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Abstract

The ability to properly benchmark model perfor-
mance in the face of spurious correlations is im-
portant to both build better predictors and increase
confidence that models are operating as intended.
We demonstrate that characterizing (as opposed
to simply quantifying) model mistakes across sub-
groups is pivotal to properly reflect model biases,
which are ignored by standard metrics such as
worst-group accuracy or accuracy gap. Inspired
by the hypothesis testing framework, we intro-
duce SKEWSIZE, a principled and flexible metric
that captures bias from mistakes in a model’s pre-
dictions. It can be used in multi-class settings
or generalised to the open vocabulary setting of
generative models. SKEWSIZE is an aggregation
of the effect size of the interaction between two
categorical variables: the spurious variable repre-
senting the bias attribute the model’s prediction.
We demonstrate the utility of SKEWSIZE in mul-
tiple settings including: standard vision models
trained on synthetic data, vision models trained on
IMAGENET, and large scale vision-and-language
models from the BLIP-2 family. In each case, the
proposed SKEWSIZE is able to highlight biases
not captured by other metrics, while also provid-
ing insights on the impact of recently proposed
techniques, such as instruction tuning.

1. Introduction
Machine learning systems can capture unintended bi-
ases (Dixon et al., 2018) by relying on correlations in their
training data that may be spurious (i.e. a finite sample ar-
tifact), undesirable and/or that might vary across environ-
ments. Models of all scales are vulnerable to this failure
mode, including recent, large-scale models (Weidinger et al.,
2022; Birhane et al., 2023; Luccioni et al., 2023; Solaiman
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et al., 2023). To evaluate unintended biases in model out-
puts, existing metrics divide the population (or test set) into
subgroups (based on demographic characteristics, how well-
represented in the dataset each group is, or another charac-
teristic of significance) and aggregate the e.g. correct and
incorrect outputs across those subgroups as in (Sagawa et al.,
2019). However, existing metrics consider as equivalent all
responses deemed to be incorrect, obscuring important infor-
mation regarding a model’s bias characteristics, especially
in the context of large or intractable output spaces.

Motivating example. Consider the synthetic setup in Fig-
ure 1 which compares two image classification models:
MODEL 1 and MODEL 2. These models predict occupa-
tion, with different distributions of outputs across two mu-
tually exclusive1 subgroups (male and female). Following
prior work, we first compute model accuracy in each sub-
group (e.g. Chowdhery et al., 2022), worst group accuracy
(i.e. minimum accuracy across groups, Sagawa et al., 2019)
and GAP (the difference between subgroup accuracy and
overall accuracy, Zhang & Ré, 2022) across the following
three ground-truth classes:

• WRITER: MODEL 2’s accuracy is lower than that of
MODEL 1; a bias in MODEL 2’s predictions is evident
in women being misclassified as Editors and men being
misclassified as Composers and Philosophers. Accu-
racy and Worst group accuracy degrade as expected for
the more biased model, whereas GAP does not.

• DOCTOR: Accuracy is the same for MODEL 1 and
MODEL 2 but a bias is evident in MODEL 2’s pre-
dictions, with women being misclassified as Nurses,
and men being misclassified as Surgeons. Traditional
accuracy-based metrics do not capture this bias.

• BIOLOGIST: Accuracy is higher for MODEL 2 than
MODEL 1, but a bias is evident in MODEL 2’s predic-
tions, with women being misclassified as Teachers and
men as Scientists or Bankers. Counterintuitively, the
standard metrics improve or stay the same.

• All: Aggregating across classes, we can see that the
standard metrics either improve in MODEL 2 relative
to MODEL 1 or do not change.

1Assumed to be mutually exclusive for the limited purpose
of this illustrative example. We recognize that reality is richer
and more nuanced than this binary categorization. See Impact
Statement section.
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male
female

Writer Doctor Biologist All
M1 M2 ∆ ↓ M1 M2 ∆ ↓ M1 M2 ∆ ↓ M1 M2 ∆ ↓

Acc 0.88 0.67 -0.21 0.77 0.77 0.00 0.02 0.15 0.13 0.56 0.53 -0.03
WG 0.87 0.66 -0.21 0.77 0.77 0.00 0.01 0.14 0.14 0.55 0.53 -0.02
GAP 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 -0.01 0.01 0.00 0.00
- SKEWSIZE -0.07 -0.45 -0.38 -0.04 -0.45 -0.40 -0.12 -0.71 -0.58 -0.44 -0.71 -0.27

Figure 1: Standard metrics fail to capture biases within a model. We plot the prediction counts for two models given
three ground-truth classes (Writer, Doctor, Biologist). MODEL 1 (M1) displays similar distributions of errors for both
subgroups whereas MODEL 2 (M2) displays “stereotypical” errors (e.g. mispredicting female Doctors for Nurses). In the
table, we report accuracy (Acc), worst group accuracy (WG), GAP and their difference (∆) between M1 and M2. Only our
approach (SKEWSIZE) captures the bias in all settings.

In light of this example, we see that regardless of how the
performance of a model in terms of accuracy varies across
subgroups, bias may also arise from systematic errors in
incorrect predictions. Importantly, previously proposed met-
rics do not surface such bias and give the misguided impres-
sion that the model’s predictions do not exhibit bias. To
measure this type of bias, we introduce SKEWSIZE, which
considers how different the distribution of predictions are
across subgroups. In our motivating example, SKEWSIZE is
able to capture the different types of biases.

We propose to formulate the problem of estimating bias for
classification models through the lens of hypothesis testing.
We draw inspiration from tests of association between the
confounding, spurious factor (e.g. gender) and the model’s
prediction, and propose to re-purpose a measure of effect
size for such tests. We compute effect sizes of this associa-
tion for each ground-truth class: for instance, given images
of doctors, we can estimate the effect size corresponding to
the association between gender and predicted occupation.
As shown in Section 3.1, this approach yields a fine-grained
and interpretable assessment of model bias, exposing the
most affected classes, as opposed to accuracy-based or fair-
ness metrics. Finally, we propose to aggregate effect sizes
across classes using a measure of the skewness of the ef-
fect size distribution per class to arrive at a scalar metric
which can be used to compare different models. We validate
the metric and investigate its utility in three settings: (1)
Controlled data generation: First, we investigate the utility
of the metric, relative to existing ones, by validating it on

a controlled setting where spurious correlations affecting
single classes are induced, and demonstrate it not only re-
liably captures bias but also correctly exposes the affected
classes. (2) Multi-class classification: Next, we demon-
strate how our metric can be used to identify previously
unidentified cases of systematic bias arising from model
mispredictions using DOMAINNET and IMAGENET (Deng
et al., 2009; Peng et al., 2019). (3) Open-ended prediction:
Finally, we analyse large scale vision-and-language models
(VLMs) (BLIP-2, (Li et al., 2023)) that have an intractable2

output space using our metric in two separate settings: gen-
der vs. occupation and gender vs. practiced sport. In settings
(2) and (3), we find that no datasets exist that would allow
for computing bias metrics among subgroups with statistical
significance. As a result, we create synthetic datasets in
order to run our evaluation at scale. Our main contributions
are summarized as follows:
1. We demonstrate limitations of current metrics for quan-

tifying bias, specifically that they fail to capture bias
manifested in how the model makes mistakes.

