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Abstract
In recent years, there has been considerable in-
terest in developing machine learning models on
graphs to account for topological inductive biases.
In particular, recent attention has been given to
Gaussian processes on such structures since they
can additionally account for uncertainty. How-
ever, graphs are limited to modelling relations
between two vertices. In this paper, we go beyond
this dyadic setting and consider polyadic relations
that include interactions between vertices, edges
and one of their generalisations, known as cells.
Specifically, we propose Gaussian processes on
cellular complexes, a generalisation of graphs that
captures interactions between these higher-order
cells. One of our key contributions is the deriva-
tion of two novel kernels, one that generalises
the graph Matérn kernel and one that additionally
mixes information of different cell types.

1. Introduction
The abundance of graph-structured problems in science and
engineering stimulates the development of machine learn-
ing (ML) models, such as graph neural networks (GNNs)
(Scarselli et al., 2008) and graph kernel machines (Smola &
Kondor, 2003). The former has achieved great success in a
broad range of tasks, from molecular docking (Corso et al.,
2023) to text summarisation (Fernandes et al., 2019). How-
ever, GNNs do not provide predictive uncertainty, which
is an essential feature in decision-making applications. Re-
cent work on Gaussian processes (GPs) defined on graphs
(Borovitskiy et al., 2020; Nikitin et al., 2022; Opolka et al.,
2022; Zhi et al., 2023) takes the latter approach, which natu-
rally accounts for uncertainty quantification, but may lack
the expressibility of GNNs.
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(a) Graph (b) Simplicial complex

(c) Cellular complex

Figure 1. Graph, simplicial complex, and cellular complex (specifi-
cally: polyhedral complex). A simplicial complex cannot represent
arbitrary polygons like the pentagon in (c).

Although graphs are an invaluable data structure, one of
their main limitations is that they cannot represent interac-
tions beyond the dyadic setting (i.e., between two vertices).
However, these interactions do exist and have important
applications, such as group interactions in social networks
(Alvarez-Rodriguez et al., 2021), neuronal dynamics in cor-
texes (Yu et al., 2011), and trigenic interactions in gene
networks (Kuzmin et al., 2018). Cellular complexes are
a generalisation of graphs that have the ability to model
such ‘polyadic’ interactions (Hatcher, 2001) (see Figure 1).
For this reason, they are gradually being used in ML (Ha-
jij et al., 2020; Bodnar et al., 2021) and signal processing
(Barbarossa & Sardellitti, 2020; Roddenberry et al., 2022).
Although these models have helped to expand the variety
of problems one can tackle with ML, as with GNNs, they
typically do not quantify uncertainty.

In this paper, we fill this gap by proposing GPs defined on
cellular complexes, which enables predictions on different
types of cells, such as vertices and edges, while equipping
them with uncertainty that is consistent with prior assump-
tions about the model and data. In particular, we propose the
cellular Matérn kernel, a generalisation of the graph Matérn
kernel (Borovitskiy et al., 2020), which enables modelling
of signals on arbitrary cell types. By fixing an orientation
on each cell (i.e., a reference ‘direction’), this produces pre-
dictions on cells that are directed, allowing us to consider
signals that have an associated direction.

Furthermore, prompted by settings with strong correlations
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between data supported on different cell types, we also
develop a new kernel, the reaction-diffusion kernel, which
leverages the Dirac operator (Bianconi, 2021; Calmon et al.,
2023) to mix information between different types of cells.
This enables us to model various types of signal jointly so
that inference on one type of cell can help the other, and
vice versa. Interestingly, the Dirac operator has also been
used in higher-order neural networks (Battiloro et al., 2023).

Our main contribution is to define GPs on cellular com-
plexes, which allows us to extend the modelling capability
of graph GPs in the following novel ways:

• Model quantities supported on the edges, and on higher-
order ‘cells’ such as volumes.

• Handles orientation on cells naturally. In particular, we
can make directed predictions.

• Allows for joint modelling of data supported on ver-
tices, edges and higher-order cells.

2. Gaussian Processes
A Gaussian process (GP) on a set X is a random function
f : X → R, such that for any finite collection of points
x1, . . . , xN ∈ X , the random vector (f(x1), . . . , f(xN )) ∈
RN is jointly Gaussian. GPs are defined by a mean func-
tion µ : X → R and a kernel κ : X × X → R, which
satisfy µ(x) = E[f(x)] and κ(x, x′) = Cov[f(x), f(x′)],
respectively, for any x, x′ ∈ X .

Let (x,y) := {(xi, yi)}Ni=1 be training data, where yi =
f(xi) + ϵi, ϵi ∼ N (0, σ2). We can make inference about
f∗ := f(x∗) at arbitrary test points x∗ by computing the
posterior predictive mean and covariance

µf∗|y = µf∗ +Kf∗f (Kff + σ2I)−1(y − µf ) (1)

Σf∗|y = Kf∗f∗ −Kf∗f (Kff + σ2I)−1Kff∗ , (2)

respectively, where µf = µ(x),µf∗ = µ(x∗) denotes the
mean and Kff = κ(x,x), Kf∗f∗ = κ(x∗,x∗), Kff∗ =
κ(x,x∗) denotes the covariance and cross-covariance of f
at x and x∗.

2.1. Gaussian processes on graphs

While most existing GPs are defined on continuous domains,
in this work, we are interested in graphs G = (V,E), where
we take the input set X to be the set of vertices V , and the
edges E to model the ‘proximity’ between two vertices. As
a mathematical object, a GP in this sense is identical to a
multivariate Gaussian f ∈ R|V |, whose indices are the ver-
tices of the graph. However, the extra information provided
by the edges allows one to impose a more rigid correlation
structure, whereby two vertices are more strongly correlated

Figure 2. A cellular complex is constructed by attaching bound-
aries of k-cells ekα to the (k − 1)-skeleton Xk−1 via a continuous
map ϕk

α.

if they are ‘closer’ in the graph. Thus, this enables f to
take on the characteristics of a continuous GP while being
discrete.

A common way of encoding graph structures into multi-
variate Gaussians is by imposing specific sparsity patterns
in the precision matrix, as seen in Gaussian Markov ran-
dom fields (Rue & Held, 2005). For example, the Matérn
GP on graphs (Borovitskiy et al., 2021) is formally defined
as f ∼ N (0, ( 2νℓ2 + ∆)−ν), where ∆ is the graph Lapla-
cian matrix, a discrete analogue of the standard Laplacian
operator on Rn. If we observe the sparsity pattern of the
corresponding precision matrix ( 2νℓ2 +∆)ν for ν ∈ N, we
see that each vertex x is connected to vertices that are within
a radius ν of x in the graph, controlling the ‘smoothness’
of the process. More generally, we can impose a graph
structure by penalising frequencies in the spectral domain
of the kernel (Smola & Kondor, 2003). However, graphs
are limited in the data they can support. If the data contains
polyadic interactions, then a more general structure than
graphs is needed.

3. Modelling with Cellular Complexes
Cellular complexes generalise graphs by incorporating
higher-order interactions via ‘cells’, extending the dyadic
relation modelled by edges on a graph. Concretely, a k-cell
is a topological space that is homeomorphic to the unit disk
Dk := {x ∈ Rk : ∥x∥ < 1}. We will employ the stan-
dard notation ∂ to refers to the boundary of a topological
space. A finite cellular complex X of dimension n <∞ is
constructed iteratively, as follows (Hatcher, 2001):

(Step 0) Start with a collection X0 = {e0α}
N0
α=1 of 0-cells

(i.e., points), called the 0-skeleton.

(Steps k = 1, . . . , n) Take a collection {ekα}
Nk
α=1 of k-cells

and glue their boundaries to points inXk−1 via a continuous
attaching map ϕkα : ∂ekα → Xk−1. The resulting space Xk

is the k-skeleton (see Figure 2).

(Step n+1) Define the cellular complex to be the topological
space X := ∪n

k=0X
k.
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Figure 3. The path going from vertex v0 to v9 (in red) can be
expressed as a 1-chain c = e1 + e2 + e5 + e7 + e9, while −c
represents the reverse path going from v9 to v0. Boundaries of cells
can be expressed as chains, whose direction is consistent with the
cell orientation. For example, ∂h0 = e1+e2+e5−e4−e3−e0.

In the special case where the attaching maps ϕkα : ∂ekα →
Xk−1 are embeddings, we say that the cellular complex
is regular. This omits pathological cases, such as when
boundaries of a k-cell collapse to a point or fold into itself.
Hereafter, when we refer to cellular complexes, we will
always assume that they are regular and finite. Further, when
we fix an orientation on each cell (viewed as a topological
manifold), we say that X is oriented, which we will also
assume hereafter.

Example 1. A directed/undirected graph (see Figure 1a) is
a one-dimensional oriented/non-oriented cellular complex,
where the vertices are the 0-cells, the edges are the 1-cells,
and the attaching maps associate the two endpoints of an
edge to a pair of vertices.

Example 2. Another important class are the simplicial
complexes (see Figure 1b), where the k-cells are taken to be
the k-simplices and the attaching maps glue the boundaries
of two k-simplices homeomorphically. Simplices are cells
that contain all their sub-cells.

3.1. Chains and Cochains

Chains and cochains are key concepts on cellular complexes
that formalise the notion of paths and functions over k-cells,
respectively. Given an n-dimensional cellular complex X ,
we define a k-chain ck for 0 ≤ k ≤ n as a formal sum of
k-cells

ck =

Nk∑
α=1

nαe
k
α, nα ∈ Z. (3)

Intuitively, this generalises the notion of directed paths on
a graph, as we show in Figure 3. We denote the set of all
k-chains on X by Ck(X), which has the algebraic structure
of a free Abelian group1 with basis {ekα}

Nk
α=1.

1One may interpret this as a vector space with coefficients
restricted to the integers.

For any cellular complex X , there is a canonical opera-
tion defined on chains called the boundary operator ∂k :
Ck(X) → Ck−1(X), associating the boundary of a k-chain
to a (k − 1)-chain. This is defined as a linear map2

∂k

(
Nk∑
α=1

nae
k
α

)
=

Nk∑
α=1

na∂e
k
α, (4)

where ∂ekα is the boundary of the k-cell ekα, expressed as
a (k − 1)-chain. The cycle direction of ∂ekα must agree
with the orientation of ekα, as illustrated in Figure 3 (see
Appendix A for more details).

Parallel to chains, there exist dual objects known as cochains
on a cellular complex X , defined as follows.
Definition 3. A k-cochain on X is a linear map2 f :
Ck(X) → R assigning real numbers to k-chains, i.e.,

f
( Nk∑

α=1

nαe
k
α

)
=

Nk∑
α=1

nαf(e
k
α), (5)

where f(ekα) ∈ R is the value of f at cell ekα.

