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Abstract
To evaluate large language models of code, re-
search has relied on a few small manually cu-
rated benchmarks, such as HumanEval and MBPP,
which represent a narrow part of the real-world
software domains. In this work, we introduce
round-trip correctness (RTC) as an alternative
evaluation method. RTC allows Code LLM eval-
uation on a broader spectrum of real-world soft-
ware domains without the need for costly human
curation. RTC rests on the idea that we can ask a
model to make a prediction (e.g., describe some
code using natural language), feed that prediction
back (e.g., synthesize code from the predicted de-
scription), and check if this round-trip leads to
code that is semantically equivalent to the origi-
nal input. We show how to employ RTC to evalu-
ate code synthesis and editing. We find that RTC
strongly correlates with model performance on ex-
isting narrow-domain code synthesis benchmarks
while allowing us to expand to a much broader set
of domains and tasks which was not previously
possible without costly human annotations.

1. Introduction
While large language models (LLMs) have shown excep-
tional abilities in a wide range of tasks, their evaluation re-
mains costly, commonly requiring laborious human-curated
datasets. This is particularly true for code capabilities of
LLMs that commonly require highly-skilled programmers to
create evaluation benchmarks. Existing benchmarks, such
as HumanEval (Chen et al., 2021), MBPP (Austin et al.,
2021), ARCADE (Yin et al., 2022), and DS-1000 (Lai et al.,
2023) have been developed by asking human annotators to
provide natural language, code, tests, and sometimes the
target problems themselves.

At the same time, established human-annotated evaluation
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benchmarks focus on narrow domains of code: HumanEval
and MBPP evaluate introductory-level, standalone program-
ming tasks; ARCADE and DS-1000 focus on simple data
science tasks using few popular open-source libraries (e.g.,
numpy, pandas). These benchmarks are “necessary” but
not “sufficient” for good performance for Code LLM users
that work on different development environments which
feature a much broader spectrum of domains, programming
libraries and frameworks. However, manually creating new
benchmarks with expanded scope is costly and impractical
given the general-purpose nature of code and fast-paced
software evolution.

Towards ameliorating these limitations, we use the con-
cept of round-trip correctness (RTC) which allows us to
perform unsupervised evaluation over certain LLM capabil-
ities, complementing existing human-annotated evaluations.
RTC relies on the idea that we can use an LLM to perform
both an action (e.g., “Describe these lines of code”) and
its inverse (“Implement the code given this description”).
See Fig. 1 for an example. We can then judge whether the
round-trip has retained the semantics of the input. This
can be achieved via computing various discrete (e.g., ex-
act match) or continuous metrics (e.g., BLEU) or involve
execution-based oracles (e.g., unit tests) which commonly
already exist and require no additional human involvement.
Our contributions are:

• We propose an unsupervised method for evaluating LLMs
via round-trip correctness (RTC) (Sec. 2) and instantiate
it for code synthesis and editing (Sec. 3).

• We show that RTC strongly correlates with existing met-
rics on narrow-domain benchmarks (HumanEval and AR-
CADE) measuring the same LLM capability within that
narrow domain (Sec. 4.1).

• We show that RTC allows us to measure an LLM’s per-
formance over a wide-range of real-life software domains
— without human-provided annotations — and comple-
ments existing narrow-domain benchmarks (Sec. 4.2).

• We demonstrate that RTC is a general metric that can be
used for other tasks, like code editing, for which there are
no well-established benchmarks (Sec. 3.2).

Our code can be found at https://github.com/
google-deepmind/icml2024-roundtrip-correctness.
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def main(argv):
  args = PARSER.parse_args(argv)
  dst = args.dst
  assert dst.suffix == ".hash"
  dirname = dst.parent
  if dirname.name != ".hash":
    if args.debug:
      print(f"Invalid name {dst} -> {dirname}",)
        return 0
  dirname.mkdir(exist_ok=True)
  src_dir = dirname.parent
  src_name = dst.stem  # drop .hash
  full_src = src_dir / src_name
  hasher = hashlib.sha256()

  try:
    hasher.update(full_src.read_bytes())
  except OSError:
    if args.debug:
      print(f"Cannot open {full_src}", file=sys.stderr)
    return 0
  src_hash = hasher.hexdigest()

  if dst.exists():
    dst_hash = dst.read_text()
  else:
    dst_hash = ""
  if src_hash != dst_hash:
    dst.write_text(src_hash)
    print(f"re-hash {src_hash}")
  else:
    if args.debug:
      print(f"Skip {src_hash} checksum, up-to-date")
  return 0

Code

def main(argv):
  args = PARSER.parse_args(argv)
  dst = args.dst
  assert dst.suffix == ".hash"
  dirname = dst.parent
  if dirname.name != ".hash":
    if args.debug:
      print(f"Invalid name {dst} -> {dirname}",)
        return 0
  dirname.mkdir(exist_ok=True)
  src_dir = dirname.parent
  src_name = dst.stem  # drop .hash
  full_src = src_dir / src_name
  hasher = hashlib.sha256()

  # TODO(LLM): Compute hash digest of file content in  
  # `src_hash`, if an error happens, exit with error code 0.

  if dst.exists():
    dst_hash = dst.read_text()
  else:
    dst_hash = ""
  if src_hash != dst_hash:
    dst.write_text(src_hash)
    print(f"re-hash {src_hash}")
  else:
    if args.debug:
      print(f"Skip {src_hash} checksum, up-to-date")
   return 0

Natural Language

Figure 1. Round-trip correctness (RTC) for Code Synthesis: An
LLM is asked to describe the highlighted code (left) within the
context of the file. Subsequently, it is asked to implement the
relevant code within the code context given the description it
previously generated (right).

2. Round-Trip Correctness
Background We draw inspiration from a software testing
technique known as property-based testing (Fink & Bishop,
1997). It allows defining properties that must hold between
inputs and outputs of a program (e.g., all items in the in-
put list must also appear in the output list). Round-trip
correctness is one such property (e.g., compressing and sub-
sequently decompressing data must yield the original data).
Property-based testing allows software developers to ex-
pand their tests beyond few human-curated examples. In
this work, we re-purpose this concept for LLM evaluation.

RTC for Model Evaluation Consider two forms of data
X and Y, such as source code and natural language descrip-
tions of code (Fig. 1) and two (probabilistic) models whose
task is to “translate” from one form of data to the other,
i.e., a forward model M : X → Y and a backward model
M−1 : Y → X. These models could be a single LLM
prompted differently.

The central idea for unsupervised evaluation is the concept
of round-trip correctness (RTC). Intuitively, for a “good”
forward and backward model we expect x̂ =M−1(M(x))
to be semantically equivalent to x. For example, as we dis-
cuss in Sec. 3, we can describe code with natural language
in the forward pass and then generate back the code from the
sampled natural language descriptions in the backward pass
(Fig. 1). To compute RTC we need some function sim(x, x̂)
that estimates the semantic equivalence between the original
x and each predicted sample x̂. Such functions may include
discrete or continuous metrics such as exact match, Code-
BLEU (Ren et al., 2020), or CodeBERTScore (Zhou et al.,
2023), and execution-based semantic equivalence oracles,
such as unit test execution.

