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Abstract

Large language models (LLMs) can store a vast
amount of world knowledge, often extractable
via question-answering (e.g., “What is Abraham
Lincoln’s birthday?”). However, do they an-
swer such questions based on exposure to sim-
ilar questions during training (i.e., cheating), or
by genuinely learning to extract knowledge from
sources like Wikipedia? In this paper, we in-
vestigate this issue using a controlled biogra-
phy dataset. We find a strong correlation be-
tween the model’s ability to extract knowledge
and various diversity measures of the training
data. Essentially, for knowledge to be reliably
extracted, it must be sufficiently augmented (e.g.,
through paraphrasing, sentence shuffling) during
pretraining. Without such augmentation, knowl-
edge may be memorized but not extractable,
leading to 0% accuracy, regardless of subsequent
instruction fine-tuning. To understand why this
occurs, we employ (nearly) linear probing to
demonstrate a strong connection between the ob-
served correlation and how the model internally
encodes knowledge — whether it is linearly en-
coded in the hidden embeddings of entity names
or distributed across other token embeddings in
the training text. This paper provides several
key recommendations for LLM pretraining in
the industry: (1) rewrite the pretraining data
— using small, auxiliary models — to provide
knowledge augmentation, and (2) incorporate
more instruction-finetuning data into the pre-
training stage before it becomes too late.

An extended video of this paper is available at https://
youtu.be/YSHzKmEianc. Full and future editions of the
paper can be found on https://arxiv.org/abs/2309.
14316. 1Meta / FAIR Labs, USA 2MBZUAI, UAE. Correspon-
dence to: Zeyuan Allen-Zhu <zeyuanallenzhu@meta.com>,
Yuanzhi Li <Yuanzhi.Li@mbzuai.ac.ae>.
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1. Introduction
Knowledge is crucial for human cognition and communi-
cation, allowing us to comprehend and utilize information.
For humans, this often involves memorization, the process
of storing and retrieving information in the brain. For ex-
ample, after reading a biography of Abraham Lincoln, we
can memorize the information and later answer questions
like “Where was Lincoln born?” or “What is Lincoln’s
birthday?” Memorization enables us to extract and manip-
ulate knowledge from the sentences we read or hear, recog-
nize the entities, relations, and facts expressed in the text,
and apply logical and causal reasoning to infer new infor-
mation or answer queries (Anderson & Milson, 1989; Bad-
deley, 1997; Craik & Jennings, 1992; Zlotnik & Vansintjan,
2019).

In this paper, we explore how transformer-based lan-
guage models memorize knowledge during training and
extract it during inference. This is distinct from in-context
learning or RAG (Lewis et al., 2020), where the model is
given a paragraph during inference and immediately an-
swers questions about it. We focus on factual knowledge
(e.g., knowledge graph) that a language model needs to
memorize from the training corpus, encode in its weights,
and extract later during inference.

We stress that memorizing all sentences in the training data
does not ensure that the model can extract or manipulate
the factual knowledge from the sentences during inference.
Language models can reproduce the exact input during in-
ference, but this doesn’t necessarily mean they can use
these sentences to answer factual questions related to them.
Hence, we differentiate between “memorization of knowl-
edge” in language models and traditional memorization in
machine learning, which merely means the model can fit
the exact training data, but doesn’t imply the model can ex-
tract the knowledge flexibly from the data after training.

For example, if the training data includes Lincoln’s biogra-
phy, the model can memorize and reproduce the sentence
“Abraham Lincoln was born in Hodgenville, K.Y.” when
given the prompt “Abraham Lincoln was born in”, but it
might not be able to answer the question “Which city was
Abraham Lincoln born in?” Therefore, a key question is:

How do language models memorize knowledge during
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training, and extract it later to answer questions or
perform logical reasoning during inference?

Previous works have demonstrated that language models
can “memorize” a lot of knowledge by probing the model to
answer questions related to different entities and attributes,
see (Omar et al., 2023; Singhal et al., 2022; Sun et al.,
2023) and the citations therein. However, these studies use
models trained on internet data, leaving it unclear whether
the model answers questions like “Which city was Abra-
ham Lincoln born in?” by extracting knowledge from Lin-
coln’s biography (our focus) or if it encountered a similar
(or same!) question during training and simply memorized
the answer (traditional memorization).

