ ρt and observe
rht
t and zht+1

t . ▷ G-optimal design
9: Update St = St−1 ∪ {zht , aht , rht , zh+1

t } for h = ht.
10: end for
11: Return (π1, . . . , πT ).

Proof of Corollary 5.9. By the standard covering result (Vaart & Wellner, 2023, Theorem 2.7,1), we have κ(ϵ) = κ′(ϵ) ≤
O(ϵ−d/β). Moreover by Example 2, we have d(ϵ0) = O(ϵ

−d/(2β+d)
0 ). Thus applying Proposition F.9, we have

E

[
T∑

t=1

V 1
⋆ (z

1
t )− V 1

πt
(z1t )

]
= O

(
1

λ
(ϵT + κ(ϵ) + κ′(ϵ)) + T

(
λbrHd(ϵ0)

η
+
ϵ0η

λ

))

= O

(
1

λ

(
ϵT +

1

ϵd/β

)
+ T

(
λbrH

ηϵ
d/(2β+d)
0

+
ϵ0η

λ

))
= O

(
(Hbr)1/2T (β2+4βd+d2)/((β+d)(2β+d))

)
with the choice of η = cT−d/(β+d), λ = (Hbr)−(β(2d+β))/((β+d)(2β+d)), ϵ = T−β/(β+d) and ϵ0 = T (d−β)/(β + d). This
bound is sublinear in T whenever β > d.

F.4. Proofs for Active Learning

Proof of Theorem 5.11. By the definition of non-linear G-optimal design ρV := ρV(F ,P; 0), we have for any f, f ′ ∈ F
and x ∈ U ,

(f(x)− f ′(x))2 ≤ d · Ex′∼ρV (f(x
′)− f ′(x′))2.

By Lemma 4.1, then there exists a subset Un = {z1, ..., zn} ⊂ P where n = O(d log |F|) such that for all x ∈ U ,

(f(x)− f ′(x))2 ≤ 4d · 1
n

n∑
i=1

(f(zi)− f ′(zi))
2.

Then by querying the labels for instances of z1, ..., zn, we can consider any f̂ ∈ F in the version space that satisfies
f̂(zi) = f∗(zi) for all i ∈ [n]. This would imply that for all x ∈ P ,

(f̂(x)− f∗(x))2 ≤ 4d · 1
n

n∑
i=1

(f̂(zi)− f∗(zi))
2 = 0.

This implies that the estimator f̂ will recover all the correct labels for instances x1, . . . , xT , then by the classical result of
Vapnik (1982), we have there exists an algorithm that achieves with probability at least 1− δ,

L(f̂) ≤ O
(
VCdim(F) log T + log(1/δ)

T

)
.
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F.5. Proofs for Model-based RL

To prove Theorem B.3, we prove the relationship between the offset PAC DEC with the regret F -condition number, which
implies that Explorative E2D achieves the desired PAC-regret bound. For this we first introduce the offset PAC DEC for
general model class from Chen et al. (2022).

Definition F.10 (Offset PAC DEC for general model class). For any model class M with the policy class Π, we define

p-decγ(M,M)≜ inf
p,q∈∆(Π)

sup
M∈M

Eπ∼p[Reg
M
(π)]− γEπ∼q

[
D2

H

(
M(π),M(π)

)]
.

Theorem F.11. For any positive value γ > 0, the offset PAC DEC is upper bounded by the regret F -condition number with
η = 0, i.e.,

p-decγ(M,M) = O

(
H2 · V⋆

0 (M;M,ν0)

γ
+ γ · sup

f
ν0(f)

)
.

Proof of Theorem F.11. Consider the set of designs ρ1, ρ2, . . . , ρH such that for all h ∈ [H],

sup
f∈Fh

0 (M),M∈M

f2(πM)

ν0(f) + Eπ∼ρh
[f2(π)]

≤ V⋆
0 (M;M,ν0).

Then consider the exploration policy of q = 1
H

H∑
h=1

ρh with the exploitation policy of p = πM , we bound the offset PAC

DEC by

p-decγ(M,M) ≤ sup
M

(
JM (πM)− JM (πM)− γ · Eπ∼q

[
D2

H

(
M(π),M(π)

)])
.