We can then measure round-trip correctness as the ability of

M and M−1 to accurately perform the round-trip from an
x ∈ X to a y =M(x) ∈ Y and back to x̂ =M−1(y) ∈ X ,

RTCsim(x) , Ey∼M(x)

[
Ex̂∼M−1(y) [sim(x̂, x)]

]
, (1)

where sim(·) estimates the semantic equivalence of x and x̂.
Since we cannot compute the expectations exactly, we draw
small number of Nf forward and Nb backward samples and
approximate RTC as

RTCsim(x) ≈
1

NfNb

∑
y∼M(x)

∑
x̂∼M−1(y)

sim(x̂, x).

Measuring the forward lift In certain situations, it is
possible for the backward model M−1 to perform its task
without any input from the forward model or with very low-
quality forward model samples. For instance, in text-to-code
synthesis (Fig. 1), the code may be obvious within the code
context, without requiring any explicit natural language
instruction. To measure this, we employ the notion of the
forward lift. Namely, we replace the forward sample with
an uninformative/generic utterance ε and measure it as

Lsim
M (x) = RTCsim(x)− Ex̂∼M−1(ε)[sim(x̂, x)].

Lsim
M can also be approximated by sampling. Thus, Lsim

M

acts as a measure of the additional information encoded in
the forward samples {y} that is available to the backward
model M−1 and can serve as a weak measure of a model’s
ability to perform the forward task. A negative Lsim

M may
imply that the forward model M makes “confusing” pre-
dictions, distracting the backward model from performing
its task. A lift larger than zero implies that M provides
helpful predictions that contribute towards the backward
generation. Finally a Lsim

M close to zero may imply that the
forward model M yields uninformative predictions or the
input samples x are easy for the backward model and M
cannot possibly provide any additional information.

Limitations While RTC allows us to evaluate Code
LLMs without human annotations, it is not without lim-
itations. First, the quality of RTC as a measure depends
on that of the similarity function sim(·). A weak measure
of semantic similarity may yield arbitrary results. Second,
the measurement of the performance of the forward and
backward tasks is coupled: if M is unable to provide plausi-
ble samples, we cannot expect to measure the ability of the
backward model M−1. This may be a problem if we care
for only one of the forward or backward tasks.

Finally, RTC assumes “reasonably” trained and instruction-
tuned LLMs. In an adversarial setting, a forward model M
can ignore the instruction and recite its input x. Then, the
backward model M−1 can copy the output of the forward
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model M achieving perfect RTC. While this is unlikely
to happen for models that employ common (pre)training
methods, if we train/fine-tune models with the objective of
Eq. 1 such a behavior can arise naturally.

3. RTC for Code
While RTC is general, it is well-suited for code where au-
tomatically judging the semantic similarity (via sim(·)) is
easier than natural language, commonly through proxies
such as unit tests. In this section, we discuss two code-
specific evaluations for two common code application: code
synthesis and code editing. A summary is shown in Table 1.

3.1. Round-trip Code Synthesis (SYNTHESISRTC)

Code synthesis with LLMs is one of the most studied
tasks. Evaluating on this task commonly requires a human-
annotated dataset of natural language descriptions, function
signatures (or full implementations), and unit tests. Instead,
for RTC we construct SYNTHESISRTC as an in-context
code synthesis task (Fig. 1) that does not require input natu-
ral language descriptions. Given a coherent region of code
within a source code file, we ask a forward LLM (M ) to de-
scribe the code region concisely with natural language. This
yields a natural language utterance y. Then, we remove the
code region and replace it with a TODO comment containing
the natural language description generated by M . Finally,
we ask M−1 to synthesize code implementing the TODO.

For a model to be round-trip correct, the synthesized code
must be semantically equivalent to the original. In prac-
tice, proving semantic equivalence is hard, and we employ
unit tests as a proxy and measure RTCpass. Note that unit
tests are commonly included in well-developed code, and
so they are often readily available without any additional
human effort. If they do not exist, automatic test generation
methods (Nebut et al., 2006) can be employed, but it is also
possible to consider other weaker similarity functions like
exact match or BLEU, as done in prior work. Finally, to
measure the lift for SYNTHESISRTC we can use an unin-
formative TODO comment (e.g., ε =“TODO: Implement.”)
and check the correctness with sim(·). The lift Lpass

M can
be attributed to the additional information provided by the
forward model M .

3.2. Round-trip Code Editing (EDITINGRTC)

In addition to SYNTHESISRTC, which evaluates an LLM’s
ability to generate new code from scratch, we also explore
RTC as an evaluation metric for code editing. Editing is a
common real-world software engineering scenario in which
code is modified (e.g., bug fixing, refactoring, implementing
new or updated functionality). Performing this task requires
complex reasoning, which entails identifying parts of the

existing code that need to be changed, determining how
they should be changed, and retaining all other parts of the
code (Jimenez et al., 2023). However, this is not a common
evaluation task for LLMs, and there are no well-established
metrics or benchmarks.

Our approach closely follows Sec. 3.1. Namely, as the input
to the forward model M we provide an edit, represented as
an old code snippet followed by the new version (with the
edit applied). We ask the model to describe the edit con-
cisely using natural language, which results in a predicted
edit description y. Finally, we provide the old code snippet
(before the edit) and the generated edit description to the
backward model M−1, and we ask it to generate the new
code, i.e.,, apply the edit described in y.

Rather than relying on human-provided natural language
labels to perform supervised evaluation, we leverage RTC,
in which we compute the similarity between the original
edit that is provided as input to M and the edit predicted
by M−1. Similar to Li et al. (2022b), we use exact match
as the similarity metric sim(·).1 To approximately measure
the quality of the generated edit descriptions we compute
the lift for a baseline task in which we provide M−1 an
uninformative edit description (ε =“Edit.”).

4. Evaluation
Experimental Setup Unless stated otherwise, to compute
RTC we draw 3 forward samples and one backward sample
per forward sample. We use temperature of 0.8 for the for-
ward model (to allow for disparate forward samples) and 0.1
for the backward samples (to generate high-probability code
generations). We use three-shot prompting with identical
few-shot prompts for all models. Given the time constraints
and compute limitations, we selected these hyperparameters
and have not explored any variations. Finally, we limit the
length of the forward samples to 128 characters. In this
way, models are forced to “compress” their understanding
in a succinct natural language sentence and more verbose
models cannot gain an advantage over less verbose ones.

We note that different forward and backward models could
be used. However, there are confounders in doing so that
we wanted to avoid: different forward models may generate
natural language descriptions that are confusing to different
backward models. Such a communication chasm would
misrepresent the capabilities of these models. For instance,
consider two models M1 and M2 that are both good at code
synthesis based on natural language instructions. However,
suppose M1 performs poorly in code-to-natural language
generation whereas M2 is very good. Now, if we use M1

to create forward samples for the SYNTHESISRTC task, we
may end up with low-quality natural language descriptions

1If unit tests were available we would have preferred them.
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Table 1. Summary of Code RTC tasks discussed in this work.