2. We propose SKEWSIZE, a metric for evaluating bias in
discriminative models inspired by hypothesis tests of
contingency tables.

3. We use SKEWSIZE to evaluate model bias at scale in
a variety of domains and identify biases arising in the
models’ errors. We further show how SKEWSIZE can be
used with synthetic data to evaluate bias in VLMs.

2This refers to the setting where the label space is given by all
the possible outputs of a language model.
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2. Method
2.1. Background

Notation. We consider a discriminative model fθ : X 7→
Y with parameters θ, where X is the set of inputs (e.g.
images) and Y is the label set. We also assume that input
x ∈ X with label y ∈ Y is drawn from an underlying
distribution p(x|z, y), where z is a discrete latent variable
z ∈ Z that represents a factor of variation that affects the
data generating process. In the context of this work, z is
referred to as the bias variable and assumed to systematically
affect how well the model fθ is able to predict y from x.
Our goal is then estimating to what extent the predictions
are affected by z.

Metrics for output disparity across subgroups. Previous
work on evaluating performance disparity across subgroups
has mostly considered metrics such as accuracy (Zhang &
Ré, 2022; Alvi et al., 2018; Li et al., 2022), worst group
accuracy (Zhang & Ré, 2022; Koh et al., 2021), gap be-
tween average and worst group accuracy (referred to as
GAP, Zhang & Ré, 2022). These metrics focus on the true
positive rate and do not identify biases in the distribution of
prediction errors. We compute these metrics throughout the
work, for comparison with our approach.

Alternatively, fairness criteria can be formulated as inde-
pendence desiderata (Barocas et al., 2019), with metrics
classified as ‘independence’ criteria if fθ(x) ⊥ z, ‘separa-
tion’ if fθ(x) ⊥ z|y and ‘sufficiency’ if y ⊥ z|fθ(x). In
practice, these criteria are operationalized using different
metrics. For the independence criterion, demographic parity
(Dwork et al., 2012, DP) is commonly used. These met-
rics have been recently extended for use in the multiclass
setup (e.g. Alabdulmohsin et al., 2022; Pagano et al., 2023;
Putzel & Lee, 2022; Rouzot et al., 2022). In this case, met-
rics are typically computed by binarizing each class (e.g.
Alabdulmohsin et al., 2022; Pagano et al., 2023) and aggre-
gating fairness scores across classes using their maximum
(i.e. worst case scenario), or average (c.f. Appendix A).
Given a full confusion matrix, equality of odds (EO) (Hardt
et al., 2016), and potentially DP, would capture differences
in the distributions of model errors. However, the detected
bias would be surfaced in the scores of the confused classes
rather than associated with the class of interest. In our
motivating example, EO comparing MALE and FEMALE ex-
amples in the DOCTOR class would be close to 0, but larger
for the SURGEON and NURSE classes. In an intractable
output space, a full confusion matrix may be unavailable,
and EO and DP would be limited in their ability to highlight
differences in the distribution of model errors. In this work,
we compute EO and DP as per Alabdulmohsin et al. (2022)
when a full confusion matrix is available.

2.2. Estimating distributional bias for categorical
distributions

Let Z = {A,B} and Y be a discrete set. We further con-
sider that the parametric model fθ(x) defines a conditional
distribution q(y|x; θ) for each x ∈ X . For a fixed value of
y′ ∈ Y , distributional bias should account for systematic
differences in the outcomes of fθ(x) across different sub-
groups, i.e. when x is sampled from p(x|y, z = A) versus
p(x|y, z = B). More formally, in Equation 1, we define
distributional bias as a comparison between induced fam-
ilies of distributions defined by fθ(x) when x ∼ p(x|y =
y′, z = A) versus when x ∼ p(x|y = y′, z = B):

H(QA(y|x; θ)||QB(y|x; θ)), (1)

where QA(y|x; θ) and QB(y|x; θ) denote the family of dis-
tributions obtained when the bias variable assumes each of
its possible values, i.e. z = A and z = B, respectively.
H(·||·) is an operator that accounts for a notion of similarity
between the two distributions. Depending on the nature of
Q, H can assume different forms. Also, notice that H opera-
tor is not limited to binary attributes and can be instantiated
by approaches to compare families of distributions.

As we focus on classification tasks, fθ(x) parameterizes
families of categorical distributions. We can thus formulate
the comparison between QA and QB as estimating the effect
size, i.e. the practical relevance of the association between
the bias variable z and predictions y′ ∼ q(y|x, z). In this
framework, the similarity between QA and QB can be seen
as a measure of association between two categorical vari-
ables, z and y′. Given that, effect size can then be estimated
via the Cramér’s V statistic (Cramér, 1946), defined as:

ν =

√
χ2

N ·DF
, (2)

where N the sample size DF is the number of degrees
of freedom, and χ2 represents the test statistic from the
corresponding Pearson’s chi-squared independence test.
Cramér’s V is bounded between 0 and 1, with 1 indicat-
ing a perfect association between both variables, i.e. the
predictions are extremely sensitive to changes in the value
of the bias variable. In order to compute the value of χ2,
the counts of predictions must be arranged in a contingency
table of size M = |Z| · |Y|. Contingency tables show the
frequency distribution of the variables under consideration,
therefore, for a given class y′, each entry should correspond
to the frequency with each predicted class was observed
per subgroup in the data. The χ2 statistic for such observa-
tions accounts for the discrepancy between observed and
expected frequencies in the table and is defined as:

χ2 =

M∑
k=1

(ok − ek)
2

ek
, (3)

3



Evaluating Model Bias Requires Characterizing its Mistakes

where ok refers to the observed value of the k-th entry in the
contingency table, and ek refers to the expected value of this
table entry under the assumption of independence between
the bias variable and the prediction. In Appendix D.3 we
propose and empirically validate an strategy to control for
noise in the predictions when computing the quantity in Eq.
3 as the size of output space |Y| increases.