The space of k-cochains, denoted Ck(X) (with a su-
perscript), forms a real vector space with dual basis
{(ekα)∗}

Nk
α=1, satisfying (ekα)

∗ekβ = δαβ . The boundary oper-
ators on chains naturally induce analogous operators on the
space of cochains, referred to as the coboundary operators,
defined as follows.
Definition 4. For 0 ≤ k < n, the coboundary operator
dk : Ck(X) → Ck+1(X) is defined via the relation

dkf(c) = f(∂k+1c) (6)

for all f ∈ Ck(X) and c ∈ Ck+1(X). To simplify our
presentation, we also define dkf ≡ 0 for k ∈ {−1, n}.

3.2. Hodge Laplacian and Dirac Operator

We introduce a generalisation of the graph Laplacian to
cellular complexes, which will be used in our construction
of kernels. For each k, let {wk

α}
Nk
α=1 be a set of real, posi-

tive weights. Then, for any f, g ∈ Ck(X), we define the
weighted L2-inner product as

⟨f, g⟩L2(wk) :=

Nk∑
α=1

wk
α f(e

k
α) g(e

k
α). (7)

The inner product induces an adjoint of the coboundary
operator, denoted d∗k : Ck+1(X) → Ck(X), i.e.,

⟨d∗kf, g⟩L2(wk) = ⟨f, dkg⟩L2(wk+1) (8)

for any f ∈ Ck+1(X) and g ∈ Ck(X). This leads to the
following definition.

2 A group homomorphism to be more precise.
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Object Representation

Chain c =
∑Nk

α=1 nαe
k
α c = (n1, . . . , nNk

)⊤

Cochain f =
∑Nk

α=1 fα(e
k
α)

∗ f = (f1, . . . , fNk
)⊤

Boundary operator ∂k Bk ∈ ZNk−1×Nk

Coboundary operator dk B⊤
k+1 ∈ ZNk+1×Nk

Inner-product ⟨f, g⟩L2(wk) f⊤Wkg

Hodge Laplacian ∆k
∆k := B⊤

k W
−1
k−1BkWk

+W−1
k Bk+1Wk+1B

⊤
k+1

Table 1. Numerical representation of key objects and operations
defined on cellular complexes. Here, Wk = diag(wk

1 , . . . , w
k
Nk

)
is the matrix of cell-weights and Bk is the order-k incidence matrix,
whose j-th column corresponds to the vector representation of the
cell boundary ∂ekj , viewed as a (k − 1)-chain.

Definition 5. The Hodge Laplacian ∆k : Ck(X) →
Ck(X) on the space of k-cochains is defined as

∆k := dk−1 ◦ d∗k−1 + d∗k ◦ dk. (9)

We defer to Section 4 to see that this generalises the graph
Laplacian by considering its numerical representation.

The Dirac operator

δk := d∗k−1 ⊕ dk : Ck(X) → Ck−1 ⊕ Ck+1(X) (10)

maps a k-cochain onto a direct sum of (k − 1) and (k + 1)-
cochains. One can verify that the relation ∆k = δ∗kδk holds.
Hence, the Dirac operator is understood as a formal ‘square
root’ of the Hodge Laplacian.

3.3. Numerical Representation

In Table 1, we display how the objects considered above
can be represented as matrices and vectors in order to make
explicit computations with them. We refer to Appendix B
for the full derivation. In the case k = 0 and taking W0 = I
(i.e., no vertex weights), we see that the expression for the
Hodge Laplacian reduces to the expression for the weighted
graph Laplacian ∆0 = B1W1B

⊤
1 . Furthermore, taking

W1 = I (no edge weights), we obtain the expression for
the standard graph Laplacian ∆0 = B1B

⊤
1 .

4. Gaussian Processes on Cellular Complexes
In this section, we establish our notion of Gaussian pro-
cesses on cellular complexes, which we take to be a direct
sum of Gaussian random cochains. Given a sample space Ω,
an event space F and a probability measure P, we denote
by (Ω,F ,P) the underlying probability triple for which our
random variables will be defined over.

4.1. Gaussian Random Cochains

Definition 6. A random variable f : Ω → Ck(X) is called
a Gaussian random cochain if for any k-chain c ∈ Ck(X),
the random variable f(c) : Ω → R is Gaussian.

To facilitate computations, we characterise them using
a mean function and a kernel. Defining a mean is
straightforward—this is just a fixed cochain. For the kernel,
we consider the following definition.

Definition 7. A kernel on Ck(X) is a symmetric bilin-
ear form3 κ : Ck(X) × Ck(X) → R such that for any
c1, . . . , cm ∈ Ck(X), we have

m∑
i,j=1

κ(ci, cj) ≥ 0. (11)

This is an appropriate notion of the kernel:

Theorem 8. A Gaussian random cochain f : Ω → Ck(X)
is fully characterised by a mean µ ∈ Ck(X) and a kernel
κ : Ck(X)× Ck(X) → R.

Proof: Appendix C.1.

The vector representation f of f is simply a multivariate
Gaussian f ∼ N (µ,K), whose covariance

K :=

 κ(ek1 , e
k
1) · · · κ(ek1 , e

k
Nk

)
...

. . .
...

κ(ekNk
, ek1) · · · κ(ekNk

, ekNk
)

 (12)

is the matrix representation of the kernel. Due to the bilin-
earity of κ, for any c, d ∈ Ck(X), and their vector represen-
tations c,d ∈ ZNk , we can write

κ(c, d) = c⊤Kd. (13)

By fixing orientations on each k-cell, we also have a notion
of direction for the signal f – for a k-cell ekα, depending
on whether the sign of f(ekα) is positive or negative, the
direction of f at ekα is aligned to, or runs counter to the
orientation of ekα, respectively.

4.2. GPs on Cellular Complexes

Next, we extend our notion of Gaussian random cochains to
direct sums of cochains of different orders. We take this as
our definition of Gaussian processes on cellular complexes.

Definition 9. Let X be an n-dimensional cellular com-
plex. We define a Gaussian process on X as a ran-
dom variable f : Ω →

⊕n
k=0 C

k(X) such that for any
c = (c0, . . . , cn) ∈

⊕n
k=0 Ck(X), the random variable

f(c) : Ω → R is univariate Gaussian.

3A group bi-homomorphism to be more precise.
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As before, we have an appropriate notion of a kernel on this
space as a symmetric bilinear form3

κ :

n⊕
k=0

Ck(X)×
n⊕

k=0

Ck(X) → R (14)

satisfying
∑

i,j κ(ci, cj) ≥ 0 for ci, cj ∈
⊕n

k=0 Ck(X).
We also have the following result characterising GPs on
cellular complexes via a mean and a kernel.

Theorem 10. A GP on a cellular complex X is fully char-
acterised by a mean µ ∈

⊕n
k=0 C

k(X) and a kernel
κ :
⊕n

k=0 Ck(X)×
⊕n

k=0 Ck(X) → R.

Proof: Appendix C.2.

Again, we can represent (14) by a matrix

K =

K11 · · · K1n

...
. . .

...
Kn1 · · · Knn

 (15)

with [Knm]ij = κ(eni , e
m
j ), which defines the covariance

of f ∈ RN1+···+Nn , the vector representation of f .

Remark 11. We emphasise that our notion of a GP on a
cellular complex X is not defined as a random function
X → R (i.e. a GP on the topological space X), but rather
as a direct sum of Gaussian random cochains, i.e., a random
function

⊕n
k=0 Ck(X) → R. This will allow us to define

covariance structures between cells themselves, instead of
between points on cells.

4.3. Kernels on Cellular Complexes

We provide some concrete examples of kernels defining GPs
on cellular complexes, which encompass existing kernels
in the literature. For simplicity, we take unit cell-weights
wk

α = 1 here and defer the treatment of the general case to
Appendix D.3. For any chain c ∈ Ck(X), we also denote by
c♭ ∈ Ck(X) the cochain defined by f(c) =

〈
f, c♭

〉
L2(wk)

for any f ∈ Ck(X).

4.3.1. MATÉRN KERNEL

We first consider a generalisation of the Matérn kernel on
cellular complexes. Following (Borovitskiy et al., 2020;
2021), consider the stochastic system(

2ν

ℓ2
+∆k

)ν/2

f = W, (16)

where f ∈ Ck(X), ∆k is the Hodge Laplacian (Definition
5), and W : Ω → Ck(X) is a Gaussian random cochain sat-
isfying E[W(c0)] = 0 and E[W(c1)W(c2)] =

〈
c♭1, c

♭
2

〉
L2

for any c0, c1, c2 ∈ Ck(X). The operator
(
2ν
ℓ2 +∆k

)ν/2
is

defined rigorously in Appendix D.1.

The Matérn kernel κ : Ck(X)×Ck(X) → R is then defined
as a solution to the system(

2ν

ℓ2
+∆k

)ν

κ(c, · ) = c♭, ∀c ∈ Ck(X), (17)

which is a kernel in the sense that it satisfies the following
property.

Proposition 12. The solution to (17) is related to the solu-
tion f of the system (16) by

κ(c, c′) = E[f(c)f(c′)], ∀c, c′ ∈ Ck(X). (18)

Thus, κ solving (17) is the kernel of the Gaussian random
cochain f .

Proof: Appendix D.1.1.

We can express the kernel in (17) by a matrix

K = U

(
2ν

ℓ2
I+Λ2

)−ν

U⊤, (19)

where ∆k = UΛ2U⊤ is the eigendecomposition of the
Hodge Laplacian. In the case k = 0, (19) recovers exactly
the graph Matérn kernel by (Borovitskiy et al., 2021). We
may also extend this construction to direct sums of cochains
by replacing the Hodge Laplacian in (16) and (17) by the
super Laplacian L :=

⊕n
k=0 ∆k, resulting in kernel (19),

where UΛ2U⊤ is now the eigendecomposition of the super
Laplacian matrix L = blockdiag(∆0, . . . ,∆n). While
this defines a GP on direct sums of cochains, due to the
block-diagonal structure of the super-Laplacian, no mixing
occurs between different cochains.

In the special case of GPs defined over the edges of a graph
(i.e., Gaussian 1-cochains), a similar construction of the
Matérn kernel has been explored in the concurrent work
Yang et al. (2024), where they also employ the Hodge de-
composition to add further flexibility of the model. Another
related work (Pinder et al., 2021) explores the construction
of Matérn GPs on hypergraphs to model higher-order inter-
actions. However, the work only considers inference on the
vertices, whereas our method focuses on making inferences
on signals supported on the interactions themselves (i.e., the
cells).

4.3.2. REACTION-DIFFUSION KERNEL

Next, we introduce a new type of kernel, which we term the
reaction-diffusion kernel, that enables mixing of information
between cochains of different orders. We will operate here
entirely with the vector representation of cochains for ease
of presentation.
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Consider the Dirac matrix

D =


0 B1 · · · 0

B⊤
1

. . . . . .
...