SYNTHESISRTC EDITINGRTC

Input X Source Code Region (one or more statements) Code Edit
Intermediate Y Natural Language Description of Code Region Natural Language Description of Edit
Forward Task Context Source Code around Target Region Source Code around Edit
Backwards Task Context Source Code around Target Region Original Version Code before Edit
Uninformative utterance ε Code Completion/Infilling of Target Region –
sim(·) All Unit Test Pass (0/1) Exact Match

of code. If we then provide these low-quality descriptions
as input to M2 to generate backward samples, we may also
end up with low-quality code samples. This would lead
us to falsely conclude that M2 performs poorly on code
synthesis. Due to these, we aim to minimize any extrinsic
factors that may affect the result and use the same model
for both the forward and backward samples to compute
RTC. At the same time, using the same model for both
the forward and backward tasks can also enable RTC to
measure a model’s skill at generating both code as well as
natural language targets. This would help distinguish more
“well-rounded” LLMs that excel at both code and description
generation from models that can only handle a single task
(e.g., models trained on code-heavy data may only predict
code, see Muennighoff et al. (2023)).

4.1. Does RTC correlate with existing metrics on
narrow-domain benchmarks?

We make the hypothesis that RTC, when applied to exist-
ing benchmarks, is highly correlated with widely accepted
metrics, such as pass@k (Chen et al., 2021) which in turn is
recognized as a metric strongly correlating with how LLM
users perceive its performance.

To test this hypothesis we employ HumanEval (Chen et al.,
2021) and ARCADE (Yin et al., 2022) that represent two
common domains: general-purpose coding to solve algo-
rithmic problems and multi-turn data science programming
in Jupyter notebooks. HumanEval is a function-level code
generation dataset where each problem is a Python function
with a natural language description in its docstring. We
re-purpose each problem by removing the docstring and use
the ground-truth function solution as input to the forward
model. LLMs are subsequently asked to describe the body
of the ground-truth function (forward) and then implement
it based on the generated description. For ARCADE, each
original problem comes with a natural language question
(e.g., “What’s the GDP growth rate of that country?”) and
a ground-truth code solution along with any notebook con-
text (e.g., the question and solution for a prior turn “Which
country received the highest aid?”). To compute RTC, we
use the notebook context and the code solution of a turn as
input to generate question descriptions y in the forward pass.

Table 2. RTCpass vs standard pass@1 metric and Lpass
M across mod-

els. Results sorted by RTCpass. DSC stands for DeepSeekCoder.

pass@1 RTCpass Lpass
M

HumanEval (Chen et al., 2021)
PaLM 2-S 19.5% 8.3% -0.2%
PaLM 2-S+ 29.3% 10.6% 3.3%
PaLM 2-S* 37.6% 18.3% 9.8%
Gemini Nano 2 33.4% 18.9% 3.7%
StarCoder2 15B 46.3% 31.7% 20.7%
Gemini v1 Pro 63.4% 34.8% 19.6%
DSC33B-IT 75.6% 40.2% 30.4%

ARCADE (Yin et al., 2022)
PaLM 2-S 5.5% 2.7% –
PaLM 2-S+ 8.2% 3.5% –
PaLM 2-S* 15.3% 6.5% –
Gemini Nano 2 14.4% 7.7% –
Gemini v1 Pro 18.3% 11.1% –
StarCoder2 15B 25.4% 12.1% –
DSC33B-IT 24.8% 15.1% –

The backward model is subsequently asked to implement
the code using the generated description y and the notebook
context. The few-shot prompts of Yin et al. (2022) are used.

Table 2 show the scores achieved by two classes of models
PaLM 2 (Anil et al., 2023) and Gemini (Team Gemini et al.,
2023) along with two open models DeepSeekCoder-33B-
Instruct (Guo et al., 2024) (abbreviated as as DSC33B-IT)
and StarCoder2 (Lozhkov et al., 2024). The HumanEval
pass@1 scores for Gemini, StarCoder2, and DeepSeek-
Coder models were obtained from the base scores of the in-
dependent EvalPlus Leaderboard. While not surprising, we
see that there is a strong correlation between the “standard”
pass@1 and RTCpass for both benchmarks. The Pearson
correlation is r = 0.96 for HumanEval and r = 0.96 for
ARCADE and the Spearman correlation is ρ = 0.90 and
ρ = 0.81 respectively.

These results suggest that RTC strongly correlates with ex-
isting metrics on benchmarks that have been curated through
costly human annotations. Thanks to the strong correlation,
we can conclude that RTC is a valid metric that reflects the
real-world performance of LLMs and thus can complement
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existing human-annotated benchmarks. It should be noted
that these correlations are not perfect. This is to be expected
as RTCpass couples the code-to-text and the text-to-code
synthesis capabilities whereas pass@1 only measures the
text-to-code synthesis capability of each model.

One potential caveat could be that RTC’s correlation with
pass@1 is only due to the different sizes of the models, as
it is generally true that larger models overperform smaller
ones. However, all the PaLM 2 models used have the same
number of parameters and RTC and pass@1 still corre-
lates strongly across these models. This suggests that RTC
correlates with the coding abilities controlling for model
size rather than some other capability that coincidentally
improves with model size.

Note that the absolute RTCpass is worse than the pass@1 for
HumanEval in absolute terms. This difference can be ex-
plained by two factors: (a) the standard HumanEval prompt
includes input-output examples which the forward model is
not prompted to generate. This makes the backward code
generation task harder. Indeed, recently Liu et al. (2024)
confirmed that removing those input-output examples from
the original HumanEval prompts leads to significant drop
in pass@1 (Liu et al., 2024, Table 3). (b) The forward
description generation task also introduces some noise.

Evaluating Code-to-Description Table 2 show the lift
Lpass
M for HumanEval. For SYNTHESISRTC the uninfomative

backward task is code completion within the code context
but no (natural language) information about the implementa-
tion or its intention. For HumanEval, Table 2 shows that all
models — except from PaLM 2-S — show a lift, but better
models offer a larger lift than small ones. For ARCADE,
the baseline task (code completion without any natural lan-
guage instruction) is not meaningful given the nature of
the benchmark as the baseline backward pass@1 would be
always zero and hence we do not compute it.

Sensitivity of RTC Similar to pass@k metrics LLM sam-
pling temperature, number of samples per example, and
dataset size affect the statistical robustness of the RTC re-
ported. In this work, we chose to use low temperature for
the backward model and a mildly high temperature for the
forward model. The low temperature of the backward pass
renders the RTCpass relatively stable: we performed the
HumanEval experiments (Table 2) 10 times and measure
the standard deviation to be σ = 1.11% which is small and
shows that the results shown are fairly stable. Changing
Nf , Nb and the forward/backward sampling temperatures
beyond the ones discussed changes the results. For example,
we observe that increasing the temperature of the backward
model requires a significant increase in Nb to reduce vari-
ance.