2.3. Aggregating the Effect Size

The effect size based approach to measure distributional
bias evaluates model predictions on a per-class basis. In
order to obtain a single, scalar summary metric which can
be used to compare multiple models, we must consider how
to aggregate the estimated effect sizes for all classes. The
ideal metric should be able to simultaneously satisfy the
following two conditions: (i) indicate an overall weaker
bias when the distribution of effect size values per class
is centered around zero with infrequent higher values (as
classes for which the model is strongly affected by bias
are rare), (ii) distinguish models weakly exhibiting bias
from models where, for a considerable fraction of classes,
the predictions exhibit high degrees of association with the
bias variable, (i.e., the distribution of effect size values is
long-tailed and skewed towards the left).

Given the aforementioned desiderata, we propose to aggre-
gate the effect size values per class using the Fisher-Pearson
coefficient of skewness, as it captures both how asymmetric
the distribution of estimated effect size values is as well as
the direction of the asymmetry. For estimated effect sizes
{ν1, ν2, . . . , ν|Y|} with empirical mean ν̄, the proposed met-
ric SKEWSIZE is computed as:

SKEWSIZE =

∑|Y|
i=1(νi − ν̄)3[∑|Y|

i=1(νi − ν̄)2
]3/2 . (4)

In the Appendix we provide pseudocode for SKEW-
SIZE (Alg. 1), a Python implementation, and a discussion
on modulating the impact low count predictions might have.

Flexibility of SKEWSIZE. As we are interested in surfacing
biases in the distribution of model errors, our formulation
can be related to a ‘separation’ fairness criterion. However,
this does not preclude the implementation of other criteria.
For instance, sufficiency could be implemented by condi-
tioning on the predicted class and using the ground-truth
class as the independent variable in the χ2 test. Similarly,
we can implement DP by using the model outputs as the
independent variable.

SKEWSIZE can also be implemented considering other
choices of statistics, as we show in Appendix B. Here we
choose Cramér’s V as it is more general and applicable to
contingency tables larger than 2x2. Finally, SKEWSIZE can
be computed based on logits, softmax scores, top-1 or top-k

predictions. Here, we focus on the separation formulation
based on top-1 predictions in each class, in which case
SKEWSIZE is also applicable to scenarios where this is the
only information about the model’s output which is available
to the user (Achiam et al., 2023).

3. Experiments
We first empirically demonstrate the effectiveness of SKEW-
SIZE to measure biases in a controlled experiment with the
dSprites (Matthey et al., 2017) dataset. We then proceed to
show the usefulness of SKEWSIZE and how it is comple-
mentary to accuracy-based metrics in ubiquitous tasks such
as classification with the IMAGENET (Deng et al., 2009)
dataset and the DOMAINNET benchmark (in Appendix C).
We finalize the experimental validation of SKEWSIZE with
its application to assess VLMs from the BLIP-2 family
and demonstrate it can be used to uncover biases and com-
pare models even in cases where predicted classes do not
necessarily appear as ground-truth in the evaluation dataset.

3.1. Controlled setting: DSPRITES dataset

We begin with a setting where controlled levels and types
of bias can induced. We use the DSPRITES dataset, which
contains images of objects represented by different shapes,
colors and at different positions. We leverage knowledge
about the data generating process to introduce spurious cor-
relations in the training data by excluding examples of a
specific shape and color. As in this case the effect of relying
on such spurious correlations is reflected by accuracy-based
metrics, this allows us to validate that effect size estimation
can be used as a strategy to capture biased predictions and
provides information on which class was affected by the
introduced spurious correlation.

Setting. We consider the task of predicting the object shape
and evaluate whether the model predictions are biased with
respect to object color under a regime of systematic train-
ing set manipulation. Using the terminology in Section 2,
the object color is the independent variable (i.e. the vari-
able on which we intervene), and the predicted shape is the
dependent variable (i.e. the variable we observe).

Effect Size Captures different types of bias. Given the
DSPRITES’ label set has three classes and with color at-
tributes in {Red,Green,Blue}, we build versions of the
training data that have different spurious correlations be-
tween color and label by removing all examples in the
GREEN color from one of the classes. We then train a
ResNet18 (He et al., 2016) for 5k steps with each dataset
and evaluate on held out data that has not been manipulated
to remove any examples. For each ground-truth class, we
compute the effect size of the interaction between color and
prediction as described in Section 2. For completeness, we
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Accuracy-based DP(↓) EO (↓) Effect size (↓)
Removed Accuracy (↑) WG (↑) GAP (↓) Class 0 Class 1 Class 2 Class 0 Class 1 Class 2 Class 0 Class 1 Class 2

Unbiased 0.998 0.996 0.002 0.004 0.004 0.001 0.001 0.001 0.001 0.006 0.020 0.024
Class 0 0.888 0.666 0.222 0.050 0.315 0.265 0.038 0.483 0.203 0.705 0.012 0.017
Class 1 0.891 0.653 0.238 0.303 0.013 0.289 0.448 0.009 0.220 0.012 0.703 0.011
Class 2 0.888 0.664 0.224 0.278 0.057 0.332 0.208 0.040 0.484 0.032 0.009 0.700

Table 1: Effect Size captures bias due to introduced spurious correlations on DSPRITES. Metrics computed on
the predictions by ResNet18s trained on 4 versions of DSPRITES show that Effect size is only non-negligible for the
corresponding biased classes and indicates which is the class affected by spurious correlations.

verify that each model reaches nearly 100% accuracy on a
test set biased in a similar way. These experiments highlight
the existence of bias in the model’s predictions: accuracy
should be nearly 100% for all classes but the one that had
examples removed, in which case errors mostly occur when
the object is GREEN.

We present in Table 1 results for the three models and one
with the same architecture but trained with unbiased data.
We report accuracy-based metrics on an unbiased test set,
along with EO, DP, and per-class effect size (our approach).
As intended, models trained with biased data had lower
accuracy in comparison with the model trained with unbi-
ased data, suggesting they indeed rely on the introduced
spurious correlation. We observe that, for all models, ef-
fect sizes were strong only for the classes affected by the
spurious correlation (i.e. the ones that had green instances
removed at training), while remaining negligible for the
other classes, confirming that the proposed approach indeed
captures model biases and correctly provides per-class gran-
ularity. In contrast, EO and DP tend to distribute the effect
of this bias across the confused classes, and do not readily
indicate the origins of the confusion.

Effect Size Captures different bias levels. Following a
similar set-up to previous experiment, we now induce dif-
ferent levels of the same spurious correlation by creating
training datasets containing different number of examples
from the combination of color and class. We created three
datasets by removing instances from CLASS 1 in the GREEN
color so that only {5k, 2k, 0} of such examples are left in
the training data. We adopt the same architecture, training,
and evaluation from the previous experiment. Results are
shown in Table 2, where, for reference, we also report the
performance of the unbiased model. As expected, accuracy-
based metrics decreased as the number of examples from the
removed class, color increased, confirming the models are
increasingly affected by the induced spurious correlation.
We find that the effect size for the affected class presents a
monotonic increasing relationship with bias strength, effect
size for the unaffected classes remained negligible, confirm-
ing that the effect size captures different levels of bias and
correctly indicates the affected class.