...
. . . . . . Bn

0 . . . B⊤
n 0

 , (20)

whose k-th column is a numerical representation of the k-th
Dirac operator (10). We can check that D2 = L holds.
Thus, the Dirac matrix D and the super-Laplacian matrix L
share a common eigenbasis U with eigenvalues Λ and Λ2,
respectively. Now consider the stochastic system

(rI− cD + dL)
ν
2 f = w, w ∼ N (0, I) (21)

for some constants r, c, d, ν ∈ R≥0. Then, the correspond-
ing kernel matrix is given by

K = U(rI− cΛ+ dΛ2)−νU⊤, (22)

which we term the reaction-diffusion kernel.4 This is a
kernel in the sense that it satisfies the following result.

Proposition 13. The kernel defined by (22) is related to the
solution f of the system (21) by

[K]ij = E[fifj ], ∀i, j. (23)

Proof: Appendix D.2.1.

Remark 14. Our naming of the reaction-diffusion kernel
derives from the similarity of system (21) with the multi-
component reaction-diffusion equation

∂f

∂t
= (r − cD + dL)f , (24)

where the first and third term model the reaction and diffu-
sion of a quantity respectively, and the second term models
the cross-diffusion of multiple quantities.

To interpret this kernel, we look at the corresponding pre-
cision matrix P = K−1, which encodes the probabilis-
tic graphical model (PGM) representation of the model
f , wherein variables fi and fj are linked if and only if
[P]ij ̸= 0 (Rue & Held, 2005). For simplicity, taking ν = 1
and restricting to a 1-dimensional cellular complex, the
precision takes the expression

P =

(
rI+ d∆0 −cB1

−cB⊤
1 rI+ d∆1

)
. (25)

4In general, K is indefinite. To fix this, we set ν to be an even
integer in (22), which will make it positive definite for all r, c, d ∈
R≥0, excluding the set X :=

⋃
i{(r, c, d) : r ± cλi + dλ2

i =
0}. This set has Lebesgue measure zero. If (r, c, d) ∈ X, K
becomes positive semi-definite. Therefore it defines a degenerate
Gaussian measure. Inference using degenerate Gaussian measures
is, however, still valid, provided σ > 0 is strictly positive in
(1)–(2).

(a) 1D cellular complex (b) PGM representation

Figure 4. Probabilistic graphical structure of the reaction-diffusion
GP. Interactions between vertices (green) and between edges (blue)
are shown as well as the mixing between cochains of different
orders (red). The cellular Matérn kernel does not have this mixing
property.

For f = (f0,f1)
⊤ in (21), the graphical structure of the

k-th component fk is summarised by the matrix rI+ d∆k

for k ∈ {0, 1}, and the dependence between f0 and f1 is
represented by the incidence matrix B1 (dotted red in 4b).
Since no communication between f0 and f1 occurs when
c = 0, the Dirac term is essential for allowing information
to propagate between cochains of different orders.

Let us now consider two special cases of the kernel (22). In
the first case, taking r = 2ν/ℓ2, c = 0, d = 1 and ν = ν,
we see that (22) recovers the Matérn kernel (19). Since
c = 0, there is no flow of information between cochains
of different orders, resulting in independence between the
random cochains f0, . . . ,fn.

For r = m2, c = 1, d = 0 and ν = 2, we obtain

K = U(mI−Λ)−2U⊤ = (mI−D)−2. (26)

This kernel is considered by (Calmon et al., 2023) (in the
form of a regulariser) for retrieving mixed topological sig-
nals supported on the k-cells for k ≤ 2.

5. Results
In this section, we demonstrate the results of our GP model
defined over cellular complexes (hereafter referred to as CC-
GP) on two examples. First, we demonstrate that CC-GPs
can make directed predictions on the edges of a graph by
considering the problem of ocean current interpolation. In
the second example, we investigate the effect of inter-signal
mixing in the reaction-diffusion kernel. We provide details
of the experimental setups in Appendix E.

5.1. Directed Edge Prediction

In the numerical simulation of fluids and especially in fi-
nite element methods (FEMs), it is common to treat vector
fields as signals supported on the edges of a mesh (Arnold
et al., 2006) to give them the flexibility for dealing with com-
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Figure 5. Prediction of geostrophic current around the Southern tip
of Africa using the CC-Matérn GP on edges. (Top left) Ground
truth. (Top right) Predicted mean. (Bottom left) Absolute er-
ror. (Bottom right) Standard deviation. Orange dots are observed
edges.

plex geometries, e.g., arising from the coastlines in ocean
modelling. As there is an increasing adoption of FEM for
weather and climate modelling (for example, the UK Met
Office’s GungHo model uses FEM with cubical elements
(Staniforth et al., 2013)), it is of interest to consider methods
that propagate information from observations directly onto
the finite element vertices and edges.

Our CC-GP model can naturally be applied in this set-
ting: Consider the geostrophic current data from the
NOAA CoastWatch (2023) database. First, we project the
geostrophic current around the southern tip of Africa onto
the oriented edges of a two-dimensional cubical complex by
averaging the flow along each edge (Desbrun et al., 2006).
This yields directed signals on the edges representing the
vector field. We then train our edge-based Matérn GP (see
Section 4.3.1 defined over a 1-cochain) on 30% of the data,
selected randomly. The main objective of this experiment is
to demonstrate that our approach can capture the directional
information of the vector field, which would otherwise be
difficult with existing approaches.

Figure 5 shows resulting predictions. For ease of visuali-
sation, we display the magnitude of the predicted signals
by colours on the edges; arrows indicate the predicted di-
rection on each cell, computed by averaging the signals on
its boundaries and then taking the resulting direction. We
see that our CC-Matérn GP on edges captures the general
characteristics of the ground-truth vector field with similar
magnitudes and directions, indicating that it can correctly
diffuse information onto neighbouring edges.

We compare the results with a graph Matérn GP baseline

MSE (↓) NLL (↓)

Graph Matérn 0.030± 0.000 −684.54± 4.20
Edge Matérn (ours) 0.029± 0.001 −703.42± 5.10

Table 2. Mean square error (MSE) and negative log-likelihood
(NLL) of ocean current magnitude predictions using (a) a graph
Matérn baseline, and (b) the edge Matérn GP. Mean and standard
error are shown.

MSE (↓) CC-Matérn Reaction-diffusion

Vertices 0.165 ± 0.005 0.076 ± 0.004
Edges 0.335 ± 0.014 0.200 ± 0.010
Triangles 0.272 ± 0.005 0.166 ± 0.005

NLL (↓)

Vertices 28.81 ± 1.75 -9.31 ± 1.61
Edges 136.77 ± 4.32 71.07 ± 6.29
Triangles 82.84 ± 1.56 39.78 ± 2.47

Table 3. Mean square error (MSE) and negative log-likelihood
(NLL) of predictions on the synthetic data (mean and standard
error across 20 random seeds). Overall, the performance of the
reaction-diffusion GP is superior to that of the Matérn GP on the
cellular complex, highlighting the benefits of mixing information
across different cell types.

defined over the corresponding line graph5. Since this base-
line cannot infer directions on the edge signals, we use it
to only predict its magnitude. The results are shown in Ta-
ble 2, where we report the mean square error (MSE) and
negative log-likelihood (NLL) scores on the magnitude of
the ocean current. MSE results for both models are compa-
rable; however, our edge-based Matérn GP performs better
than the graph Matérn GP on the NLL. This suggests that in
addition to being able to infer the directions on edges, pre-
dictive uncertainties are better and the topological inductive
bias contained in the edge-based Matérn GP also helps to
improve predictions for the magnitudes.

5.2. Signal Mixing

We illustrate the benefits of mixing signals using the
reaction-diffusion kernel on synthetic data, where we con-
structed a 2D-simplicial mesh consisting of 10×10 vertices.
We generated artificial signals on the edges by considering a
random 1-cochain f =

∑K
i=k ξiui, where ξi ∼ N (0, λ−1

i ),
{(λi, ui)}i are the eigenpairs of the Hodge Laplacian ∆1

and 0 < k < K are the minimal and maximal wavenumbers
controlling the smoothness of the edge field. We then gener-
ated data supported on the triangles and vertices of the mesh
by applying the coboundary operator d1 and its adjoint d∗1
respectively to f (numerically, this corresponds to applying

5This is the graph constructed by treating the edges as vertices
and connecting them if they share a vertex.
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Figure 6. Predictive distributions on vertices, edges, and triangles using the reaction-diffusion kernel (RD, top row) and the CC-Matérn
kernel (bottom row). Left panels: differences between mean prediction and ground truth (values close to 0 are good); right panels:
corresponding predictive standard deviations. By taking correlation properties into account, the RD kernel produces better predictions on
vertices, edges, and triangles.

the matrices B⊤
2 and B1). We randomly selected a third of

the data supported on each type of cell (vertices, edges and
triangles) and perturbed them by noise for training. The aim
is to recover the signals on the remaining two thirds of the
cells.

We compare the results of the Matérn GP on the cellular
complex (CC-Matérn) and the reaction-diffusion (RD) GP,
used to make predictions across various cell-types. Figure 6
shows an example result with k = 20 and K = 100, where
we display the difference (left panels) from the ground truth
and the predictive standard deviation (right panels) for ver-
tex (left column), edge (center column), and triangle pre-
dictions (right column) for the RD kernel (top row) and the
CC-Matérn kernel (bottom row). Overall, we see how the
mixing of information across different cell types in the RD
kernel helps to improve predictions, as evidenced by the
overall smaller errors in each cell type (with small predic-
tive uncertainty), compared to the predictions made by the
CC-Matérn kernel. In particular, we see how data supported
on one type of cell can be used to enhance the predictions on
another cell type as we can infer from the standard deviation
plots. The standard deviation of the CC-Matérn GP is more
localised around the data points than that of the reaction-
diffusion GP, suggesting that information on different cell
types is being mixed in the latter.

This behaviour is also quantitatively reflected in Table 3,
which reports the mean squared error (MSE) and the nega-
tive log-likelihood (NLL) scores of the predictions for both
models, computed across 20 random seeds (mean and stan-
dard errors). We see how the results for the RD-GP are
on average significantly better than that for the CC-Matérn
kernel on both metrics, highlighting the benefits of mixing
for both prediction and uncertainty quantification.

5.3. Modelling Electromagnetic Fields

Another potential application area of GPs defined over CCs
is to model electromagnetic fields, which have natural rep-
resentations as cochains. In particular, the scalar potential,
electric field and magnetic field generated by point charges
on a 2D plane can be modelled geometrically as scalar,
vector and pseudovector fields, respectively. Upon discreti-
sation, these can then be represented by 0, 1 and 2-cochains,
respectively, using the continuous-discrete correspondence
between tensor fields (more precisely, differential forms)
and cochains (Desbrun et al., 2006).