Given the challenges of conducting controlled experiments
with internet data, we propose studying this question us-
ing well-controlled, synthetically generated data,1 examin-
ing the models’ mathematical properties that characterize
their knowledge representation and extraction. We con-
struct a synthetic dataset of 100k biographies, including
their birthday, birth city, major of study, etc. We also use
LLaMA (Touvron et al., 2023) to rewrite them to make
them close to real-life biography styles. We pretrain the
language model on the biography dataset of all the 100k
people. We ask:2

After pretraining a language model on the biography
dataset, can the model be finetuned to answer questions
like “Where is the birth city of [name]”, and if so, how

does the model achieve so?

After pretraining the model on the entire biography, we
fine-tune it using question and answer (QA) pairs from a
p fraction of individuals. We then test its ability to out-of-
distribution answer QAs about the remaining 1 − p frac-
tion. This approach ensures that the model (1) is exposed
to sufficient data to comprehend the QAs and (2) does not
encounter the same questions during training. The paper is
structured as follows:

1. Before diving into the pretrain-finetune process, in
Section 3, we first demonstrate that pretraining a
model on all biographies plus QAs for a p fraction of
individuals together enables it to (apply knowledge
to) answer questions about the remaining 1 − p frac-
tion. We call this process mixed training. We observe

1One could suggest filtering the data to eliminate such ques-
tions and retraining the model. However, this doesn’t rule out the
presence of similar sentences “Which city did Abraham Lincoln
grow up in?”, more complex ones in French, or grammatically in-
correct versions like “Where Abraham Lincoln birth in?” in the
data.

2We leave the follow-up question to study logical reasoning
or manipulation on knowledge to a separate paper (Allen-Zhu &
Li, 2023).

in mixed training, the model first uses QAs to en-
code knowledge about the p fraction, then correlates
this encoded knowledge with the biography to infer
generalization to the remaining 1 − p fraction. This
learning process deviates from typical human learn-
ing and is also less frequently used in practical LLM
pretrain.3

2. In Section 4, we pretrain the model only on biogra-
phies and then finetune it on QAs for a p fraction
of individuals. We observe that the model strug-
gles to answer questions about the remaining 1 − p
fraction, irrespective of model size, pre-train time,
or finetune parameters. However, accuracy signifi-
cantly improves with knowledge augmentations like
varying writing styles or sentence shuffling. Even if
this augmentation is applied to a subset of individ-
uals, what we call celebrities, test accuracy for oth-
ers also increases significantly. The mere inclusion
of celebrity data in pre-training enhances the model’s
knowledge extraction for minorities. A key contribu-
tion of our study is to establish this strong link be-
tween knowledge augmentation in pre-training data
and the model’s improved knowledge extraction ca-
pabilities after finetuning.

3. In Section B, as another main contribution, we
use (nearly) linear probing techniques to show that
knowledge augmentation pushes the model to encode
a person’s knowledge almost linearly in the model’s
hidden embedding of the person’s name tokens.
Without augmentation, the model encodes the per-
son’s knowledge across all biography words/tokens,
making knowledge extraction nearly impossible no
matter how one finetunes it. In sum:

no knowledge augmentation in pretrain data

⇐⇒attribute is not entirely stored on person’s names

when the model memorizes the pretrain data

⇐⇒knowledge cannot be extracted via instruction finetune

and conversely

knowledge augmented in pretrain data

⇐⇒attribute is nearly entirely stored on person’s names

⇐⇒knowledge can be extracted via instruction finetune

4. In Appendix C, we show that encoder-only models
akin to BERT, whether mixed-trained or pre-trained
and then fine-tuned, cannot extract a person’s knowl-
edge after finetuning, regardless of the knowledge
augmentation, unless the knowledge is a single word
or multiple but independent words (like birth month,
day, and year).