Acc.-based Effect size (↓)
Bias strength Acc. (↑) WG (↑) Class 0 Class 1 Class 2

Unbiased 0.998 0.996 0.006 0.020 0.024
Mild 0.977 0.936 0.002 0.253 0.017

Medium 0.933 0.806 0.013 0.492 0.032
Strong 0.891 0.653 0.012 0.703 0.011

Table 2: Inducing varying bias strengths in models
trained on DSPRITES. The bias strength denotes the num-
ber of examples from Class 1 in the green color that were
left in the respective versions of the training data. No Bias:
full training set, Mild: 5k, Medium: 2k, Strong: 0.

3.2. Estimating distributional bias in multi-class
classification: IMAGENET

We have thus far demonstrated that SKEWSIZE is capable of
accounting for aspects of a model’s behaviour that are not
captured by accuracy-based bias metrics. We now showcase
how SKEWSIZE can be used to provide a more compre-
hensive evaluation of classifiers by distinguishing models
that perform similarly in terms of accuracy, but turn out to
display different levels of bias.

Models. We consider models spanning four architectures:
RESNET50S (He et al., 2016), VISION TRANSFORMERS
(VITS) (Dosovitskiy et al., 2020), INCEPTION (Szegedy
et al., 2015), and BIT models (Kolesnikov et al., 2020). Ar-
chitecture and training details are described in Appendix E.

Data. We consider a scenario where the background of
an image corresponds to the bias variable to evaluate the
SKEWSIZE of each model. As no background annota-
tions are available in the original IMAGENET, we chose
200 classes from the original label set (specifically, those
present in TINYIMAGENET (Le & Yang, 2015)) and gen-
erated a synthetic dataset containing images of each of the
selected classes across 23 different background types (list
obtained from Vendrow et al. (2023)) using STABLE DIFFU-
SION (Rombach et al., 2022). We generate images using the
prompt template A photo of a {CLASS} {BACKGROUND} .
For instance, for the class SALAMANDER, we used prompts
such as A photo of a SALAMANDER ON THE ROCKS . We
generate 200 images for each background-class pair. Note
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Figure 2: Comparing models trained on IMAGENET across multiple metrics. We plot SKEWSIZE versus each accuracy-
based metric for a variety of models. The results highlight that no accuracy-based metric presents a clear trend with respect
to SKEWSIZE, demonstrating it captures aspects of performance not exposed by these other metrics. Moreover, models with
similar performance according to accuracy-based metrics, such as both BiT-S models, can be discriminated by SKEWSIZE .

that these images are used only for evaluation, not training.

Results. In Figure 2 we compare models in terms of ac-
curacy, worst group accuracy, worst group accuracy gap,
and SKEWSIZE. The first aspect to observe is that, overall,
no clear correlation between these metrics and SKEWSIZE:
models with similar accuracy may present considerable dis-
parities in how biased they are as demonstrated by the differ-
ences in SKEWSIZE values. Specifically, we highlight that
although models such as BIT-S 50X3 and 101X1 present
similar performance as per all considered accuracy-based
metrics, they can be further discriminated by SKEWSIZE as
BIT-S (101X1) achieved higher a value for this metric.

Uncovering spurious correlations with SKEWSIZE. We
now examine specific cases of systematic bias uncovered
by SKEWSIZE. We identify examples by investigating
classes where the model is both accurate and the effect size
for the association between background and the model’s
prediction is high. In Figure 3, we show the top-3 pre-
dictions by the VIT B/16-1 for SOCKS in subgroups
corresponding to A photo of a SOCK ON THE ROAD and

A photo of a BLUE SOCK . Both sub-groups/domains
present similar measured accuracy, in which case metrics
such as worst group accuracy and GAP would be ineffective
to capture bias that can be observed in the misclassified
cases. This disparity in the distribution most frequent errors
for each subgroup is in fact captured by SKEWSIZE and sug-
gest that the evaluated model may incorrectly associate an
ON THE ROAD background with the class RUNNING SHOES,
even when the true object of interest is absent.

3.3. Comparing VLMs for multi-class classification
across model size

We now consider the case where the output space is in-
tractable and obtaining data to evaluate the model is chal-
lenging. We study the BLIP-2 model family for (binary)
gender bias when predicting occupation or practiced sport.

Figure 3: Bias exposed by SKEWSIZE. Both domains
for the SOCKS class have similar accuracy, but a mismatch
in errors indicates the model relies on spurious features of
background/color.

Data. Apart from Visogender (Hall et al., 2023b), with
only 500 instances, there are no real-world datasets avail-
able for evaluating gender biases on VLMs. Therefore, to
investigate the utility of SKEWSIZE in the evaluation of
VLMs, we gather synthetic data with templates constructed
as follows. For the occupation task, we use templates of the
form A {GENDER} {OCCUPATION}. and query the VLM

model with What is this person’s occupation? . In order to
evaluate the model under conditions that closely resemble
their usage “in-the-wild”, we directly use the textual output
as predicted class and do not constrain the output space of
the VLM in order to obtain predictions within the label set
of the generated dataset. More details in Appendix D.4.

Models. We again leverage STABLE DIFFUSION (Rom-
bach et al., 2022) to generate data in order to investigate
models from the BLIP-2 family with different character-
istics (size, instruction tuning). Specifically, we consider
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Occupation Accuracy (↑) GAP (↓) Effect size (↓)
Writer 0.802 0.006 0.263
Doctor 0.903 0.073 0.291

Biologist 0.151 0.007 0.250
Maid 0.317 0.120 0.556

Model 0.838 0.102 0.368
Nurse 0.517 0.358 0.728

Philosopher 0.349 0.347 0.927
Scientist 0.737 0.065 0.241

Veterinarian 0.791 0.001 0.154

Table 3: VLM evaluation. Even in cases where the ac-
curacy gap is nearly 0, results show there still is a signifi-
cant interaction between gender and predicted occupations
(e.g. the Writer class), indicating the existence of bias that
accuracy-based metrics failed to capture.

BLIP-2 ViT-g OPT2.7B (BLIP2-2.7B) with 3.8B parameters
and an unsupervised-trained language model, BLIP-2 ViT-g
OPT6.7B (BLIP2-6.7B), its larger version with 7.8B param-
eters, and BLIP-2 ViT-g FlanT5XL (BLIP2-FlanT5), with
4.1B parameters and an instruction-tuned language model.