In this experiment, we use simulations of the scalar potential
(V ), electric field (E) and magnetic field (B) generated by
10 randomly sampled point charges. These are then pro-
jected onto 0, 1 and 2-cochains, respectively, from which we
extract noisy observations at a sixth of randomly selected
cells in each skeleton of the generated CC. Then, similar to
the experiment in Section 5.2, the objective is to recover the
signals on the remaining cells. In contrast to the previous
experiment, the correlation structure between signals sup-
ported on different cell types are more complex, provided
indirectly through Maxwell’s equations. Our goal is thus to
see whether the RD kernel is still useful in this setting where
the correlation between fields exist, but are not artificially
imposed, as with the previous experiment. The electromag-
netic simulation was performed using the Python package
PyCharge (Filipovich & Hughes, 2022).

In Table 4, we compare the results of the CC-Matérn GP and
the reaction-diffusion (RD) GP on this experiment. Gener-
ally, we observe that the RD-GP yields slightly better results
than the CC-Matérn GP on both the MSE and the NLL, with
the exception of the MSE on the scalar potential. For pre-
dictions of the electric and magnetic fields, the RD kernel
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Matérn MSE RD MSE Matérn NLL RD NLL

V 0.102 ± 0.008 0.11 ± 0.011 45.75 ± 7.20 45.41 ± 7.35
E 0.130 ± 0.008 0.128 ± 0.009 104.3 ± 14.0 100.7 ± 15.8
B 0.190 ± 0.026 0.178 ± 0.023 124.7 ± 18.8 117.3 ± 17.2

Table 4. Comparison of independent Matérn GPs and the reaction-
diffusion (RD) GP for joint modelling of the 2D potential (V),
electric (E) and magnetic (B) fields. We compare the mean square
error (MSE) and negative log-likelihood (NLL). For the E and B
fields, RD ourperforms independent Matérn on 8/10 seeds.

outperformed the Matérn kernel on eight out of ten random
seeds that were used to generate the results in Table 4. Our
results indicate that interestingly, mixing of information be-
tween the different cell types using the RD kernel can still
be useful in this setting. However, we also note that the
improvements that we see here are much less pronounced
than what we observed in the previous experiment, where
correlations between signals on different cell types were
imposed more directly.

6. Discussion
Our experiments demonstrate the benefits of incorporating
the structure of cellular complexes to model data that are
naturally supported on higher-order networks, enabling us
to treat (a) directed signals and (b) mixed signals with ease,
which a standard graph GP cannot handle. This opens up
new possibilities for modelling data on non-Euclidean do-
mains. For instance, as a promising direction, we believe
that our approach could be useful for modelling vectorial
or higher-order tensorial quantities supported on arbitrary
manifolds, by relying on the structural parallels between
CCs and differential forms, typically employed in numerical
simulations of vectorial/tensorial quantities supported on
manifolds (Arnold et al., 2006). This idea is explored in our
experiments in Sections 5.1 and 5.3 on simple 2D domains.
We aim to extend this to more complex domains in future
work, possibly incorporating boundary conditions.

Indeed, vectorial GPs on manifolds have been considered
before for example in (Hutchinson et al., 2021) and more re-
cently in (Robert-Nicoud et al., 2024). However, the former
construction relies on embedding the manifold in a larger
ambient space in order to make use of scalar kernels, and
the latter relies on the Helmholtz decomposition to make
use of scalar kernels. On the other hand, by directly encod-
ing the vector information on the edges of a CC, one can
easily model vector fields over arbitrary manifolds, possibly
with boundaries (see Figure 7). Adopting a CC perspective
thus makes modelling with vectorial GPs easier, and can be
further generalised to the tensorial setting naturally. Further,
the reaction-diffusion GP provides a topologically consis-
tent extension to multitask GPs to the CC setting, where the
individual GPs can now live on different skeletons of the
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Figure 7. Left: Vector field on a manifold-with-boundaries; Right:
Vector field’s encoding on the edges of an oriented CC. Modelling
such fields is straightforward with CC-GPs.

same CC. This will be useful in situations for modelling
multiple fields (cochains) that are correlated.

We note that at present, our reaction-diffusion kernel is con-
trolled only by three hyperparameters r, c, d, which may
be too restrictive for some modelling purposes. To make
our model more flexible, one possible direction that we can
consider is to make use of the Hodge decomposition to split
the cochains into exact, co-exact and harmonic components.
This will allow us to model each of these components sep-
arately, for added flexibility. In a recent work (Yang et al.,
2024), the authors consider GPs to model edge signals on a
graph and observed that modelling the exact, co-exact and
harmonic signals separately can lead to improved results.
For signals supported on a cellular complex, a natural ana-
logue of the Hodge decomposition can be provided through
the Dirac matrix (Calmon et al., 2023). Hence, a promis-
ing direction would be to combine this decomposition with
our reaction-diffusion kernel to develop a more flexible ex-
tension that could fit more complex mixing of information
between different cell-types.

Another current limitation of our model is the computational
cost associated with computing the eigendecomposition of
the Laplacian/Dirac matrix, which can grow very quickly
with the size of the network. While this limits the size of
networks we can work with, this expensive computation
needs to be performed only once and not during training,
so we expect one to be able to work with reasonably large
networks, consisting of hundreds of thousands of cells.

7. Conclusion
We introduced Gaussian processes on cellular complexes as
tools for probabilistic modelling on higher-order networks.
We identify these as GPs defined over random chains or
direct sums thereof, enabling inference on vertices, edges,
and higher-order cells. We constructed kernels appropri-
ate for practical modelling. In particular, we generalise
the Matérn kernel to cellular complexes and propose the
reaction-diffusion kernel, which allows for propagation of
information between cells of different orders.
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A. Cell Orientation and Boundaries
In this appendix, we provide more details on the computation of cell boundaries. To this end, we first require a notion
of orientation on cells. For low dimensional k-cells, we have the following intuitive definitions of what we mean by an
orientation:

• k = 0 (i.e., a point): A choice of either “+” or “−”.

• k = 1 (i.e., a line segment): A choice of direction from one endpoint to the other.

• k = 2 (i.e., a 2D-disk): A choice of rotation direction (clockwise or anticlockwise).

Generally, the orientation of a k-dimensional unit disk Dk is the choice of a continuously varying unit normal vector field
n̂ : Dk → Rk+1 on Dk, viewed as a surface embedded in Rk+1. Here, a unit normal vector n̂(s) for s ∈ Dk is a vector in
Rk+1 such that ∥n̂(s)∥ = 1 and n̂(s) · v = 0 for any v ∈ TsD

k ⊂ Rk+1, where TsDk is the tangent space of Dk at point
s (i.e., the space of all vectors in Rk+1 that are tangential to Dk). Since orientation is a topological invariant, we can define
the orientation on a k-cell generally to be the orientation of the k-dimensional disk that it is homeomorphic to.

A useful way of thinking about the orientation of Dk is in terms of how it is embedded in Rk+1. In particular, we may

identify a point x ∈ Dk as a vector (x1, . . . , xk, 0)⊤ ∈ Rk+1 such that
√∑k

i=1 x
2
i < 1. We can thus choose the unit

normal field to be given by n̂ = (x1, . . . , xk, 1)
⊤ ∈ Rk+1 for any x1, . . . , xk parameterising Dk. From this perspective,

we can define an induced orientation ∂n̂ on its boundary ∂Dk ∼= Sk−1, by taking the unit normal field pointing outwards
from the disk, with respect to this embedding.

(a) Orientation and induced orientation on a 2-cell (b) Orientation and induced orientation on a 1-cell

Figure 8. Illustration of orientations (blue arrows) on (a) a 2-cell, and (b) a 1-cell, along with the induced orientation (red arrows) on the
corresponding boundaries. The orientation can be understood as a choice of a continuous vector field in the ambient Euclidean space that
points in the direction normal to the k-cell (in this case, pointing upwards). The induced orientation on the boundaries can be understood
as the outward pointing normal field with respect to the embedding.

Example 15. Consider a 2D-disk D2 embedded in R3. The orientation on D2 is then given by the unit normal field
n̂(x, y, 0) = (x, y, 1) for

√
x2 + y2 < 1 and the induced orientation on its boundary S1 ∼= ∂D2 is given by the outward

unit normal field ∂n̂(x, y, 0) = (x, y, 0) for
√
x2 + y2 = 1. Intuitively, the former can be thought of as anticlockwise

rotation of the disk, deduced by aligning one’s thumb with the unit normal direction and applying the right-hand rule. Now,
aligning the thumb with n̂ and the index finger with ∂n̂, the middle finger, according to the right-hand rule, points in the
anticlockwise direction around the boundary, giving us a more intuitive interpretation of the induced orientation (see Figure
8a).

Example 16. Consider a line-segment (i.e., a 1D disk) embedded in R2 with respect to the parameterisation {(x, 0) ∈ R2 :
x ∈ (−1, 1)}. The orientation of the line segment is determined by the unit normal field n̂(x, 0) = (x, 1) for x ∈ (−1, 1)
and the induced orientation is given by the outward normal field ∂n̂(x, 0) = (x, 0) for x ∈ {−1, 1}. Again, we can use the
right-hand rule to determine the “intuitive” interpretation of orientations here: pointing the thumb towards the page and the
index finger aligned with n̂, the middle finger points in the direction going from left endpoint x = −1 to the right endpoint
x = 1. Since the middle finger as a result aligns with ∂n̂(x, 0) at x = 1, we think of the induced orientation at (1, 0) as
having the sign “+ ”. However, it does not align with ∂n̂(x, 0) at x = −1, hence the induced orientation at (−1, 0) has the
sign “− ” (see Figure 8b).
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Next, the boundary of a k-cell ekα, is defined generally as a (k − 1)-chain

∂ekα =

Nk−1∑
β=1

deg(χαβ)ek−1
β , (27)

where deg(χαβ) is the Brouwer degree of the surjection χαβ : Sk−1 ∼= ∂ekα
ϕk
α→ Xk−1 /→ Xk−1/(Xk−1 − ek−1

β ) ∼= Sk−1,
mapping the boundary of ekα (homeomorphic to Sk−1) to the (k − 1)-cell ek−1

β , identified with Sk−1 by collapsing its
boundary to a single point (Hatcher, 2001). For a regular cellular complex, deg(χαβ) is either 0 or ±1 depending on
whether or not ek−1

β is a part of ∂ekα under the attaching map. That is, if ek−1
β is not part of the boundary ∂ekα, then we take

deg(χαβ) = 0. Otherwise, if the induced orientation of ∂ekα aligns with the orientation of ek−1
β (i.e., take an embedding

Xk−1 ↪−→ Rk and see how the unit normal fields of ∂ekα and ek−1
β align), then we take deg(χαβ) = 1 and if it has opposite

orientations, we take deg(χαβ) = −1. We will also adopt the notation deg(ekα → ek−1
β ) to denote deg(χαβ) in order to

make the cells involved more explicit.