4.2. Do LLMs perform similarly across domains?

Previously, we showed that RTC strongly correlates with
pass@1 on limited-domain, human-annotated benchmarks.
It is unclear whether these narrow-domain benchmarks fully
reflect an LLM’s capabilities across all code domains. To in-
vestigate this question, we collect a set of 77 of permissively
licensed open-source Python projects that have a test suite
which we can execute and all the tests pass. We then sample
ranges within the code by sampling one or more consec-
utive sequential statements from the project’s code whose
size is between 32 and 384 characters long and are covered
by the test suite. Specifically, each statement corresponds
to a node on the concrete syntax tree (CST) of the code.
The probability of a sequence of statements being sampled
is proportional to the number of characters they contain
and inversely proportional to the number of other candidate
nodes in the CST that also contain those characters. Files
containing unit tests are excluded. We also filter out any
ranges that when deleted have no effect to the results of the
test suite. This ensures that the selected code has at least
some observable effect to the expected outputs. This last
step is crucial and filters about 40% of the sampled ranges,
although this statistic varies across projects.

Finally, we randomly sample 100 ranges per-project. If for
a project we cannot collect 80 or more samples, we discard
the entire project. The resulting dataset is made of 5,961
samples from 58 open source Python projects representing
varying domains. To avoid giving advantage to models with
longer contexts, we provide as context the few lines before
and after each selected code range such that no more than
1024 characters of context are included and each line is
either shown entirely or not at all. Alternative implementa-
tions, e.g., including the entire file, more files, or even an
entire repository as in Ding et al. (2024) are also reasonable
and we expect they will become increasingly viable in the
future. The used projects are shown in Appendix A.

Subsequently, we compute RTCpass as in Sec. 4.1. Fig. 2
shows a plot of the average RTCpass for each project show-
ing a wide variability on both Gemini Nano 2 and Gemini
Pro’s performance. This is not unexpected: HumanEval and
ARCADE only test for two specific, fairly narrow domains
that do not reflect the full diversity of domains in real-life
software. From Fig. 2 we see that for some projects the
performance is really good compared to the rest. In partic-
ular, the TheAlgorithms project that contains educational
implementations of popular computer science algorithms
achieves very good RTCpass. In contrast, jedi, a static anal-
ysis library for Python has the lowest RTCpass. There is also
a wide variability among the RTCpass of the other projects
showing the diverse performance of LLMs across different
domains. While the RTCpass of the two models are corre-
lated (r = 0.75, Spearman’s ρ = 0.76), this correlation is
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Figure 2. Round-trip correctness (RTC) for Code Synthesis across 58 open-source projects of diverse domains for Gemini Pro and Nano
2: RTCpass varies widely across projects/domains, something that common code synthesis benchmarks fail to capture.

not perfect, showing that different LLMs can have varying
performance characteristics in different domains.

These results suggest that existing narrow-domain bench-
marks do not capture the LLM’s capabilities across multiple
domains. Therefore for Code LLMs that need to support
a wide range of coding domains additional benchmarks
are needed. While manually curating and annotating such
benchmarks is possible, unsupervised evaluation through
round-trip correctness offers a reasonable alternative.

Lift across domains The lift Lpass
M shows a similar vari-

ation across different projects (shown in Appendix B in
Fig. 5). We note that the average lift for Gemini Nano 2 is
LM = 7.0% and for the Gemini Pro LM = 21.5% which
is higher compared to HumanEval (Table 2). This may
be because HumanEval’s function signatures used as con-
text (e.g.,def is palindrome(string: str) -> bool) in the
backward model are somewhat informative and the forward
samples may not be able to provide additional information.
This further suggests that HumanEval may be a relatively
simple benchmark compared to the one in this section.

Qualitative Analysis Fig. 3 shows a cherry-picked exam-
ple from an open-source project that we have selected as
a good representative of common error modes. The target
code range (yellow box) performs a relatively simple opera-
tion that maintains the invariant on the counts dictionary.
The first two natural language samples explain this in a
plausible way. However, the first sample misses the crucial
information about the outer if condition, which is well-
captured by the second one. Overall, qualitatively we often
see some important part of the logic not being captured in
the natural language description. Additionally, the first sam-
ple takes a very formulaic and unnatural way of describing
the code giving emphasis on the low-level operations rather

Table 3. Evaluating EDITINGRTC with a random sample of 1K
examples from the CodeReviewer test set of Li et al. (2022b).

Gemini Nano 2 Gemini Pro

Unsupervised
RTCExactMatch (%) 5.2 12.9
LExactMatch

M (%) 4.8 12.4
RTCBLEU (%) 72.3 73.7
RTCROUGE (%) 81.4 82.3

Supervised
Edit→ NL (BLEU) 0.5 1.0
NL→ Edit (Exact Match) 11.7 19.4

than the underlying logic. This seems like a common error
mode for the forward model and happens more often on
shorter snippet. The third sample seems like a hallucination
and is just wrong.

All backward samples are reasonable implementations of
their respective forward sample. However, note that the sec-
ond sample has the ambiguous phrase “discard the oldest
element” which can reasonably imply the use of popleft()
instead of just peeking at the leftmost element of window.
Despite this difference and thanks to the implementation
semantics of deque the second sample is semantically equiv-
alent to the original code when placed within the code con-
text, hence achieving an RTCpass = 1/3.

4.3. Evaluating beyond Code Synthesis: Code Editing

To evaluate code editing, we use the CodeReviewer test
set (Li et al., 2022b), which is a parallel corpus of GitHub
Pull Request (PR) review comments paired with their edited
code, including both the old and new versions (i.e.,, before
and after the edit for resolving the review comment). We
randomly sample 1K examples from the original test set.
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Input Code and Target Region

def unique_in_window(iterable , n, key=None):
""" Yield the items from *iterable* that haven't been
seen recently. *n* is the size of the lookback window."""
if n <= 0:

raise ValueError('n␣must␣be␣greater␣than␣0')

window = deque(maxlen=n)
counts = defaultdict(int)
use_key = key is not None

for item in iterable:
if len(window) == n:

to_discard = window [0]
if counts[to_discard] == 1:

del counts[to_discard]
else:

counts[to_discard] -= 1

k = key(item) if use_key else item
if k not in counts:

yield item
counts[k] += 1
window.append(k)

Forward samples

1. ‘to discard‘ takes the first value in ‘window‘. If the count for
that value in ‘counts‘ is ‘1‘, we remove the value, otherwise we
decrement the count.

2. if the window is at capacity, discard the oldest element, and update
counts so that this element is only considered if it is seen again.

3. ‘to discard‘ equals ‘window[(len(window) - 1) % len(window)]‘

Backward samples

Generation for forward sample #1
to_discard = window.popleft ()
if counts[to_discard] == 1:

del counts[to_discard]
else:

counts[to_discard] -= 1

Generation for forward sample #2
if len(window) == n:

k = window.popleft ()
counts[k] -= 1
if counts[k] == 0:

del counts[k]

Generation for forward sample #3
to_discard = window [(len(window) - 1) % len(window)]

Figure 3. SYNTHESISRTC example from more-itertools from
Gemini Pro. Code slightly reformatted/abbreviated for space.

The resulting set contains samples from multiple program-
ming languages (Java 17%, Go 23%, Python 21%, C++ 9%,
PHP 7%, JavaScript 7%, Ruby 5%, C# 5%, C 4%). We
use 3-shot prompting (with 3 examples from the CodeRe-
viewer validation set) and conduct experiments with Gemini
models (Team Gemini et al., 2023). We draw 3 forward (tem-
perature=1.0) and 1 backward sample (temperature=0.0).