Results. We report effect size for various occupations in
Table 3 considering predictions by BLIP2-FlanT5. By com-
paring the accuracy and GAP with effect size for the three
classes reported in Table 1, namely Writer, Doctor, and
Biologist, we further validate the main premise of this work.
Results for the remaining classes provide evidence that when
GAP is high, the effect size also increases, further showcas-
ing the potential of such a metric to measure disparities
between subgroups that also appear as a mismatch between
average and worst-case accuracy.

3.3.1. SKEWSIZE ACROSS VARYING MODELS

We extend the scope of our evaluation and consider all
three instances of the BLIP2 model family so that we can
investigate whether models are biased in different levels, as
well as whether specific characteristics such as increased
scale and instruction tuning, amplify or mitigate it.

Effect size strength. In Figure 4, we categorize effect size
values between 0 and 0.1 as negligible3 and between 0.1
and 0.3, 0.3 and 0.5, and above 0.5 as small, medium, and
large, respectively. For occupation prediction, (Fig. 6(a)),
larger models have more classes which exhibit medium and
large effect sizes, suggesting an overall amplification in
gender bias. However, using an instruction-tuned language
model leads to fewer classes with large effect in comparison
to BLIP-2.7B and 6.7B, suggesting instruction tuning may
mitigate bias in this instance. Results for sport modality pre-
diction follow a similar trend (Figure 4(b)). The number of
classes with negligible effect size decreases when increasing

3The use of the word negligible here does not refer to the extent
that potential harms will affect users.

model size, while BLIP2-FlanT5 exhibits less bias.

SKEWSIZE. As per Section 2, a fine-grained analysis of the
results in Figure 4 reveals that the empirical distribution of
effect size values (Figures 6(a) and 6(b)) across all classes
is heavy-tailed and left-skewed. We report in Table 4 the
skewness coefficients for all models in both tasks. We find
that larger models seem to exhibit more bias but instruction
fine-tuning seems to mitigate the bias.

Occupation Sports
BLIP2-2.7B 0.233 1.205
BLIP2-6.7B -0.045 0.360

BLIP2-FlanT5 0.599 1.255

Table 4: VLMs SKEWSIZE. Measuring gender bias on
occupation and sports modality prediction. Higher SKEW-
SIZE values are better. Increasing model size seems to
amplify biases, while instruction tuning attenuates it.

4. Related Work
Fairness hypothesis testing. Previous work has proposed
hypothesis testing approaches to probe for fairness under
multiple definitions within datasets (Caliskan et al., 2017;
Yik et al., 2022) and algorithms (Jourdan et al., 2023).
Tramer et al. (2017) introduced a permutation test based
on Pearson’s correlation statistic to test for statistical depen-
dence, under a particular metric, between an algorithm’s
outputs and protected user groups, while DiCiccio et al.
(2020) proposed to test the hypothesis that a model is fair
across two groups as per any given metric. Our work differs
from both a methodological perspective, e.g. in comparison
to Yik et al. (2022) which considers whether the data distri-
bution is significantly different from a reference distribution,
as well as applicability, since we propose a metric that can
capture biases in a multi-class setting, and which goes be-
yond binary sensitive attributes (DiCiccio et al., 2020).

Evaluating biases in neural network. Previous work on
bias evaluation has prioritized tasks where the information
necessary to measure bias can be directly inferred from
text (Rae et al., 2021; Wang et al., 2022a; Tang et al., 2021;
Wang et al., 2021) or by another model (Naik & Nushi,
2023). In contrast, we evaluate bias directly in the model
output space, as opposed to relying on predictions of sub-
group information. Previous work (Birhane et al., 2023;
Luccioni et al., 2023) found that scale appears to amplify
stereotyping and bias, as well as reflect biases in the training
data (Radford et al., 2021; Wolfe & Caliskan, 2022; Hall
et al., 2023a; Prabhu et al., 2023). In the case of VLMs,
most prior work focused on leveraging annotated datasets
such as MS-COCO (Chen et al., 2015), CelebA (Liu et al.,
2015) and FairFace (Karkkainen & Joo, 2021) to measure
and mitigate bias (Berg et al., 2022; Chuang et al., 2023;
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(a) Gender bias in occupation prediction.
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(b) Gender bias in sport modality prediction.

Figure 4: Comparing effect size across classes - BLIP2. Splitting effect size values in bands: 0-0.1 is a negligible effect,
while 0.1-0.3, 0.3-0.5, and above 0.5 correspond to small, medium, and large, respectively. Scaling up model size with an
unsupervised language model increased the amount of large effect size classes, whereas instruction-tuning decreased it.

Hall et al., 2023a), while Seth et al. (2023) and Smith et al.
(2023) collected a benchmark and obtained synthetic con-
trast sets, respectively. Prior work (Zhao et al., 2017; Wang
& Russakovsky, 2021) has also evaluated bias amplification,
but comparing prediction statistics with the original dataset.

5. Discussion
In this work, we propose a novel metric, SKEWSIZE, to
measure biases in classification models, including when the
output space is intractable. Motivated by the observation
that certain biases may present in the distribution of pre-
diction errors, we draw on tools from contingency table
hypothesis testing and propose to measure bias on a per-
class basis by estimating the effect size of the interaction
between model prediction and the bias variable. Such an
approach allows to obtain a scalar value to compare models
as well as detailed information about which are the classes
mostly affected by biases. SKEWSIZE does not require any
information besides model’s outputs to be computed, there-
fore not introducing any further requirement in comparison
to accuracy-based or fairness metrics.

Experiments across 4 datasets including synthetic examples
in cases where no real dataset is available for evaluation,
show that SKEWSIZE captures disparities that accuracy-
based metrics do not surface. When the full confusion ma-
trix is available, we also highlight that SKEWSIZE comple-
ments standard metrics like demographic parity and equal-
ized odds by identifying classes that are affected by spurious
correlations. Our results also show how SKEWSIZE can be
used in practice: the per-class bias profile yielded by our
approach sheds light on spurious correlations for classes
presenting both higher accuracy and high effect size, while
the aggregated SKEWSIZE is useful to compare models,

highlighting, for example, whether increased scale ampli-
fies biases on VLMs, and evaluate the impact of techniques
as instruction tuning. Our approach can be declined in a
variety of previously established metrics, whether based
on accuracy, or on fairness criteria (Barocas et al., 2019).
In addition, it caters for binary and discrete bias attributes,
and could be extended to continuous attributes by using a
different statistic (e.g. Tramer et al., 2017; Brown et al.,
2023). Aspects to be investigated in future work include
employing SKEWSIZE to evaluate previously proposed mit-
igation strategies for bias in neural networks such as (Seth
et al., 2023), and developing strategies for debiasing.