The computation of the Brouwer degree can in general be challenging. However, in some special cases, the computation can
be simplified, as we show in the following examples.
Example 17. Consider a k-simplex, which can be identified as a collection of k + 1 vertices, say v0, . . . , vk without
loss of generality. Its orientation is determined by the parity of the permutation of these k + 1 vertices. Hence, we
represent it by an equivalence class [v0, . . . , vk], where equivalence is defined by the parity. We set ekα = [v0, . . . , vk]. Now
consider an oriented face of this simplex, represented by an equivalence class of k vertices ek−1

β = [w1, . . . , wk], such
that {w1, . . . , wk} = {v0, . . . ,��vℓ, . . . , vk} for some ℓ ∈ {0, . . . , k}. Naturally, this can be represented by a permutation
σ ∈ Sk+1 on {0, . . . , k} with σ(0) = ℓ and wi = vσ(i) for i = 1, . . . , k. Then, we take deg(ekα → ek−1

β ) = sgn(σ), the
signature of the permutation σ. Thus, in general, we can write

∂[v1, . . . , vk+1] =

k+1∑
ℓ=1

(−1)ℓ[v1, . . . ,��vℓ, . . . , vk+1]. (28)

Example 18. Consider a 2D polygonal cell ekα with vertices v1, . . . , vk, and re-order them such that it revolves around
the polygon in a clockwise or anticlockwise manner: i.e., vσ(1) → vσ(2) → · · · → vσ(k−1) → vσ(k) → vσ(1) for some
permutation σ ∈ Sk. Whether the ordering here is clockwise or anticlockwise determines the orientation of the cell.
Since the choice of the first vertex in the ordering is not important, we represent this polygon as the equivalence class
ekα = [vσ(1), . . . , vσ(k)], where equivalence is defined by permutation with respect to the cyclic group Ck ⊂ Sk. Now,
an oriented edge of this polygon can be represented by an ordered tuple ek−1

β = (vi, vj) for i < j, such that either
(i, j) = (σ(ℓ), σ(ℓ+1)) or (i, j) = (σ(ℓ+1), σ(ℓ)) for some ℓ ∈ {1, . . . , k} (we use the convention k+1 ≡ 1, i.e., assume
the indices are elements of Z/kZ). Then, we set deg(ekα → ek−1

β ) = 1 in the former case and deg(ekα → ek−1
β ) = −1 in

the latter. Hence, using the convention (vi, vj) = −(vj , vi), we can check that

∂[vσ(1), . . . , vσ(k)] =

k+1∑
ℓ=1

(vσ(ℓ), vσ(ℓ+1)). (29)

In the general case, we can compute the boundary of an arbitrary cell by considering its simplicial decomposition. That is,
we discretise the k-cell ekα by a collection of N k-simplices. This can be expressed as a k-chain

ekα =

N∑
i=1

[vi1 , . . . , vik ]. (30)

We can compute its boundary by first taking

∂ekα =

N∑
i=1

∂[vi1 , . . . , vik ], (31)

then using (28) to give a simplicial decomposition of ∂ekα, and finally collectivising with respect to the simplicial decompo-
sition of ek−1

β .

13
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B. Numerical Representation of Cellular Complexes
In this appendix, we provide a full derivation of the numerical representation of key concepts on cellular complexes, as
displayed in Table 1. To make this appendix self-contained, we first re-introduce some definitions.

Definition 19 (k-chains). A k-chain on X is a free Abelian group whose generator is the set of all k-cells comprising X .
The space of all k-chains on X is denoted Ck(X).

Definition 20 (Boundary operators). For k ∈ {1, . . . , n}, the boundary operator is a group homomorphism ∂k : Ck(X) →
Ck−1(X) mapping k-chains to (k − 1)-chains, i.e.,

∂k

(
Nk∑
α=1

nae
k
α

)
=

Nk∑
α=1

na∂e
k
α, (32)

where ∂ekα is the boundary of the cell eαk , viewed as a (k− 1)-chain (see Appendix A). For convention, we also take ∂kc ≡ 0
for k ∈ {0, n+ 1}.

Definition 21 (k-cochains). A k-cochain on X is a group homomorphism f : Ck(X) → R assigning real numbers to
k-chains, i.e.,

f
( Nk∑

α=1

nαe
k
α

)
=

Nk∑
α=1

nαf(e
k
α), (33)

where f(ekα) ∈ R is the value of f at cell ekα. The space of all k-cochains on X is denoted Ck(X) and forms a real vector
space.

Definition 22 (Coboundary operators). For 0 ≤ k < n, the coboundary operator dk : Ck(X) → Ck+1(X) is a linear map
defined via the relation

dkf(c) = f(∂k+1c) (34)

for all f ∈ Ck(X) and c ∈ Ck+1(X). For convention, we also take dkf ≡ 0 for k ∈ {−1, n}.

Definition 23 (L2-inner product on cochains). For each k, let {wk
α}

Nk
α=1 be a set of real, positive weights. Then, for any

f, g ∈ Ck(X), we define the weighted L2-inner product as

⟨f, g⟩L2(wk) :=

Nk∑
α=1

wk
α f(e

k
α) g(e

k
α). (35)

Definition 24 (L2-adjoint of the coboundary operator). For each k, let {wk
α}

Nk
α=1 be a set of real, positive weights. The

L2-adjoint of the coboundary operator, denoted d∗k : Ck+1(X) → Ck(X) is defined by

⟨d∗kf, g⟩L2(wk) = ⟨f, dkg⟩L2(wk+1) , (36)

for any f ∈ Ck+1(X) and g ∈ Ck(X).

Definition 25 (Hodge Laplacian). The Hodge Laplacian ∆k : Ck(X) → Ck(X) on the space of k-cochains is defined as

∆k := dk−1 ◦ d∗k−1 + d∗k ◦ dk. (37)

To make explicit computations with them, we wish to represent these using matrices and vectors. Fortunately, this is not
difficult as the space of chains / cochains forms a free Abelian group / vector space, which is naturally isomorphic to Zn /
Rn.

To this end, we fix a labelling α 7→ ekα of the k-cells comprising a cellular complex X , which forms an ordered basis
(ek1 , . . . , e

k
Nk

). Then, an arbitrary k-chain c =
∑Nk

α=1 nαe
k
α ∈ Ck(X) may be represented by a vector c = (n1, . . . , nNk

)⊤

in ZNk . Similarly, a k-cochain f =
∑Nk

α=1 fα(e
k
α)

∗ ∈ Ck(X) can be represented by a vector f = (f1, . . . , fNk
)⊤ in RNk .

Under this representation, cochain evaluation (33) can simply be expressed as a dot product f(c) = f⊤c ∈ R.

14
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Next, we consider the boundary and coboundary operators. The boundary operator can be expressed as a signed incidence
matrix Bk ∈ ZNk−1×Nk , whose j-th column corresponds to the vector representation of the cell boundary ∂ekj , viewed as a
(k − 1)-chain (see Appendix A). That is,

[Bk]ij = deg(ekj → ek−1
i ) (38)

for k ∈ {1, . . . , n}, and by convention, we take Bk ≡ 0 for k ∈ {0, n + 1}. Similarly, the coboundary operator can be
represented by a matrix Dk ∈ RNk+1×Nk . Using (34), we have

f⊤D⊤
k c = f⊤Bk+1c, (39)

⇔ Dk = B⊤
k+1. (40)

Thus, the coboundary operator is identified with the transpose of the signed incidence matrix. Finally, let Wk =
diag(wk

1 , . . . , w
k
Nk

) be the weight matrix defining the L2-inner product (35). i.e.,

⟨f, g⟩L2(wk) = f⊤Wkg. (41)

Then, letting D∗
k ∈ RNk×Nk+1 be the matrix representation of the adjoint of the coboundary, (36) implies

f⊤(D∗
k)

⊤Wkg = f⊤Wk+1B
⊤
k+1g (42)

⇔ D∗
k = W−1

k Bk+1Wk+1. (43)

Putting this together, we find the matrix expression ∆k ∈ RNk×Nk for the Hodge Laplacian operator using (37):

∆k = DkD
∗
k +D∗

k+1Dk+1 (44)

= B⊤
k (W

−1
k−1BkWk) + (W−1

k Bk+1Wk+1)B
⊤
k+1. (45)

C. Characterisation of GPs on Cellular Complexes
Here, we prove the results in Section 4 characterising Gaussian random cochains and GPs on cellular complexes by a mean
and a kernel.

C.1. Proof of Theorem 8

We restate Theorem 8 below for completeness.

Theorem 26. A Gaussian random cochain f : Ω → Ck(X) is fully characterised by a mean µ ∈ Ck(X) and a kernel
κ : Ck(X)× Ck(X) → R.

Proof. The proof is almost identical to that of Lemmas 9–10 in (Hutchinson et al., 2021).

(⇒) First, we show that given a Gaussian random cochain f , we can define a mean and a kernel object. For this, we simply
set µ(c) := E[f(c)] and κ(c, c′) := Cov[f(c), f(c′)]. The former is clearly a cochain since f is a (random) cochain. The
latter can be easily checked to be a kernel in the sense of Definition 7:

• (Symmetry) This follows from the symmetry of the covariance operator Cov[f(c), f(c′)] = Cov[f(c′), f(c)].

• (Group bi-homomorphism) This follows from the fact that by definition, f is a group homomorphism and using the
bilinearity of the covariance operator.

• (Positive semi-definiteness) Fixing c1, . . . , cm ∈ Ck(X), we have

m∑
α,β=1

κ(cα, cβ) =

m∑
α,β=1

Cov[f(cα), f(cβ)] = E

[( m∑
α=1

(f(cα)− E[f(cα)])
)2]

≥ 0. (46)
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(⇐) Next, we show that given µ ∈ Ck(X) and a kernel κ : Ck(X)× Ck(X) → R, we can construct a Gaussian random
cochain. Take

µ =

 µ(e
k
1)

...
µ(ekNk

)

 ∈ RNk , K =

 k(e
k
1 , e

k
1) · · · k(ek1 , e

k
Nk

)
...

. . .
...

k(ekNk
, ek1) · · · k(ekNk

, ekNk
)

 ∈ RNk×Nk . (47)

This uniquely defines a multivariate Gaussian random variable f ∼ N (µ,K). Now let φ : Ck(X)
∼→ RNk be the group

isomorphism identifying k-cochains by a vector in RNk via the labelling α 7→ ekα. We also take the group isomorphism
ψ : Ck(X)

∼→ ZNk , defined by f(c) = φ(f)⊤ψ(c) for any f ∈ Ck(X) and c ∈ Ck(X). Then, we set f := φ−1f , which
defines a Gaussian random cochain, since for any c ∈ Ck(X), we have f(c) = [φ−1f ](c) = f⊤ψ(c), which is univariate
Gaussian.