Results are shown in Table 3. Overall, we observe
trends consistent to those of SYNTHESISRTC (Table 2):
RTCExactMatch is higher for Gemini Pro, suggesting that
Gemini Pro has superior capabilities in terms of generat-
ing natural language edit descriptions (forward task) and
editing code based on natural language descriptions of edits

(backward task). Additionally, the forward lift (LExactMatch
M )

is much higher for Gemini Pro, once again demonstrating
the quality of the descriptions generated by M .

Note that RTCExactMatch and LExactMatch
M are computed in a

completely unsupervised manner, without relying on any
ground truth labels for edit descriptions or edited code snip-
pets. We consider this to be particularly useful for bench-
marking tasks related to code editing, as it is extremely
difficult to collect a high-quality labeled test set. In fact, the
CodeReviewer dataset was extracted automatically, using
rough heuristics to align natural language edit descriptions
with corresponding code edits. Consequently, it is a noisy
test set, with some inconsistencies between descriptions
and edits. If we take the PR comment as the ground truth
edit description, we can perform standard evaluation on
edit description generation (i.e.,, given the old and new ver-
sions of the code snippet, sample an edit description with
temperature=0.0) using standard text generation metrics
like BLEU (Papineni et al., 2002). As shown in Table 3,
these scores are very low for the two models and uninfor-
mative. Since in editing tasks much of the input is often
preserved in the target output, a simple baseline which re-
tains the input unchanged fares well with standard metrics
like BLEU, ROUGE, and even embedding-based metrics
like BERTScore (Zhang et al., 2019). For this reason, we
consider exact match to be a more reliable metric, but in
Table 3 we have included the other metrics for completeness.

One of the main reasons for this is that traditional super-
vised metrics for evaluating text generation rely on lexical
overlap, against reference texts. Here, there is only one
reference (i.e., the PR comment) and the lexical overlap
can be fairly limited. For instance, the PR comment in
Fig. 4 appears to be irrelevant to the edit and is thus of
low quality. On the other hand, the three edit descriptions
sampled from M are all arguably consistent with the edit.
In fact, when they are fed into M−1, they lead to a pre-
dicted edit which exactly matches the original, resulting to
an RTCExactMatch = 100.0%. However, the average BLEU
score w.r.t. the PR comment is extremely low, at 1.837,
which incorrectly suggests that the model fails to generate a
high-quality edit description for this example.

Furthermore, we can perform supervised evaluation on code
edit generation. That is, given the old version of the code
snippet and the PR comment, we sample one edit with tem-
perature=0.0 (greedy decoding). We can then compute exact
match performance with respect to the ground truth code
edit snippet in the CodeReviewer test set, as shown in Ta-
ble 3. However, when the PR comment is misaligned with
the labeled code edit, this evaluation will mischaracterize
the code editing capabilities of an LLM. For the example in
Fig. 4, the edit predicted based on the PR comment actually
appears to be consistent with the comment. However, the
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labeled ground truth edit is inconsistent with the PR com-
ment, and so the fact that the predicted edit does not match
the ground truth edit will falsely suggest that the model
fails to generate a high-quality edit for this example. This
demonstrates that even when weakly labeled test sets are
available, noisy labels and other drawbacks of supervised
metrics often make the evaluation unreliable. In such cases,
we believe that RTC provides a more reliable evaluation.
We show more EDITINGRTC examples in Appendix C.

5. Related Work
Supervised Code Evaluation Metrics Accuracy, or how
often model-generated code exactly matches reference code,
is a metric for evaluating code generation (Agashe et al.,
2019; Li et al., 2022b; Yin & Neubig, 2017; Chakraborty &
Ray, 2021). However, it is overly conservative and signifi-
cantly underestimates the actual performance, as it is pos-
sible to generate semantically correct code without exactly
matching a reference (e.g., different variable names, order-
ing of statements, or logic). Agashe et al. (2019); Li et al.
(2022b); Yin & Neubig (2017); Wei et al. (2019) among
others adopted BLEU (Papineni et al., 2002). However,
Ren et al. (2020) showed that BLEU is not well-suited for
evaluating code correctness since it fails to capture the syn-
tax, semantics, and functionality of code. CodeBLEU (Ren
et al., 2020) addresses this by augmenting BLEU with syn-
tactic and data flow information. However, CodeBLEU
requires the model-generated code to follow the same struc-
ture of the reference code, which is still overly conservative
penalizing correct code that follows different ordering of
statements or logic while still partly relying on BLEU’s
token overlap score. More recently, Zhou et al. (2023) pro-
posed CodeBERTScore which measures the similarity of
the model-generated code and the reference code based
on the dot-product similarity of their contextualized vector
representations from a pretrained LLM. However, Code-
BERTScore does not explicitly evaluate semantic similarity.

To capture code’s functional correctness, research has
moved towards test-based oracles: generated code is ex-
ecuted against predefined test cases, and if the generated
code passes these test cases, it is considered correct. This
does not require the model-generated code to match the
naming, structure, or logic of a reference, but checks if as-
pects of the functionality are correct. It should be noted that
unit tests are partial indicators of functional correctness and
cannot guarantee semantic equivalence which in the general
case is undecidable.

Self-Consistency Self-consistency is often used to describe
how consistent a model’s generated samples are with one
another. If a model generates consistent predictions mul-
tiple times for the same input, the model is likely more
confident that those predictions are correct. Based on this

intuition, Wang et al. (2022) designed a decoding strategy
using self-consistency to identify the most likely correct
answer from a set of samples, which they showed improved
the model’s ability to do chain-of-thought reasoning. While
self-consistency can be used as an uncertainty estimator, it
is not always well-suited to evaluate accuracy, as a model
can be consistently wrong. In contrast, RTC can be a more
reliable metric since it requires functional correctness which
is a stronger signal than consistency.

RTC also relates to IdentityChain of Min et al. (2023) who
propose to measure the self-consistency of a Code LLM via
multiple efforts to make a round-trip. In contrast to RTC,
IdentityChain still requires an annotated human corpus and
Min et al. (2023) argue that IdentityChain measures a dis-
tinct quality from conventional accuracy. Instead, we have
shown that RTC is strongly correlated with conventional
accuracy for a given benchmark, does not require human
annotated examples, and covers multiple tasks.

Back Translation At a high-level, the forward and back-
ward samples in RTC resemble back translation – a data
augmentation technique for machine translation (Sennrich
et al., 2016; Edunov et al., 2018; Sugiyama & Yoshinaga,
2019). Back translation commonly does not enforce seman-
tic equivalence and may result in noisy data, when back
translation is used to perform data augmentation at scale, it
can still be very useful for training since models are robust to
some level of noise. Instead our focus is model evaluation.

Code Synthesis Benchmarks The most common bench-
marks for code synthesis include HumanEval (Chen et al.,
2021), MBPP (Austin et al., 2021), APPS (Hendrycks et al.,
2021), and CodeContests (Li et al., 2022a). These bench-
marks have a curated set of input (natural language) spec-
ifications and test cases for each example, and this is non-
trivial to expand. In contrast to these benchmarks, RTC can
fairly easily be expanded to include new domains (Sec. 4.2).