Practical Considerations. We recommend SKEWSIZE be
employed alongside accuracy-based metrics for a more com-
plete picture of a model’s performance. Depending on the
goal of the evaluation, either per-class measurements can
be used or the overall SKEWSIZE. In case multiple models
are under comparison and the problem involves multiple
classes, we recommend using SKEWSIZEso that a ranking
for the models can be obtained using this overall notion
of bias. In cases a specific class is investigated or a fine-
grained profile of model bias is required, per-class effect
size can be employed. We further note that SKEWSIZE can-
not infer a causal relationship between the bias attribute and
model predictions, only their association. As with mathe-
matical fairness criteria, our metric does not relate bias to
potential harms (Weidinger et al., 2022); further work is
needed to understand the impact of this distributional bias.
Finally, we remark that is not within the scope of our work
to define which biases are practically relevant, given that
this is context-dependent and that a metric should account
for all existing biases in a dataset/model so that a compre-
hensive profile of a model’s performance can be taken into
consideration at the evaluation.
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Impact Statement
In this work we propose a metric to estimate how impacted
a model is by biases that arise across multiple predictions.
We recognize that the binary framing of gender used in the
illustrative example and experiments with synthetic data is
an oversimplification of an important and complex topic.
Our method allows for the interrogation of model bias in
terms of discrete, mutually exclusive categories, which may
not be ideal for representing multifaceted and intersectional
human identities (see Lu et al. (2022) for an exploration
of this topic). Finally, the synthetic dataset may inherit
stereotypes from its generative model, e.g. misrepresenting
non-cisgender people (Ungless et al., 2023).
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eye: Explicit removal of biases and variation from deep
neural network embeddings. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV) Workshops,
pp. 0–0, 2018.

Barocas, S., Hardt, M., and Narayanan, A. Fairness and
machine learning. fairmlbook.org, 2019.

Berg, H., Hall, S. M., Bhalgat, Y., Yang, W., Kirk, H. R.,
Shtedritski, A., and Bain, M. A prompt array keeps
the bias away: Debiasing vision-language models with
adversarial learning. arXiv preprint arXiv:2203.11933,
2022.

Birhane, A., Prabhu, V., Han, S., and Boddeti, V. N.
On hate scaling laws for data-swamps. arXiv preprint
arXiv:2306.13141, 2023.

Brown, A., Tomasev, N., Freyberg, J., Liu, Y., Karthike-
salingam, A., and Schrouff, J. Detecting shortcut learning
for fair medical AI using shortcut testing. Nat. Commun.,
14(1):4314, July 2023.

Caliskan, A., Bryson, J. J., and Narayanan, A. Seman-
tics derived automatically from language corpora contain
human-like biases. Science, 356(6334):183–186, 2017.

Chen, X., Fang, H., Lin, T.-Y., Vedantam, R., Gupta, S.,
Dollár, P., and Zitnick, C. L. Microsoft coco captions:
Data collection and evaluation server. arXiv preprint
arXiv:1504.00325, 2015.

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra,
G., Roberts, A., Barham, P., Chung, H. W., Sutton, C.,
Gehrmann, S., et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

Chuang, C.-Y., Jampani, V., Li, Y., Torralba, A., and Jegelka,
S. Debiasing vision-language models via biased prompts.
arXiv preprint arXiv:2302.00070, 2023.

Cramér, H. Mathematical methods of statistics, 1946. De-
partment of Mathematical SU, 1946.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

DiCiccio, C., Vasudevan, S., Basu, K., Kenthapadi, K., and
Agarwal, D. Evaluating fairness using permutation tests.
In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp.
1467–1477, 2020.

Dixon, L., Li, J., Sorensen, J., Thain, N., and Vasserman,
L. Measuring and mitigating unintended bias in text
classification. In Proceedings of the 2018 AAAI/ACM
Conference on AI, Ethics, and Society, pp. 67–73, 2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel,
R. Fairness through awareness. In Proceedings of the 3rd
Innovations in Theoretical Computer Science Conference,
ITCS ’12, pp. 214–226, New York, NY, USA, 2012. Asso-
ciation for Computing Machinery. ISBN 9781450311151.
doi: 10.1145/2090236.2090255. URL https://doi.
org/10.1145/2090236.2090255.

Friedrich, F., Schramowski, P., Brack, M., Struppek, L., Hin-
tersdorf, D., Luccioni, S., and Kersting, K. Fair diffusion:

9

https://openreview.net/forum?id=ogNrYe9CJlH
https://openreview.net/forum?id=ogNrYe9CJlH
https://doi.org/10.1145/2090236.2090255
https://doi.org/10.1145/2090236.2090255


Evaluating Model Bias Requires Characterizing its Mistakes

Instructing text-to-image generation models on fairness.
arXiv preprint arXiv:2302.10893, 2023.

Hall, M., Gustafson, L., Adcock, A., Misra, I., and
Ross, C. Vision-language models performing zero-shot
tasks exhibit gender-based disparities. arXiv preprint
arXiv:2301.11100, 2023a.

Hall, S. M., Abrantes, F. G., Zhu, H., Sodunke, G., Sht-
edritski, A., and Kirk, H. R. Visogender: A dataset for
benchmarking gender bias in image-text pronoun resolu-
tion. arXiv preprint arXiv:2306.12424, 2023b.

Hardt, M., Price, E., Price, E., and Srebro, N. Equality
of opportunity in supervised learning. In Lee, D.,
Sugiyama, M., Luxburg, U., Guyon, I., and Garnett,
R. (eds.), Advances in Neural Information Process-
ing Systems, volume 29. Curran Associates, Inc.,
2016. URL https://proceedings.neurips.
cc/paper_files/paper/2016/file/
9d2682367c3935defcb1f9e247a97c0d-Paper.
pdf.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Jain, S., Lawrence, H., Moitra, A., and Madry, A. Distilling
model failures as directions in latent space. arXiv preprint
arXiv:2206.14754, 2022.

Jourdan, F., Risser, L., Loubes, J.-M., and Asher, N. Are fair-
ness metric scores enough to assess discrimination biases
in machine learning? arXiv preprint arXiv:2306.05307,
2023.

Karkkainen, K. and Joo, J. Fairface: Face attribute dataset
for balanced race, gender, and age for bias measurement
and mitigation. In Proceedings of the IEEE/CVF winter
conference on applications of computer vision, pp. 1548–
1558, 2021.

Kim, Y., Mo, S., Kim, M., Lee, K., Lee, J., and Shin, J.
Explaining visual biases as words by generating captions.
arXiv preprint arXiv:2301.11104, 2023.

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang,
M., Balsubramani, A., Hu, W., Yasunaga, M., Phillips,
R. L., Gao, I., et al. Wilds: A benchmark of in-the-
wild distribution shifts. In International Conference on
Machine Learning, pp. 5637–5664. PMLR, 2021.