C.2. Proof of Theorem 10

We restate Theorem 10 below for completeness.
Theorem 27. A Gaussian process on a cellular complex X (abbreviated as CC-GP) is fully characterised by a mean
µ ∈

⊕n
k=0 C

k(X) and a kernel κ :
⊕n

k=0 Ck(X)×
⊕n

k=0 Ck(X) → R.

Proof. The proof is almost identical to the proof of Theorem 8 (see Appendix C.1), hence we will omit some details to
avoid repetition.

(⇒) For a CC-GP f : Ω →
⊕n

k=0 C
k(X), we can define a mean and a kernel by setting µ(c) := E[f(c)] and κ(c, c′) :=

Cov[f(c), f(c′)], for any c, c′ ∈
⊕n

k=0 C
k(X).

(⇐) Given µ ∈
⊕n

k=0 C
k(X) and a kernel κ :

⊕n
k=0 Ck(X)×

⊕n
k=0 Ck(X) → R, we take

µ =

µ1
...

µn

 , K =

K11 · · · K1n

...
. . .

...
Kn1 · · · Knn

 (48)

with [µi]j = µ(eij) and [Knm]ij = κ(eni , e
m
j ), which uniquely defines a multivariate Gaussian random variable f ∼

N (µ,K) in RN1+···+Nn . Now, consider the group isomorphism φ :
⊕n

k=0 C
k(X)

∼→ RN1+···+Nn by fixing a labelling
α 7→ ekα for each k = 0, . . . , n. Then, f := φ−1f defines a CC-GP.

D. Kernels on Cellular Complexes
In this appendix, we provide further details on the kernels that we consider in this paper, namely the Matérn kernel on
cellular complexes (CC-Matérn) and the reaction-diffusion kernel (RD). We will need the following definition to formalise
our kernels.
Definition 28. Consider the weighted L2-inner product ⟨·, ·⟩L2(wk) : C

k(X)× Ck(X) → R on the space of k-cochains
(Definition 23). We define a group homomorphism ♭ : Ck(X) → Ck(X) by

f(c) =
〈
f, c♭

〉
L2(wk)

, (49)

for any c ∈ Ck(X) and f ∈ Ck(X). The existence of c♭ follows from the Riesz representation theorem.

Next, we introduce the concept of a Gaussian white-noise cochain, defined as follows.
Definition 29 (Gaussian white-noise cochain). We define a zero-mean Gaussian white noise cochain as a Gaussian random
cochain W : Ω → Ck(X) satisfying

• E[⟨W, f⟩L2(wk)] = 0 for any f ∈ Ck(X).

• E[⟨W, f⟩L2(wk) ⟨W, g⟩L2(wk)] = ⟨f, g⟩L2(wk) for any f, g ∈ Ck(X)

Now, we are ready to define our notion of the Matérn kernel on cellular complexes.
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D.1. Matérn Kernel

For simplicity, let us assume for now that the cell weights are wk
α = 1 for all k, α. In this special case, we will use the

shorthand notation ⟨·, ·⟩L2 ≡ ⟨·, ·⟩L2(wk). We will deal with the more general case in Appendix D.3.1.

Following the construction in (Borovitskiy et al., 2021), we define a Matérn Gaussian random k-cochain as a solution to the
stochastic system

(
2ν

ℓ2
+∆k

)ν/2

f = W, (50)

where f ∈ Ck(X) and W : Ω → Ck(X) is the Gaussian white-noise cochain (Definition 29).

The operator
(
2ν
ℓ2 +∆k

)ν/2
is to be understood as an operation in frequency space, by the following construction. Let

{(λ2i , ui)}
Nk
i=1, be solutions to the eigenproblem ∆kui = λ2iui such that the eigencochains {ui}Nk

i=1 are orthonormal in L2.
Representing f as f =

∑
i ⟨f, ui⟩L2(wk) ui, we define

(
2ν

ℓ2
+∆k

)ν/2

f :=

Nk∑
i=1

(
2ν

ℓ2
+ λ2i

)ν/2

⟨f, ui⟩L2 ui, (51)

which is a linear operator on the space of k-cochains. We define the Matérn kernel κ : Ck(X) × Ck(X) → R as as a
solution to the linear system (

2ν

ℓ2
+∆k

)ν

κ(c, · ) = c♭, ∀c ∈ Ck(X). (52)

D.1.1. PROOF OF PROPOSITION 12

We restate Proposition 12 below for completeness.

Proposition 30. The solution to (52) is related to the solution f of the system (50) as:

κ(c, c′) = E[f(c)f(c′)], ∀c, c′ ∈ Ck(X) (53)

Thus, κ is the kernel corresponding to the Gaussian random cochain f .

Proof. We first claim that the unique solution f to (50) can be represented as

f =
∑
i

(
2ν

ℓ2
+ λ2i

)−ν/2

⟨W, ui⟩L2 ui. (54)

This can be checked by simply substituting this expression inside (51) and using the L2-orthonormality of the eigencochains
{ui}Nk

i=1. The uniqueness can be checked by the linearity of the operator
(
2ν
ℓ2 +∆k

)ν/2
and the fact that the solution to the

system
(
2ν
ℓ2 +∆k

)ν/2
f = 0 is satisfied only by f ≡ 0.

Similarly, the solution to (52) is given by

κ(c, ·) =
∑
i

(
2ν

ℓ2
+ λ2i

)−ν 〈
c♭, ui

〉
L2ui(·) (55)

(49)
=
∑
i

(
2ν

ℓ2
+ λ2i

)−ν

ui(c)ui(·) (56)
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Next, we show that for arbitrary c, c′ ∈ Ck(X), we have

E[f(c)f(c′)] = E

∑
i

∑
j

(
2ν

ℓ2
+ λ2i

)−ν/2(
2ν

ℓ2
+ λ2j

)−ν/2

⟨W, ui⟩L2 ⟨W, uj⟩L2 ui(c)uj(c
′)

 (57)

=
∑
i

∑
j

(
2ν

ℓ2
+ λ2i

)−ν/2(
2ν

ℓ2
+ λ2j

)−ν/2

E
[
⟨W, ui⟩L2 ⟨W, uj⟩L2

]
ui(c)uj(c

′) (58)

=
∑
i

∑
j

(
2ν

ℓ2
+ λ2i

)−ν/2(
2ν

ℓ2
+ λ2j

)−ν/2

⟨ui, uj⟩L2︸ ︷︷ ︸
=δij

ui(c)uj(c
′) (59)

=
∑
i

(
2ν

ℓ2
+ λ2i

)−ν

ui(c)ui(c
′) (60)

(56)
= κ(c, c′), (61)

verifying property (53). Finally, we show that κ is indeed a kernel. The symmetry of κ can be easily verified from the
explicit expression (56), that is, κ(c, c′) = κ(c′, c) for any c, c′ ∈ Ck(X). Checking that κ is a group bi-homomorphism
also follows easily from expression (56) using the fact that ui is a group homomorphism by the definition of cochains.
Fixing c1, . . . , cm ∈ Ck(X) such that cα ̸= 0 for some α, we also have

m∑
α,β=1

κ(cα, cβ) =

m∑
α,β=1

∑
i

(
2ν

ℓ2
+ λ2i

)−ν

ui(cα)ui(cβ) (62)

=
∑
i

(
2ν

ℓ2
+ λ2i

)−ν m∑
α=1

ui(cα)

m∑
β=1

ui(cβ) (63)

=
∑
i

(
2ν

ℓ2
+ λ2i

)−ν
(

m∑
α=1

ui(cα)

)2

(64)

> 0, (65)

verifying the positive-definiteness of κ. Hence, κ is a kernel on Ck(X), as expected.

D.1.2. MATRIX REPRESENTATION

From (56), we can deduce the matrix representation of the Matérn kernel as

K = U

(
2ν

ℓ2
I+Λ2

)−ν

U⊤. (66)

Another way to derive this representation is by directly considering the numerical representation of system (50):

Lf = w, (67)

where

L := U

(
2ν

ℓ2
I+Λ2

)ν/2

U⊤ (68)

is the numerical representation of the linear operator (51), and w ∼ N (0, I). Then, we have

f = L−1w ∼ N (0,K), (69)

where

K = L−1L−⊤. (70)
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We claim that

L−1 = U

(
2ν

ℓ2
I+Λ2

)−ν/2

U⊤. (71)

This can be verified by computing

L−1L = U

(
2ν

ℓ2
I+Λ2

)−ν/2

U⊤U︸ ︷︷ ︸
=I

(
2ν

ℓ2
I+Λ2

)ν/2

U⊤ (72)

= U

(
2ν

ℓ2
I+Λ2

)−ν/2(
2ν

ℓ2
I+Λ2

)ν/2

︸ ︷︷ ︸
=I

U⊤ (73)

= UU⊤ (74)
= I, (75)

and similarly, LL−1 = I. Then, we can check that indeed we have

K = L−1L−⊤ (76)

= U

(
2ν

ℓ2
I+Λ2

)−ν/2

U⊤U︸ ︷︷ ︸
=I

(
2ν

ℓ2
I+Λ2

)−ν/2

U⊤ (77)

= U

(
2ν

ℓ2
I+Λ2

)−ν

U⊤. (78)

D.2. Reaction-diffusion Kernel

Here, we provide further details on the reaction-diffusion kernel, presented in Section 4.3.2. Since many of the ideas
are similar to the Matérn kernel (Appendix D.1), we omit some details. We first lift the Dirac operator (10) to the direct
sum space

⊕n
k=1 C

k(X), where it is more natural as it defines a group homomorphism to itself (i.e., an endomorphism)
D :

⊕n
k=1 C

k(X) →
⊕n

k=1 C
k(X). This is given explicitly as

Df =
∑
k

δkfk =


d∗0f1

d0f0 + d∗1f2
...

dn−2fn−2 + d∗n−1fn
dn−1fn−1

 . (79)

Using the property dk+1 ◦ dk = 0 (equivalently, d∗k ◦ d∗k+1 = 0) of the coboundary operator, one can check that D2 = L
(the super-Laplacian operator) holds. We also extend the L2 inner-product to the direct sum space

⊕n
k=1 C

k(X), which we
define by

⟨f, g⟩L2(w) :=

n∑
k=1

Nk∑
α=1

wk
α f(e

k
α) g(e

k
α). (80)

This trivially lifts Definition 23 and Definition 29 to the direct sum setting, defining a group homomorphism ♭ :⊕n
k=1 Ck(X) →

⊕n
k=1 C

k(X) and a Gaussian white noise process W : Ω →
⊕n

k=1 C
k(X), respectively.