Finally, the HumanEvalExplain task of HumanEval-
Pack (Muennighoff et al., 2023) is a special case of SYN-
THESISRTC without forward/backward sampling for Hu-
manEval. In contrast to that benchmark, we acknowledge
that tasks like HumanEvalExplain evaluate both synthesis
and code description, make them more robust through sam-
pling, and introduce new tasks. Furthermore, we show that
SYNTHESISRTC tasks do actually correlate with widely
accepted metrics and thus are worth measuring.

Faithfulness Atanasova et al. (2023) proposed evaluating
the faithfulness of natural language explanations based on a
model’s ability to generate the same output if the explana-
tion is included in the input. The consistency between the
outputs are evaluated, since a faithful explanation should
guide the model in generating the same output. However,
the output does not necessarily have to be correct, and the
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Describe concisely and accurately with natural language the differences
between the old and new code shown below.

[old]
def remote_shutdown(self):

udp_sock = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)
udp_sock.sendto(b"Shutdown", ("localhost", self.management_port))
self.log.debug(" Shutdown command sent")
time.sleep (10)
udp_sock.sendto(b"StopTestNow", ("localhost", self.management_port))
self.log.debug(" StopTestNow command sent")

[new]
def remote_shutdown(self):

udp_sock = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)
udp_sock.sendto(b"Shutdown", ("127.0.0.1", self.management_port))
self.log.debug(" Shutdown command sent")
time.sleep (10)
udp_sock.sendto(b"StopTestNow", ("127.0.0.1", self.management_port))
self.log.debug(" StopTestNow command sent")

[edit description]

Description Edit→ NL (BLEU) NL→ Edit (Exact Match)
PR Comment: After first command, check if JMeter has finished - 7
[new]
def remote_shutdown(self):

udp_sock = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)
udp_sock.sendto(b"Shutdown", (" localhost", self.management_port))
self.log.debug(" Shutdown command sent")
time.sleep (10)
udp_sock.sendto(b"StopTestNow", (" localhost", self.management_port))
self.log.debug(" StopTestNow command sent")
if self.is jmeter finished():

self.log.debug("JMeter has finished")
else:

self.log.debug("JMeter has not finished")

Baseline: Edit. - 7
[new]
def remote_shutdown(self):

udp_sock = socket.socket(socket.AF_INET , socket.SOCK_DGRAM)
udp_sock.sendto(b"Shutdown", ("localhost", self.management_port))
self.log.debug(" Shutdown command sent")
time.sleep (10)
udp_sock.sendto(b"StopTestNow", ("localhost", self.management_port))
self.log.debug(" StopTestNow command sent")

EDITINGRTC Forward Samples:
• Replace localhost with 127.0.0.1 to avoid potential conflicts
on a dual-stacked machine. 1.314 3

• Use the constant of 127.0.0.1 instead of ”localhost” 2.098 3
• Please replace ”localhost” with ”127.0.0.1”. 2.098 3

Avg BLEU RTCExactMatch
1.837 100.0

Figure 4. A CodeReviewer example with Gemini Pro predictions: 3 sampled descriptions in the forward pass as well as their corresponding
predicted edits in the backward pass. We additionally include predictions from the backward pass when the provided description is instead
the PR comment or baseline description. Examples have minor edits/re-format due to space constraints.

explanation does not have to be descriptive. The main re-
quirement is that the explanation does not include any in-
formation that might lead the model to generate a different
output. In contrast, RTC evaluates the correctness between
the input and the prediction from the backward pass, and
necessitates good predictions in both directions.

6. Discussion & Conclusions
In this work we used the concept of round-trip correctness
for model evaluation and found that RTC strongly corre-
lates with performance on narrow-domain human-curated
benchmarks, measuring a similar quality of a model’s
performance. RTC allows us to complement existing
narrow-domain human-annotated benchmarks and measure

an LLM’s performance on a much wider spectrum of do-
mains. RTC allows us to expand our evaluations into new
tasks such as code and edit description, and code editing
without requiring human annotations.

We hope that this work motivates the community towards
expanding the code evaluation benchmarks beyond narrow-
domain ones. RTC seems to strike a balance between corre-
lating with existing metrics and allowing to expand to new
domains and tasks. Thus we recommend to complement
existing benchmarks with RTC using a strong sim(·) to ex-
pand the breadth of the evaluated domains and tasks. We
note that RTC should be complemented with good qualita-
tive understanding of the LLM’s error modes and sugges-
tions rather than used blindly as a metric to be maximized.
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Impact Statement
This paper presents work whose goal is to advance the eval-
uation of LLMs. Having accurate LLM evaluations can help
produce more useful models and reduce the (environmental)
cost of their development. The deployment of LLMs has
many potential societal consequences, none which we feel
must be specifically highlighted here. However, it should
be noted that optimizing for any single (evaluation) metric
without considering the broader setting — including any
ethical concerns — in which a machine learning model will
be deployed should be avoided: No single metric, including
those presented in this work, can capture the wide range of
effects — positive or negative — that the deployment of
a model may have and hence we encourage users of RTC
to always take a holistic approach when evaluating their
models.
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A. Open-Source Projects for Sec. 4.2

github.com/AliRn76/panther Web framework
github.com/JoshData/python-email-validator Email validation library
github.com/Ousret/charset normalizer Encoding detector
github.com/PantherPy/pantherdb Database
github.com/SimonGreenhill/treemaker Tree formatting
github.com/Textualize/rich Rich text formatting
github.com/TheAlgorithms/Python Educational algorithm implementations
github.com/agronholm/typeguard Runtime type checking
github.com/aio-libs/async-lru Cache for Python’s asyncio
github.com/akoumjian/datefinder Extract dates from text
github.com/alexmojaki/executing Python execution frame inspection
github.com/andialbrecht/sqlparse SQL parser
github.com/antonagestam/phantom-types Runtime type annotations
github.com/caesar0301/treelib Tree data structures
github.com/casbin/pycasbin Authorization library
github.com/chaimleib/intervaltree Interval tree implementation
github.com/cpburnz/python-pathspec File path pattern matching
github.com/datafolklabs/cement Application framework
github.com/dateutil/dateutil Date and time utilties
github.com/davidhalter/jedi Autocompletion and refactoring library
github.com/dgasmith/opt einsum Optimizing einsum functions
github.com/eigenein/protobuf Python ProtoBuf implementation
github.com/ekzhu/datasketch Probabilistic Data Structures
github.com/fabiocaccamo/python-benedict Dictionary implemntation
github.com/facelessuser/soupsieve CSS Selector
github.com/facelessuser/wcmatch Wilcard File Name matching library
github.com/foutaise/texttable ASCII table creation
github.com/graphql-python/graphql-core GraphQL port
github.com/hgrecco/pint Measurement Unit Library
github.com/hukkin/tomli TOML parser
github.com/jab/bidict Bidirecitonal map data structure
github.com/jaraco/jaraco.collections Collection data structures
github.com/jaraco/path File system path manupulation
github.com/jd/tenacity Retrying library
github.com/jsh9/pydoclint Docsting linter
github.com/kjd/idna Internationalized Domain Names library
github.com/lemon24/reader Feed reader library
github.com/lidatong/dataclasses-json Dataclass serialization library
github.com/magmax/python-readchar Library to read characters and key strokes
github.com/mahmoud/boltons Generic Python utilities
github.com/marcusbuffett/command-line-chess Chess in the CLI
github.com/martinblech/xmltodict XML library
github.com/mbr/asciitree Print trees in ASCII
github.com/mckinsey/vizro Data visualization
github.com/mgedmin/objgraph Inspect object graphs
github.com/microsoft/lsprotocol Code generator for LSP
github.com/mkdocstrings/griffe API Documentation
github.com/mkorpela/overrides Override decorator
github.com/more-itertools/more-itertools Iterator utilities
github.com/mozilla/bleach HTML sanitization
github.com/msiemens/tinydb Document database
github.com/openlawlibrary/python-docx DocX library
github.com/pallets/click CLI interface
github.com/pallets/flask Web app framework
github.com/pavdmyt/yaspin Terminal spinner
github.com/pydantic/pydantic Data validation library
github.com/pydata/patsy Statistical Model Description
github.com/pydata/xarray n-D arrays
github.com/pygments/pygments Code highlighting
github.com/pyparsing/pyparsing PEG parsers
github.com/python-jsonschema/jsonschema JSON Schema library
github.com/pytoolz/toolz Functional utilities
github.com/pyupio/safety Vulnerability Detection
github.com/serge-sans-paille/beniget Static Python analysis
github.com/simonw/datasette Tool for data exploration and publishing
github.com/sqids/sqids-python Short Unique Ids library
github.com/sybrenstuvel/python-rsa RSA implementation
github.com/tartley/colorama Colored terminal text
github.com/tiangolo/fastapi Web framework
github.com/tqdm/tqdm Progress bar library
gitlab.com/ericvsmith/toposort Topological sorting library
launchpad.net/code/beautifulsoup HTML and XML parsing