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung, J.,
Gelly, S., and Houlsby, N. Big transfer (bit): General vi-
sual representation learning. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part V 16, pp. 491–507.
Springer, 2020.

Le, Y. and Yang, X. Tiny imagenet visual recognition chal-
lenge. CS 231N, 7(7):3, 2015.

Li, J., Li, D., Savarese, S., and Hoi, S. Blip-2: Boot-
strapping language-image pre-training with frozen im-
age encoders and large language models. arXiv preprint
arXiv:2301.12597, 2023.

Li, Z., Hoogs, A., and Xu, C. Discover and mitigate un-
known biases with debiasing alternate networks. In Eu-
ropean Conference on Computer Vision, pp. 270–288.
Springer, 2022.

Liu, Z., Luo, P., Wang, X., and Tang, X. Deep learning
face attributes in the wild. In Proceedings of the IEEE
international conference on computer vision, pp. 3730–
3738, 2015.

Lu, C., Kay, J., and McKee, K. Subverting machines,
fluctuating identities: Re-learning human categoriza-
tion. In Proceedings of the 2022 ACM Conference on
Fairness, Accountability, and Transparency, FAccT ’22,
pp. 1005–1015, New York, NY, USA, 2022. Associa-
tion for Computing Machinery. ISBN 9781450393522.
doi: 10.1145/3531146.3533161. URL https://doi.
org/10.1145/3531146.3533161.

Luccioni, A. S., Akiki, C., Mitchell, M., and Jernite, Y. Sta-
ble bias: Analyzing societal representations in diffusion
models. arXiv preprint arXiv:2303.11408, 2023.

Matthey, L., Higgins, I., Hassabis, D., and Lerchner,
A. dsprites: Disentanglement testing sprites dataset.
https://github.com/deepmind/dsprites-dataset/, 2017.

Naik, R. and Nushi, B. Social biases through the text-to-
image generation lens. arXiv preprint arXiv:2304.06034,
2023.

Pagano, T. P., Loureiro, R. B., Lisboa, F. V., Peixoto, R. M.,
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Appendix

A. Fairness metrics definitions
We consider Demographic Parity (DP, Dwork et al., 2012) and equalized odds (EO, Hardt et al., 2016) as per their multi-
class extension described in Alabdulmohsin et al. (2022). Each class is binarized (one versus all) before the computation of
the metric, and the results are aggregated across classes using their maximum value. The metrics refer to a “maximum gap”
between subgroups. For DP, this would mean computing the proportion of positive predictions for a class in each subgroup,
comparing the highest with the lowest values across groups:

DP(fθ) = max
a∈Z

E[fθ(x) | z = a]−min
a∈Z

E[fθ(x) | z = a], (5)

EO(fθ) = max
a,k∈Z×Y

E[fθ(x) | z = a, y = k]− min
a,k∈Z×Y

E[fθ(x) | z = a, y = k]. (6)

B. Computing Effect Size using Other Statistics
In addition to the 3 accuracy based metrics and 2 fairness metrics we already considered in previous results, in this section
we further include the Phi coefficient as a measure of effect size when computing SkewSize in the dSprites experiments.
The results in Table 5 show that in this case the Phi Coefficient yields similar trends as the Cramer’s V. Notice, however, that
it is not advisable to use the Phi Coefficient on contingency tables larger than 2x2, which is the reason why we decided to
use the more general Cramer’s V when computing SKEWSIZE throughout our work.

Cramer’s V Phi Coefficient
Class 0 Class 1 Class 2 Class 0 Class 1 Class 2

Unbiased 0.012 0.011 0.019 0.012 0.011 0.027
Class 0 0.670 0.015 0.016 0.948 0.015 0.022
Class 1 0.014 0.683 0.108 0.014 0.966 0.152
Class 2 0.047 0.006 0.696 0.067 0.006 0.985

Table 5: Computing effect size with Cramér’s V vs Phi Coefficient. DSPRITES dataset.

C. Estimating distributional bias in multi-class classification: DOMAINNET

We now stress-test SKEWSIZE by employing it to evaluate a model in the multi-domain setting, where samples from different
distributions are employed training time, and show that our proposed metric can capture systematic biases in predictions.
Specifically, we investigate the degree of bias exhibited by the model with respect to the different domains (in this setting,
the domain label corresponds to the spurious bias variable).

Setting. We consider the DOMAINNET benchmark (Peng et al., 2019), which is composed of images from 6 domains
sharing the same label space of 345 object classes, and train a ResNet-50 on the train split of all domains jointly. Given the
trained model, we then compute predictions for all instances in the test partitions and proceed to compute SKEWSIZE as per
Algorithm 1.

Results. The model achieved 59.95% average test accuracy, 37.01% worst group accuracy gap, and 0.509 SKEWSIZE. In
order to provide a fine-grained understanding about the differences between each metric, we show in Figure 5 plots accuracy
(per class) against effect size ν, along with the respective Equality of Odds (EO) value (shown as each point’s corresponding
hue). We find a mild Pearson correlation between effect size and accuracy (−0.291, p ≈ 0) as well as between effect size
and EO (0.190, p = 0.0008), which indicate the metrics are related but not equivalent as they capture distinct aspects of
the bias. No correlation between effect size and GAP was found (0.103, p = 0.07), nor between effect size and DP (0.051,
p = 0.377) further highlighting the importance of including robustness evaluations metrics that take into account error
mismatches for a given ground-truth class.
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Figure 5: DOMAINNET. Per-class accuracy vs. effect size. Hue indicates EO. Points in the top-right most corner of the plot
indicate that even for classes where the model is most accurate systematic differences in predictions across subgroups might
exist.

Raw Occupation

BLIP2-2.7B ✗ 0.233
✓ -0.005

BLIP2-6.7B ✗ -0.045
✓ -0.130

BLIP2-FlanT5 ✗ 0.599
✓ 0.124

Table 6: SKEWSIZEfor raw versus post-processed model outputs. Higher skewness values correspond to models having
less gender bias. We observe that post-processing the models outputs changes the skewness value but does not change the
overall trend.

D. VLM: Detailed results
D.1. Optional post-processing

As we do not constrain the model’s output, there may be cases where the model predicts synonyms of the ground-truth
class, e.g. lawyer and attorney, or the predictions consist of sentences with different structures, e.g. “The person is a laywer”
and “A lawyer”. In light of that, in order to compute accuracy values, we manually post-process the outputs of the model to
account for all cases where the output semantically matched the ground-truth answer.