Now let W : Ω →
⊕n

k=1 C
k(X) be the white noise process on the direct sum space. We define the reaction-diffusion GP

to be the solution to the stochastic system

(r + cD + dL)ν/2 f = W. (81)

As before, the operator (r + cD + dL)ν/2 is to be understood as an operation in frequency space, as follows. Let
{(λi, ui)}N1+···+Nn

i=1 , be solutions to the eigenproblem Dui = λiui such that {ui}N1+···+Nn
i=1 are orthonormal in L2. Since
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D2 = L, we have that D and L share the same eigenfunction ui with eigenvalues λi and λ2i , respectively. Thus, we define

(r + cD + dL)ν/2 f :=

n∑
k=1

Nk∑
i=1

(
r + cλi + dλ2i

)ν/2 ⟨f, ui⟩L2 ui, (82)

which is a linear operator on the direct sum space
⊕n

k=1 C
k(X). We then define the reaction-diffusion kernel to be the

solution to the system

(r + cD + dL)ν k(c, ·) = c♭, (83)

for any c ∈
⊕n

k=1 C
k(X). The solutions to (81) and (83) are given explicitly by

f(·) =
n∑

k=1

Nk∑
i=1

(
r + cλi + dλ2i

)−ν/2 ⟨W, ui⟩L2 ui(·), (84)

κ(c, ·) =
n∑

k=1

Nk∑
i=1

(
r + cλi + dλ2i

)−ν
ui(c)ui(·). (85)

Then, following the proof in Appendix D.1.1 line-by-line, one can verify that κ is indeed a kernel for the GP f , that is,
κ(c, c′) = E[f(c)f(c′)]. Below, we present a more explicit proof under the numerical representation of (84) and (85), which
can be written in the form

f = U
(
rI+ cΛ+ dΛ2

)−ν/2
U⊤w (86)

K = U
(
rI+ cΛ+ dΛ2

)−ν
U⊤. (87)

Here, we denoted by Λ = diag(λ1, . . . , λN1+···+Nn
) the diagonal matrix of eigenvalues, w ∈ N (0, I) is the numerical

representation of W , and U = (u1, . . . ,uN1+···+Nn
) is the matrix of eigenvectors.

D.2.1. PROOF OF PROPOSITION 13

Proposition 31. The kernel defined by (87) is related to f given by (86), as

[K]ij = E[fifj ], ∀i, j = 1, . . . , N1 + · · ·+Nn. (88)

Proof. We have

E[ff⊤] = U
(
rI− cΛ+ dΛ2

)−ν/2
U⊤ E[ww⊤]︸ ︷︷ ︸

=I

U
(
rI− cΛ+ dΛ2

)−ν/2
U⊤ (89)

= U
(
rI− cΛ+ dΛ2

)−ν/2
U⊤U︸ ︷︷ ︸

=I

(
rI− cΛ+ dΛ2

)−ν/2
U⊤ (90)

= U
(
rI− cΛ+ dΛ2

)−ν
U⊤ (91)

= K, (92)

which proves the claim.

D.3. Generalisation to Arbitrary Cell Weights

Here, we consider the case of general cell weights, extending the results in Appendix D.1 and D.2. In particular, we
demonstrate how we arrive at identical expressions for the kernels, only the eigenbasis must be orthonormal with respect to
the weighted L2 inner product instead of the standard one.
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D.3.1. MATÉRN KERNEL

Let {(λ2i , ui)}
Nk
i=1 be the eigenpairs of the Hodge Laplacian operator ∆k, defined with respect to the weighted L2-inner

product ⟨·, ·⟩L2(wk). We claim that in this case, the eigencochains {ui}Nk
i=1 can be set to be orthonormal under the weighted

L2-inner product. To see this, we first show that ∆k is self-adjoint with respect to the weighted L2-inner product:

⟨f,∆kg⟩L2(wk) = ⟨f, dk−1d
∗
k−1g⟩L2(wk) + ⟨f, d∗kdkg⟩L2(wk) (93)

= ⟨d∗k−1f, d
∗
k−1g⟩L2(wk−1) + ⟨dkf, dkg⟩L2(wk+1) (94)

= ⟨dk−1d
∗
k−1f, g⟩L2(wk) + ⟨d∗kdkf, g⟩L2(wk) (95)

= ⟨∆kf, g⟩L2(wk). (96)

Now consider

⟨ui,∆kuj⟩L2(wk) = λj⟨ui, uj⟩L2(wk), ⟨∆kui, uj⟩L2(wk) = λi⟨ui, uj⟩L2(wk). (97)

Since ⟨ui,∆kuj⟩L2(wk) = ⟨∆kui, uj⟩L2(wk) owing to the self-adjointness of ∆k, we have λj⟨ui, uj⟩L2(wk) =
λi⟨ui, uj⟩L2(wk) by (97). For λi ̸= λj , this relation is true if and only if ⟨ui, uj⟩L2(wk) = 0. In the case λi = λj = λ,
letting E(λ) denote the corresponding eigenspace, we can simply take the orthonormal basis of E(λ) to be the elements
of {ui}Nk

i=1 corresponding to the eigenvalue λ. Thus, we have a choice of {ui}Nk
i=1 such that ⟨ui, uj⟩L2(wk) = δij for all

i, j. Now, with this choice of the eigenbasis, we can follow the arguments in Appendix (D.1) almost identically to show
that Proposition 12 still holds in the weighted setting, under the same definition for the Matérn GP (50) and the Matérn
kernel (52). The only difference is that the ♭ operator and the Gaussian white noise W must take into consideration the cell
weights, according to Definitions 23 and 29.

To illustrate this better, we consider its explicit representation in terms of a matrix-vector system. We first represent the
weighted orthonormality condition of the eigenbasis by

U⊤WU = I, (98)

where U is the matrix of eigenvectors of ∆k and W = diag(wk
1 , . . . , w

k
Nk

). Due to the orthonormality, we also have that
for any f ∈ Ck(X), we have the expression f =

∑
i⟨f, ui⟩L2(wk)ui. This has the vector expression

U(U⊤Wf) = f , (99)

which implies

UU⊤W = I, (100)

since f is arbitrary. We can check that the operator (51) takes the form (contrast this with (68) in the non-weighted case):

L := U

(
2ν

ℓ2
I+Λ2

)ν/2

U⊤W. (101)

Again, we can check that its inverse reads

L−1 := U

(
2ν

ℓ2
I+Λ2

)−ν/2

U⊤W, (102)

by verifying

L−1L = U

(
2ν

ℓ2
I+Λ2

)−ν/2

U⊤WU︸ ︷︷ ︸
=I

(
2ν

ℓ2
I+Λ2

)ν/2

U⊤W (103)

= U

(
2ν

ℓ2
I+Λ2

)−ν/2(
2ν

ℓ2
I+Λ2

)ν/2

︸ ︷︷ ︸
=I

U⊤W (104)

= UU⊤W (105)
= I, (106)

21



Gaussian Processes on Cellular Complexes

and similarly, LL−1 = I. Now, we consider the numerical representation w of the white noise process W in the weighted
setting. We claim that

w ∼ N (0,W−1). (107)

This can be checked by using its definition (Definition 29), we have

E[⟨W, f⟩L2(wk) ⟨W, g⟩L2(wk)] = ⟨f, g⟩L2(wk) (108)

⇔ (f⊤W)E[ww⊤](Wg) = f⊤Wg (109)

⇔ E[ww⊤] = W−1. (110)

Hence by (67), we have

f = L−1w ∼ N (0,K), (111)

where

K = L−1W−1L−⊤ (112)

= U

(
2ν

ℓ2
I+Λ2

)−ν/2

U⊤ WW−1W︸ ︷︷ ︸
W

U

(
2ν

ℓ2
I+Λ2

)−ν/2

U⊤ (113)

= U

(
2ν

ℓ2
I+Λ2

)−ν/2

U⊤WU︸ ︷︷ ︸
=I

(
2ν

ℓ2
I+Λ2

)−ν/2

U⊤ (114)

= U

(
2ν

ℓ2
I+Λ2

)−ν

U⊤. (115)

The expression for the kernel is the same as in the unweighted case, except that now Λ,U are the eigenpairs of the weighted
Hodge Laplacian (45), the latter being orthonormal with respect to the weighted L2-inner product instead of the standard
one.

D.3.2. REACTION-DIFFUSION KERNEL

The same approach also applies to extending the reaction-diffusion kernel to the weighted setting. In this case, the matrix
expression for the Dirac operator (79) reads

D =


0 D∗

0 · · · 0

D0
. . . . . .

...
...

. . . . . . D∗
n−1

0 . . . Dn−1 0

 =


0 W−1

0 B1W1 · · · 0

B⊤
1

. . . . . .
...

...
. . . . . . W−1

n−1BnWn

0 . . . B⊤
n 0

 . (116)

We can check that D is self-adjoint under the weighted L2-inner product, that is

f⊤WDg = g⊤WDf . (117)

Hence, we can choose an eigenbasis U of D that is orthonormal under the weighted L2-inner product, with eigenvalues
given by Λ = diag(λ1, . . . , λN1+···+Nn

). The operator (82) in this case can be expressed as

(rI− cD + dL)
ν/2

f = U
(
rI− cΛ+ dΛ2

)ν/2
(U−1U)U⊤Wf (118)

= U
(
rI− cΛ+ dΛ2

)ν/2
U⊤Wf . (119)

Then as before, taking

E[ww⊤] = W−1 (120)

and following the remaining steps in Appendix D.3.1, we arrive at the expression for the weighted reaction-diffusion kernel

K = U
(
rI− cΛ+ dΛ2

)−ν
U⊤. (121)

This is essentially the same as in the non-weighted case, except Λ,U are now the eigenpairs of the weighted Dirac operator
(116), the latter being orthonormal under the weighted L2-inner product.
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D.3.3. AMPLITUDE OF THE PROCESS

As a special case, given a positive constant σ > 0, let us consider the weights wk
α = σ−2 for all k, α. That is,

W = σ−2I. (122)

In this case, notice that conditions (98) and (100) become

U⊤U = UU⊤ = σ2I. (123)

Thus, the normalised eigenbasis Û := σ−1U is orthonormal under the standard L2-inner product, i.e.,

Û⊤Û = ÛÛ⊤ = I. (124)

Under this basis, the expressions for the Matérn and reaction-diffusion kernels read

KMatérn = σ2 Û

(
2ν

ℓ2
I+Λ2

)−ν

Û⊤, (125)

Kr.d. = σ2 Û
(
rI− cΛ+ dΛ2

)−ν
Û⊤. (126)

The extra parameter σ controls the amplitude of the process

Var(fi) = [K]ii = σ2ci, (127)

for ci = [ÛΦ(Λ)Û⊤]ii, where Φ(Λ) =
(
2ν
ℓ2 I+Λ2

)−ν
in the case of the Matérn kernel and Φ(Λ) =

(
rI− cΛ+ dΛ2

)−ν

in the case of the reaction-diffusion kernel. This can be introduced as an extra hyperparameter in the model to fit the data
more appropriately, which is recommended to obtain better results.