B. Lift on Diverse Projects
Fig. 5 show a plot of the lift LM for each project. Again, we see a wide variability of the lift across different projects.

C. EDITINGRTC Examples
In this section, we provide several qualitative EDITINGRTC examples. In Example #1, all three edit descriptions sampled in
the forward pass lead to edits which exactly match the original in the backward pass, consequently achieving a perfect RTC
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Figure 5. Lift

score of 100.0. This is possible because the underlying model is able to generate high-quality descriptions that capture the
essence of the edit in the forward pass and also precisely perform the described edit in the backward pass. This demonstrates
how we can reliably evaluate a model without a labeled evaluation set.

Nonetheless, in our setting, we can consider the PR comments in the CodeReviewer test set as ground truth edit descriptions.
For this particular example, we find that leveraging the PR comment in the backward pass (in place of the sampled
descriptions) does lead to the model predicting the matching edit. With a supervised evaluation setup, we can assess the
quality of the sampled edit descriptions by comparing to the ground truth edit description with a standard text generation
metric like BLEU. Here, we find that irrespective of whether the BLEU score is high (e.g., Sample #3) or low (e.g., Sample
#2), the descriptions sufficiently describe the edit in such a way that the model can re-derive the edit using these descriptions
in the backward pass. While the average description BLEU is still relatively high in Example #1, we find that it is often
much lower even when the predicted descriptions accurately reflect the edit, such as in Example #2.

The previous examples pertain to instances in which the RTC score is high. We now consider cases in which the RTC score
is low. In Example #3, none of the sampled descriptions accurately reflect the edit, and consequently, they do not lead to the
matching edit in the backward pass. While the underlying model is able to generate an edit which is consistent with the
description for Sample #3, the descriptions for Sample #1 and Sample #2 are too confusing for the model such that it simply
copies the old code without performing any edits. Despite the fact that these descriptions are inaccurate, the BLEU score
(with respect to the PR comment) is relatively high, especially for Sample #1, again highlighting another instance in which
RTC serves as a more reliable evaluation metric.

In Example #4, we have an example in which the RTC score is 33.333. Of the three predicted descriptions, only one
accurately describes the edit (Sample #1), which is also the only one which leads to a matching edit in the backward
pass. The predicted edit for the description in Sample #2 is partially consistent with the incorrect description as it does
remove schedule from wp cron schedule https detection. For Sample #3, the model is likely confused by the reference to
wp https detection in the predicted description, since it does not exist in the code, and consequently it simply copies the old
code without performing any edits. Interestingly, the predicted descriptions in Sample #1 and Sample #3 achieve similar
BLEU scores with respect to the PR comment, despite the fact that the first one is accurate while the third one is not. On the
other hand, the first description leads to a matching edit during the backward pass while the third one does not.

Example #1

13
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Describe concisely and accurately with natural language the differences
between the old and new code shown below.
[old]
}
cmd := [] string {"go", "build"}
if ctx.Config.Build.Flags != "" {

cmd = append(cmd , strings.Split(ctx.Config.Build.Flags, " ")...)}
}
cmd = append(cmd , "-ldflags ="+ ldflags , "-o", output , ctx.Config.Build.Main)
if err := run(goos , goarch , cmd); err != nil {

[new]
}

cmd := [] string {"go", "build"}
if ctx.Config.Build.Flags != "" {

cmd = append(cmd , strings.Fields(ctx.Config.Build.Flags)...)
}

cmd = append(cmd , "-ldflags ="+ ldflags , "-o", output , ctx.Config.Build.Main)
if err := run(goos , goarch , cmd); err != nil {

[edit description]

Description Desc BLEU (→) Edit Exact Match (←)
PR Comment: Is‘strings.Fields(ctx.Config.Build.Flags)‘ better? - 3
Baseline: Edit. - 7

EDITINGRTC Forward Samples:
#1: Please switch to strings.Fields() and keep the code
consistent with above.

15.917 3

#2: Please use correct strings.Fields call. 7.171 3
#3: This should use a Go-style append of
‘strings.Fields(ctx.Config.Build.Flags)‘ to cmd.

50.868 3

Avg Desc BLEU RTCExactMatch
24.652 100.0

Example #2
Describe concisely and accurately with natural language the differences
between the old and new code shown below.

[old]
}

// check if files were uploaded through the manifest
if dirManifest.Size()) == 0 {
return swarm.ZeroAddress , fmt.Errorf ("no files added from tar")

}

[new]
}

// check if files were uploaded through the manifest
if dirManifest.Length()) == 0 {
return swarm.ZeroAddress , fmt.Errorf ("no files added from tar")

}

[edit description]

Description Desc BLEU (→) Edit Exact Match (←)
PR Comment: I think ‘Length‘ is more legible here as‘Size‘ might
infer actual size in bytes

- 3

Baseline: Edit. - 7

EDITINGRTC Forward Samples:
#1: please use the length ( Length() ) method instead of
the size() method.

2.416 3

#2: In this case, ”Size” is not a good thing to read.
”Length” is better.

2.390 3

#3: Please use Length() instead of Size() as this code
will work more correctly across different go versions.

2.443 3

Avg Desc BLEU RTCExactMatch
2.416 100.0
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Example #3
Describe concisely and accurately with natural language the differences
between the old and new code shown below.