Impact of post-processing. We also investigate in Table 6 whether post-processing model outputs affects the overall
experimental findings by comparing the metric trend across models for both raw and post-processed outputs. We find that
the same trends can be observed irrespective of the post-processing. Increasing model size while keeping an unsupervised-
trained language model amplifies bias as the skewness values decrease when comparing BLIP2-2.7B and BLIP2-6.7B (from
0.233 to -0.045). As expected, SKEWSIZE values computed with raw model outputs tend to be lower, indicating an overall
increase in the computed effect size. This is because, without post-processing, the predicted classes are more fine-grained,
resulting in a potential larger mismatch between predictions for each gender value. BLIP2-FlanT5 presented the highest
skewness values for all cases, further confirming the findings in Figure 4.
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D.2. Effect size distributions
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(a) Gender bias in occupation prediction.
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(b) Gender bias in sport modality prediction.

Figure 6: Distribution of effect size values between gender and predicted occupation/sport modality across BLIP-2 models.

D.3. Controlling the effect of noise in the predictions

As the size of output space ∥Y∥ grows, we propose the following strategy to control for the sensitivity of SKEWSIZE to
noise in the predictions: as per the rule-of-thumb to satisfy the assumption of the Chi-square test, we can remove columns
from the contingency with respective expected value lower than 5. As we are looking for systematic patterns in the errors of
the model, using such a filtering strategy reduces sensitivity to randomness while maintaining sensitivity to the systematic
patterns. We can also vary this value in order to decide to which degree some randomness in the predictions should be taken
into account.

To illustrate how the choice of the minimum expected value to be accounted for would affect results, we repeated the
evaluation reported in Section 3.3.1 for the occupation prediction task with varying thresholds so that we can evaluate
whether the comparison between models would change. As demonstrated by the results in Table 7, the choice of threshold
does not affect the resulting comparison between models.

MEV=6 MEV=5 MEV=4 MEV=3 MEV=2
BLIP-2.7 0.235 0.233 0.225 0.199 0.19
BLIP-6.7 -0.031 -0.045 -0.056 -0.072 -0.102

BLIP-FlanT5 0.625 0.599 0.578 0.544 0.507

Table 7: Varying the minimum expected value (MEV) for evaluating the BLIP2 model family in the occupation prediction
task.
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D.4. Data Generation

We consider 148 and 273 classes for the tasks of occupation and sport modality prediction, respectively. The complete list of
occupations and sport modalities used in the VLMs experiments can be found in the Supplementary Material repository.

E. IMAGENET Models
We used a variety of models trained on IMAGENET with different sizes, training accuracy, pretraining, etc. Unless otherwise
stated, we used publicly available models from TF-HUB4.

• RESNET50-1/2 (He et al., 2016): A model we trained on IMAGENET from scratch which achieved around 76%
accuracy.

• RESNET* (He et al., 2016): RESNET models with no pretraining.
• VIT* (Dosovitskiy et al., 2020): A B/16 variant of the vision transformer model family we trained on IMAGENET

from scratch which achieved around 80% accuracy.
• INCEPTION* (Szegedy et al., 2015): Inception models with no pretraining.
• INCEPTION RESNET (Szegedy et al., 2017): A hybrid INCEPTION RESNET model with no pretraining.
• BIT-S* (Kolesnikov et al., 2020): BIT models with no pretraining.

F. Further Related Work
Mitigations. Given a known bias in the model, it is possible to mitigate the issue, demonstrating the importance of
being able to identify biases to improve the model. This can be done by intervening on the dataset to make it fairer while
maintaining performance as done by (Singla et al., 2022). Another approach is to intervene on the prompts and de-bias the
text embeddings as done by (Chuang et al., 2023). Finally, we can intervene at the model level, as done by (Friedrich et al.,
2023; Berg et al., 2022) and use guidance or an adversarial loss to steer the model towards being more fair. (Zhang et al.,
2018), (Alvi et al., 2018) (Kim et al., 2023), (Li et al., 2022)

Datasets for evaluating bias. To develop methods to evaluate and mitigate bias, datasets such as Waterbirds (Sagawa
et al., 2019), CelebA (Liu et al., 2015), and MultiNLI (Williams et al., 2017) have been used; in these datasets the biases are
created a-priori (e.g. land birds on land backgrounds vs water birds on watery backgrounds). Revise was introduced by
(Wang et al., 2022b) in order to visualise the biases in a dataset (and thereby probable impacts on models trained on such
a dataset). However, such a tool requires labels on what exists in the dataset, which may not be possible, so (Jain et al.,
2022) demonstrated how biases could be found automatically in multimodal datasets. A targeted dataset looking at model
performance at predicting everyday objects conditioned on geographical location is the DollarStreet dataset (Rojas et al.,
2022). Other targeted datasets, such as FairFaces and CasualConversationsV2 (Karkkainen & Joo, 2021; Porgali et al., 2023;
Hall et al., 2023b) can be used to evaluate a models bias across sensitive attributes. (Karkkainen & Joo, 2021; Porgali et al.,
2023) does so by comparing classification performance across these attributes (e.g. age, gender, etc.) whereas (Hall et al.,
2023b) is a small dataset of 250 images that evaluates pronoun resolution conditioned on the image. Such datasets are
complementary to our approach, as we rely on a dataset with labelled subgroups to compute our metric. When no such
dataset exists, we relied on synthetic data.

4https://tfhub.dev/google/imagenet/
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G. SKEWSIZE implementation details
G.1. Pseudocode

Algorithm 1 Computing SKEWSIZE

1: for i = 1, 2, . . . , |Y| do
2: Get set of model predictions Ŷ i = {ŷk} for all (xk, yk, zk) where yk = yi
3: for j = 1, 2, . . . , |Z| do
4: Build Ŷ ij , a subset of Ŷ i with instances where zk = zj
5: end for
6: Estimate νi, the effect size for the i-th class, using Equation 2.
7: end for
8: Aggregate effect size estimates per class by computing SKEWSIZE as per Equation 4.

G.2. Python Implementation

# Copyright 2023 The SkewSize Authors. All rights reserved.
# SPDX-License-Identifier: Apache-2.0

import numpy as np
import pandas as pd
import scipy.stats as stats

v_list = []
for label in unique_labels:

# predictions: predictions for all instances in the class *label*.
# subgroups: predictions for all instances in the class *label*.
df = pd.DataFrame({’predictions’: predictions,

’subgroups’: subgroups})
crosstab = pd.crosstab(df.subgroups, df.predictions)

chi2 = stats.chi2_contingency(crosstab)[0]
dof = min(crosstab.shape)-1
n = crosstab.sum().sum()
v = np.sqrt(chi2/(n*dof))
v_list.append(v)

v_values = np.asarray(v_list)
# When a model predicts correctly all examples
# in a given class across all subgroups
# dof=0 and the corresponding v is NaN.
# We remove NaNs before computing skewsize.
v_values = v_values[˜np.isnan(v_values)]
skewsize = stats.skew(v_values)
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