For any M ∈ M, we have

JM (πM)− JM (πM ) = (JM (πM)− JM (πM)) + (JM (πM)− JM (πM )) + (JM (πM )− JM (πM ))

≤ 2 sup
M ′

|JM (πM ′)− JM (πM ′)|.

Then by simulation lemma and AM-GM, we have

|JM (πM ′)− JM (πM ′)| =

∣∣∣∣∣
H∑

h=1

EM,πM′
[
Qh

M(zh, ah)− rh − V h
M(zh+1)

]∣∣∣∣∣
≤

H∑
h=1

∣∣Eh(M,M, πM′)
∣∣

≤
H∑

h=1

(
1

ξH
+ ξH

(
Eh(M,M, πM′)

)2)
.

Now by the definition of the design, we have(
Eh(M,M, πM)

)2 ≤ V⋆
0 (M;M,ν0) ·

(
ν0(Eh(M,M, ·)) + Eπ∼ρh

[(
Eh(M,M, π)

)2])
.

We note further that EM,π
[
Qh

M(zh, ah)− rh − V h
M(zh+1)

]
= 0, thus(

EM,π
[
Qh

M(zh, ah)− rh − V h
M(zh+1)

])2
=
(
(EM,π − EM,π)

[
Qh

M(zh, ah)− rh − V h
M(zh+1)

])2
≤
(
DTV

(
M(π) ∥M(π)

))2
≤ D2

H

(
M(π),M(π)

)
.
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Combining above, we have

JM (πM)− JM (πM ) ≤ 2 sup
M ′

|JM (πM ′)− JM (πM ′)|

≤ 2

ξ
+ 2ξH

H∑
h=1

(
Eh(M,M, πM)

)2
≤ 2

ξ
+ 2ξH · V⋆

0 (M;M,ν0) ·
H∑

h=1

(
ν0(Eh(M,M, ·)) + Eπ∼ρh

[(
Eh(M,M, π)

)2])
≤ 2

ξ
+ 2ξH · V⋆

0 (M;M,ν0) ·
H∑

h=1

(
ν0(Eh(M,M, ·)) + EM ′∼ρh

[
D2

H

(
M(πM ′),M(πM ′)

)])
Choosing ξ = γ

2H2·V⋆
0 (M;M,ν0)

, we have for any M ∈ M,

JM (πM)− JM (πM)− γ · Eπ∼q

[
D2

H

(
M(π),M(π)

)]
= O

(
H2 · V⋆

0 (M;M,ν0)

γ
+ γ · sup

f
ν0(f)

)
.

Proof of Theorem B.3. This theorem is a corollary from Theorem F.11 combined with Chen et al. (2022, Theorem 10).

To prove Theorem B.4, we further consider the relationship of regret F -condition number with offset DEC introduced by
(Foster et al., 2021).

Definition F.12 (Offset DEC for general model class). For any model class M with the policy class Π, we define

decγ(M,M)≜ inf
p∈∆(Π)

sup
M∈M

Eπ∼p[Reg
M
(π)]− γEπ∼p

[
D2

H

(
M(π),M(π)

)]
.

Theorem F.13. For any positive value γ > 0, the offset DEC is upper bounded by the regret F -condition number, i.e.,

decγ(M,M) = O

(
H2V⋆

η (M;M,ν0)

γ
+ γ · sup

f
ν0(f)

)
,

whenever η = Θ

(
γ

H2V⋆
η (M;M,ν0)

)
< γ

8H2V⋆
η (M;M,ν0)

.

This theorem shows that our F -design is useful as a black-box replacement whenever linear G-optimal design is used.

Proof of Theorem F.13. Consider the set of designs ρ1, ρ2, . . . , ρH such that for all h ∈ [H],

sup
f∈Fh

η (M),M∈M

f2(πM)

ν0(f) + Eπ∼ρh
[f2(π)]

≤ V⋆
η (M;M,ν0).