E. Experimental Details
In this paper, all Gaussian processes (graph Matérn GP, CC-GP and RD-GP) are implemented using the GPJax library (Pinder
& Dodd, 2022). The objective function is the conjugate marginal log-likelihood and the optimiser is an implementation of
Adam from Optax (Bradbury et al., 2018) with a learning rate set at 0.1.

E.1. Directed Edge Prediction

This experiment compares our CC-GP on edges (Matérn-CC kernel) and the graph Matérn kernel (Borovitskiy et al., 2020).
The task is to predict the edge flow constructed from the geostrophic current around the southern tip of Africa. Here, the
geostrophic current refers to the dominant component of the ocean current derived by balancing the pressure gradient with
the Coriolis effect. The unprocessed data is retrieved from the (NOAA CoastWatch, 2023) database, which comes in the
form of two scalar fields: one representing the x-component and the other the y-component of the geostrophic current
vector field. The current around the southern tip of Africa is then extracted (lat = [−45.0,−15.0], lon = [20.0, 53.1]) and its
components are rescaled to a 2D grid of dimension 20× 20 (see Figure 9).

The next step in the pre-processing is to transform this data into edge signals of a cubical 1-complex. We adopt the method
in (Desbrun et al., 2006) to generate these signals. To do so, a cubical mesh of the same resolution as the data (20× 20)
is first generated, where each edge e in the mesh is assigned an orientation. Here, the orientation is represented by a unit
vector t̂e pointing from one endpoint to the other. Then for each edge e, we compute how much of the geostrophic current
flows along e in the direction specified by its orientation.

More precisely, the value f0 on the edge e (illustrated in Figure 10) is computed according to

f0 =

∫
e

v(s) · t̂e ds ≈
v0 · t̂e + v1 · t̂e

2
, (128)

where s : [0, 1] → e is a parameterisation of the edge e and v is the geostrophic current. This yields directed edge signals on
a cubical mesh, where we use the usual rule of setting the direction to be aligned with the orientation of e if f0 is positive
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(a) Geostrophic current (b) x-component (coarsened) (c) y-component (coarsened)

Figure 9. The geostrophic current around the southern tip of Africa. (Left) Quiver plot of the geostrophic current, (Middle) The x-
component of the geostrophic current coarsened to a 20× 20 grid, (Right) The y-component of the geostrophic current coarsened to a
20× 20 grid.

(a) Two vectors of a vector field. (b) Directed edge signals

Figure 10. The construction of the edge signals.

and opposite to it if f0 is negative. The training data is obtained by randomly selecting 30% of the generated edge signals
and adding i.i.d. noise from a Gaussian N (0, 10−4).

For the training of the graph Matérn GP, the smoothness hyperparameter ν is fixed at 2. The amplitude and lengthscale
hyperparameters σ2, ℓ are both initialised at 1.0 and optimised for 1000 iterations using Adam. The training took less than
30 seconds on a MacBook Pro with M1 chip. In a similar way, when training CC-Matérn GP on edges, the smoothness
hyperparameter ν is set to 2, and the amplitude and lengthscale hyperparameters σ2, ℓ are initialised at 1.0, before optimising
them for 1000 iterations using Adam. The training for this model also takes less than 30 seconds.

E.2. Signal Mixing

This experiment compares the performance of the RD-GP and the Matérn CC-GP in the task of predicting signals on
the vertices, edges and triangles of a 2D simplicial mesh. The mesh is constructed by first defining a 10 × 10 grid, then
subdividing this grid into triangles to transform it into a 2D simplicial mesh. The resulting complex is composed of 523
simplices: 100 vertices, 261 edges and 162 triangles.

The signals on the edges are created by taking inspiration from the Karhunen-Loève theorem, which states that a stochastic
process can be expressed as a linear combination of L2-orthogonal basis functions with random coefficients (one may view
this as a stochastic analogue of the Fourier expansion). Here, the orthogonal basis functions are the set of eigenfunctions
{ui}i of the Hodge Laplacian ∆1. The orthogonality of the eigenfunctions is ensured by the symmetry of the operator ∆1.
This forms a basis for edge signals (i.e. 1-cochains) that encodes the topology of the mesh through the information contained
in ∆1. For the coefficients in the basis expansion, we use i.i.d. Gaussians ξi ∼ N (0, λ−1

i ), where λi is the eigenvalue of ∆1

corresponding to ui. This expansion is truncated to lie between 0 < k < K, which represent the minimal and maximal
wavenumbers controlling the smoothness of the edge field. Putting this together yields the random 1-cochain

f =

K∑
i=k

ξiui, ξi ∼ N (0, λ−1
i ). (129)
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Once the signals on the edges are obtained, the signals on the vertices and the triangles are computed by applying the
coboundary operator d1 and its adjoint d∗1 to f , respectively. Using the numerical representation of cochains, {ui}i becomes
the set of eigenvectors of the Hodge Laplacian matrix ∆1, the coboundary operator becomes the matrix B1 and its adjoint
becomes B⊤

2 (see Appendix B). The vertex signals and the triangle signals are obtained by computing B1f and B⊤
2 f ,

respectively. An example signal for k = 20 and K = 100 is displayed in Figure 11, which we use as the ground truth in our
experiment.

1

0

1

(a) Vertex signals

1

0

1

(b) Edge signals

1

0

1

(c) Triangle signals

Figure 11. An example synthetic signal on the vertices, edges and triangles.

The training data is generated by randomly selecting a third of the vertices, a third of the edges and a third of the triangles
from this ground truth field, and corrupting them by i.i.d. noise from a Gaussian N (0, 10−2).

For training the CC-Matérn GP, the smoothness hyperparameter ν is fixed at 2, and the amplitude and lengthscale hyper-
parameters σ2, ℓ are both initialised at 1.5, before optimising them for 1000 iterations using Adam. The training takes
less than a minute on a MacBook Pro equipped with a M1 Pro chip. The training of RD-GP is similar: The smoothness
hyperparameter ν is fixed at 2, and the amplitude hyperparameter σ2, the reaction coefficient r, the diffusion coefficient d,
and the cross-diffusion coefficient c are all initialised at 1.5. They are then optimised for 1000 iterations using Adam, again
taking less than a minute to run.

E.3. Modelling Electromagnetism

In this experiment, we compare the performance of the RD-GP and the Matérn GP on imputing signals on the vertices,
edges and faces of a 20× 20 square lattice. The signals come from simulations of electromagnetic fields. In particular, we
used the Python package PyCharge to generate 2D electromagnetic fields on a square domain, generated by 10 oscillating
point charges at randomly generated locations. The fields that were computed were the scalar potential (V ), electric field
(E) and the magnetic field (B). Physically, these are a scalar field, a vector field and a two-form / pseudovector field (i.e., a
field of vectors whose sign depends on the orientation of the manifold), respectively. An example of such fields is displayed
in Figure 12.

2.16

2.18

2.20

2.22
1e 8

(a) Scalar potential

0.2

0.4

0.6

(b) Electric field

2

1

0

1

1e 9

(c) Magnetic flux into page

Figure 12. We plot an example scalar potential, electric field and magnetic field generated from ten randomly sampled oscillating point
charges. For the electric field, we display the amplitudes of the vectors in colour in the background. For the magnetic field, we plot the
magnetic flux going into the page, which becomes a scalar field.

The next step involves projecting these fields onto a cellular complex of dimension two, given by a 20× 20 square lattice.
Projecting the scalar potential on the vertices of a square lattice involves just extracting the point values of the field at
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the vertex locations. To project the electric field onto the edges of the lattice, the procedure is similar to that described in
Appendix E.1. Finally, projecting the magnetic field onto the square faces of the lattice involves averaging the magnetic flux
(i.e., B · n̂) over the square cells, where the unit normal n̂ is given by the normal vector determining the orientation of the
cell (see Appendix A). We also normalise the projected values, due to the large discrepancies of magnitudes between the
different fields. The final projections of the fields in Figure 12 onto the cells of a square lattice are displayed in Figure 13.
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(a) Scalar potential
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(b) Electric field
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(c) Magnetic field

Figure 13. Discrete representations of the scalar potential, electric field and magnetic field as 0, 1 and 2-cochains of a square lattice
respectively. Each square cell is assigned clockwise orientation.

The training data is generated by randomly selecting a sixth of the vertices, edges and square faces from the projected fields
and adding i.i.d Gaussian noise with standard deviation of 10−2.

For training the CC-Matérn GP, the smoothness hyperparameter ν is fixed at 2, and the amplitude and lengthscale hyper-
parameters σ2, ℓ are both initialised at 1.5, before optimising them for 1000 iterations using Adam. The training takes
less than a minute on a MacBook Pro equipped with a M1 Pro chip. The training of RD-GP is similar: The smoothness
hyperparameter ν is fixed at 2, the amplitude hyperparameter σ2, the reaction coefficient r and the diffusion coefficient d are
initialised at 1.5. The cross-diffusion coefficient c is initialised at 2.5. They are then optimised for 1000 iterations using
Adam, again taking less than a minute to run.

The predictions made by the RD-GP is displayed in Figure 14 and those made by the CC-Matérn GP is displayed in Figure
15. We see that both GPs recover the ground truth field (Figure 13) fairly accurately from the observations. While the
metrics indicate that the RD-GP output is slightly better than those of CC-Matérn (Table 5), perceptually, the differences are
too small to see.
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Figure 14. Predictions of the scalar potential, electric field and magnetic field made from the reaction-diffusion GP. The top row displays
the predictive mean and the bottom row displays the standard deviations.
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Figure 15. Predictions of the scalar potential, electric field and magnetic field made from the CC-Matérn GP. The top row displays the
predictive mean and the bottom row displays the standard deviations.

MSE (↓) CC-Matérn Reaction-diffusion

Scalar potential 0.113 0.110
Electric field 0.125 0.108
Magnetic field 0.151 0.137

NLL (↓)

Scalar potential 70.8 68.5
Electric field 110.3 92.3
Magnetic field 118.4 110.1

Table 5. Mean square error (MSE) and negative log-likelihood (NLL) of predictions of the electromagnetic fields in Figure 14 (RD-GP)
and Figure 15 (CC-Matérn GP). The performance of the reaction-diffusion GP is slightly better than the Matérn GP on the cellular
complex, suggesting that mixing on this example has some positive impact on the predictions.

27