[old]
kms_master_key_id = long_uid ()
sse_specification = {" Enabled ": True , "SSEType ": "KMS",

"KMSMasterKeyId ": kms_master_key_id}
kms master key arn = "arn:aws:kms:%s:%s:key/%s" % (

aws stack.get local region(),
TEST AWS ACCOUNT ID,
kms master key id,

)
result = dynamodb.create_table(

TableName=table_name ,

[new]
kms_master_key_id = long_uid ()
sse_specification = {" Enabled ": True , "SSEType ": "KMS",

"KMSMasterKeyId ": kms_master_key_id}
kms master key arn = aws stack.kms key arn(kms master key id)
result = dynamodb.create_table(

TableName=table_name ,

[edit description]

Description & Edit Desc BLEU (→) Edit Exact Match (←)
PR Comment: Same as above - we can use
‘aws stack.kms key arn(..)‘ here.

-

[new]
kms_master_key_id = long_uid ()
sse_specification = {" Enabled ": True , "SSEType ": "KMS",

"KMSMasterKeyId ": kms_master_key_id}
kms master key arn = aws stack.kms key arn(kms master key id)
result = dynamodb.create_table(

TableName=table_name ,

3

Baseline: Edit. -
[new]
kms_master_key_id = long_uid ()
sse_specification = {" Enabled ": True , "SSEType ": "KMS",

"KMSMasterKeyId ": kms_master_key_id}
kms_master_key_arn = "arn:aws:kms:%s:%s:key/%s" % (

aws_stack.get_local_region (),
TEST_AWS_ACCOUNT_ID ,
kms_master_key_id ,

)
result = dynamodb.create_table(

TableName=table_name ,

7

EDITINGRTC Sample #1: Please rename the aws stack function.
’kms key arn’ is the convention for methods

20.829

[new]
kms_master_key_id = long_uid ()
sse_specification = {" Enabled ": True , "SSEType ": "KMS",

"KMSMasterKeyId ": kms_master_key_id}
kms_master_key_arn = "arn:aws:kms:%s:%s:key/%s" % (

aws_stack.get_local_region (),
TEST_AWS_ACCOUNT_ID ,
kms_master_key_id ,

)
result = dynamodb.create_table(

TableName=table_name ,

7

EDITINGRTC Sample #2: Avoid calling into other modules for simple
formatting operations. The kms key arn operation in aws stack is a one-liner,
so no need to extract it as its own function. Similarly, avoid calling
AWS APIs on the module level if you need to pass parameters.

9.344

[new]
kms_master_key_id = long_uid ()
sse_specification = {" Enabled ": True , "SSEType ": "KMS",

"KMSMasterKeyId ": kms_master_key_id}
kms_master_key_arn = "arn:aws:kms:%s:%s:key/%s" % (

aws_stack.get_local_region (),
TEST_AWS_ACCOUNT_ID ,
kms_master_key_id ,

)
result = dynamodb.create_table(

TableName=table_name ,

7

EDITINGRTC Sample #3: Remove ”get local region()” call from here.
This should be using the region from the AWS stack.

5.066

15



Unsupervised Evaluation of Code LLMs with Round-Trip Correctness

[new]
kms_master_key_id = long_uid ()
sse_specification = {" Enabled ": True , "SSEType ": "KMS",

"KMSMasterKeyId ": kms_master_key_id}
kms_master_key_arn = "arn:aws:kms:%s:%s:key/%s" % (

aws stack.get region(),
TEST_AWS_ACCOUNT_ID ,
kms_master_key_id ,

)
result = dynamodb.create_table(

TableName=table_name ,

7

Avg Desc BLEU RTCExactMatch
11.746 0.000

Example #4
Describe concisely and accurately with natural language the differences
between the old and new code shown below.

[old]
}

// HTTPS detection.
add_action( 'init ', ’wp cron schedule https detection’ );
add_action( 'wp_https_detection ', 'wp_update_https_detection_errors ' );
add_filter( 'cron_request ', 'wp_cron_conditionally_prevent_sslverify ', 9999 );

[new]
}

// HTTPS detection.
add_action( 'init ', ’wp schedule https detection’ );
add_action( 'wp_https_detection ', 'wp_update_https_detection_errors ' );
add_filter( 'cron_request ', 'wp_cron_conditionally_prevent_sslverify ', 9999 );

[edit description]

Description & Edit Desc BLEU (→) Edit Exact Match (←)
PR Comment: Would this be better as ‘admin init‘ instead?
This will reduce frontend DB writes.
“‘suggestion add action( ’admin init’,
’wp cron schedule https detection’ ); “‘

-

[new]
// HTTPS detection.
add_action( ’admin init’, 'wp_cron_schedule_https_detection ');
add_action( 'wp_https_detection ', 'wp_update_https_detection_errors ' );
add_filter( 'cron_request ', 'wp_cron_conditionally_prevent_sslverify ', 9999 );

7

Baseline: Edit. -
[new]
}

// HTTPS detection.
add_action( 'init ', 'wp_cron\_schedule_https_detection ' );
add_action( 'wp_https_detection ', 'wp_update_https_detection_errors ' );
add_filter( 'cron_request ', 'wp_cron_conditionally_prevent_sslverify ', 9999 );

7

EDITINGRTC Sample #1: The filter/hook name used to schedule events
changed from ‘wp cron schedule ‘ to just ‘wp schedule ‘.
Remove the ‘wp cron prefix‘ here.

11.667

[new]
}

// HTTPS detection.
add_action( 'init ', ’wp schedule https detection’ );
add_action( 'wp_https_detection ', 'wp_update_https_detection_errors ' );
add_filter( 'cron_request ', 'wp_cron_conditionally_prevent_sslverify ', 9999 );

3

EDITINGRTC Sample #2: Please replace ”schedule” with ”cron”; this
causes confusion to those who are unfamiliar with Wordpress jargon.

0.757

[new]
}

// HTTPS detection.
add_action( 'init ', ’wp cron https detection’ );
add_action( 'wp_https_detection ', 'wp_update_https_detection_errors ' );
add_filter( 'cron_request ', 'wp_cron_conditionally_prevent_sslverify ', 9999 );

7

EDITINGRTC Sample #3: Please rename the actions and filter used in this
commit from ‘wp https detection‘ to ‘wp cron conditionally prevent sslverify‘
to ‘wp https detection‘.

11.345
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Figure 6. Relationship between output length and RTCExactMatch for EDITINGRTC.

[new]
}

// HTTPS detection.
add_action( 'init ', 'wp_cron\_schedule_https_detection ' );
add_action( 'wp_https_detection ', 'wp_update_https_detection_errors ' );
add_filter( 'cron_request ', 'wp_cron_conditionally_prevent_sslverify ', 9999 );

7

Avg Desc BLEU RTCExactMatch
7.923 33.333

D. Length Statistics
For EDITINGRTC, we find that the outputs which achieve a non-zero RTCExactMatch score are generally shorter than the
outputs that achieve an RTCExactMatch score of zero (Fig. 6). For instance, with Gemini Nano 2, the average number of
characters for outputs achieving non-zero scores is 302.6 while it is 454.2 for outputs which have RTCExactMatch scores of
zero. This is intuitive since it becomes more difficult to exactly match the input as the length increases.
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