Then consider the policy of q = 1
2H

H∑
h=1

ρh + 1
21(· = πM). And the weighted inverse gap weighting policy p ∈ ∆(Π) of

p(π) =
q(π)

λ+ η · Reg
M
(π)

,

for the λ ∈ [1/2, 1] such that
∑
π
p(π) = 1. We first show that such a λ always exists. Consider the function K(λ) =∑

π
q(π)

λ+η·RegM (π) . It is clear that K(1/2) ≥ q(πM )

1/2 = 1. On the other hand K(1) ≤
∑

π q(π) ≤ 1. Furthermore, since
K(λ) is monotonically decreasing, there exists a λ ∈ [1/2, 1] such that K(λ) = 1.
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To bound the offset DEC, we have

decγ(M,M) ≤ sup
M

Eπ∼p

[
JM (πM)− JM (π)− γ ·D2

H

(
M(π),M(π)

)]
.

For any M ∈ M, we have

Eπ∼p[JM (πM)− JM (π)] = (JM (πM)− JM (πM)) + (JM (πM)− JM (πM )) + Eπ∼p[JM (πM )− JM (π)]

+ Eπ∼p[JM (π)− JM (π)].

We bound the four parts separately. We first deal with the last two terms which are easy. We note

Eπ∼p[JM (πM )− JM (π)] =
∑
π

q(π)Reg
M
(π)

λ+ η · Reg
M
(π)

≤ 1

η

and

Eπ∼p[JM (π)− JM (π)] ≤ γ

2
· Eπ∼p

[
D2

H

(
M(π),M(π)

)]
+

1

2γ
.

For the first term, by simulation lemma and AM-GM, we have

JM (πM)− JM (πM) =

H∑
h=1

EM,πM
[
Qh

M(zh, ah)− rh − V h
M(zh+1)

]
=

H∑
h=1

(√
1 + η · Reg

M
(πM) · Eh(M,M, πM)√

1 + η · Reg
M
(πM)

)

≤
H∑

h=1

(
1 + η · Reg

M
(πM)

ηH
+ ηH ·

(
Eh(M,M, πM)

)2
1 + η · Reg

M
(πM)

)
.

Now by the definition of the design, we have(
Eh(M,M, πM)

)2
1 + η · Reg

M
(πM)

≤ V⋆
η (M;M,ν0) ·

(
sup
f
ν0(f) + Eπ∼ρh

[(
Eh(M,M, π)

)2
1 + η · Reg

M
(π)

])
.

We note further that EM,π
[
Qh

M(zh, ah)− rh − V h
M(zh+1)

]
= 0, thus(

EM,π
[
Qh

M(zh, ah)− rh − V h
M(zh+1)

])2 ≤
(
(EM,π − EM,π)

[
Qh

M(zh, ah)− rh − V h
M(zh+1)

])2
≤
(
DTV

(
M(π) ∥M(π)

))2
≤ D2

H

(
M(π),M(π)

)
.

Altogether, we have

Eπ∼p[JM (πM)− JM (π)]

≤
H∑

h=1

(
1 + η · Reg

M
(πM)

ηH
+ ηHV⋆

η (M; ν0) ·

(
sup
f
ν0(f) + Eπ∼ρh

[
D2

H

(
M(π),M(π)

)
1 + η · Reg

M
(π)

]))

− Reg
M
(πM) +

γ

2
· Eπ∼p

[
D2

H

(
M(π),M(π)

)]
+

1

γ
+

1

η

≤ 1

η
+ ηHV⋆

η (M;M,ν0)

H∑
h=1

sup
f
ν0(f) +

(
ηH2V⋆

η (M; ν0) +
γ

2

)
· Eπ∼p

[
D2

H

(
M(π),M(π)

)]
+

1

γ
+

1

η
.

Then by the assumption of η = Θ

(
γ

H2V⋆
η (M;M,ν0)

)
< γ

8H2V⋆
η (M;M,ν0)

, we obtain

Eπ∼p[JM (πM)− JM (π)]− γ · Eπ∼p

[
D2

H

(
M(π),M(π)

)]
= O

(
H2V⋆

η (M; ν0)

γ
+ γ · sup

f
ν0(f)

)
.
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Proof of Theorem B.4. This theorem is a corollary from Theorem F.13 combing with Foster et al. (2021, Theorem 4.1).
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