3For humans, arguably, we first learn from textbooks and then
answer exam questions.
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Practical Implications. Our controlled study offers key
recommendations for LLM training at an industrial scale:

• We emphasize the importance of pre-training data
rewriting (augmentation), particularly for rare but
critical data. Addressing this during fine-tuning is of-
ten too late. Without rewriting, a model may accu-
rately recite knowledge data word by word, but the
way it embeds this knowledge into its weights may
impede retrieval when prompted differently, resulting
in a total waste of model capacity.

Tools such as LLaMA-7B or even smaller auxil-
iary models are adequate for this rewriting task.
These “rewrite models” do not need to possess the
knowledge themselves. As demonstrated, simple
sentence-level shuffling or translations can already
enhance performance. Generally, we suggest includ-
ing prompts that encourage sentence shuffling when
using such rewrite models.

Data rewriting is a form of data augmentation, but
also distinct from traditional methods (e.g., dropout,
masking, cropping, jittering, flipping) and their asso-
ciated distillation techniques (like contrastive learn-
ing). While traditional augmentations promote the
learning of generalizable features over pure memo-
rization, data rewriting — what we call knowledge
augmentation — helps language models to memo-
rize knowledge in a more accessible format for down-
stream tasks. Without such augmentation, the accu-
racy even for the simplest knowledge extraction task,
could be near zero.

• We also demonstrate the advantages of includ-
ing more instruction-finetuned data during pre-
training. Our mixed training experiments show that
postponing all QA-like data to the fine-tuning phase
is suboptimal. Introducing QA-like data earlier in
pre-training enables the model to encode knowledge
more effectively.

Related works. We compare to prior works in
Appendix A. At a high level, question answering (QA)
is a common method to probe knowledge encoded in lan-
guage models pretrained on the internet data, and linear
probing is a recognized method to examine how a model
encodes knowledge, see (Aspillaga et al., 2021; Conneau
et al., 2018; Dai et al., 2021; Li et al., 2021; Sun et al.,
2023) and many others. However, our contribution is that,
via controlled experiments, we discover that such encoding
is only possible when knowledge is augmented on the pre-
train level. It is vital to do controlled experiments because
for prior works that study knowledge for models pretrained
on internet data, it’s unclear if the model answers QAs by
flexibly extracting knowledge from the source or by simply

memorizing exact/similar questions from training.

2. Preliminaries
In this paper, we analyze synthetic human biography
datasets and near-real datasets generated by LLaMa (Tou-
vron et al., 2023; Zhou et al., 2023). Detailed descriptions
are in the appendix, with a brief overview here.

BIO dataset bioS. The synthetic dataset, bioS, generates
profiles for N = 100, 000 individuals.4 Each individual’s
details are randomly and independently selected from a uni-
form distribution. The birth dates offer 200×12×28 possi-
bilities, while other categories offer 100 ∼ 1, 000 choices.
We also add a “company city” attribute which depends on
the employer’s headquarters location. We ensure unique-
ness in each individual’s full name.

We generate a six-sentence biographical text entry for each
individual, highlighting six distinct aspects. For diversity,
each sentence is randomly chosen from approximately 50
distinct templates. In the basic configuration, we generate
a single biographical entry for each person, maintaining a
consistent order for the six sentences. We use “bioS sin-
gle” to denote this basic configuration. See an example
entry below:
Anya Briar Forger was born on October 2, 1996. She spent her early years in
Princeton, NJ. She received mentorship and guidance from faculty members at
Massachusetts Institute of Technology. She completed her education with a focus
on Communications. She had a professional role at Meta Platforms. She was em-
ployed in Menlo Park, CA.

(2.1)
We also explore 3 types of knowledge augmentations:
(1) multiM , generating M biography entries for an indi-
vidual using varied templates, (2) fullname, substituting
he/she/they with the person’s full name; and (3) permute,
shuffling the six sentences randomly. Examples are given
in Section 4.2.

BIO dataset bioR. We examine a “close-to-real” dataset
produced by LLaMA (Touvron et al., 2023; Zhou et al.,
2023). For the set of N = 100, 000 individuals, we provide
an instructive prompt to LLaMA to generate a biographical
entry. Here’s an example:
Anya Briar Forger is a renowned social media strategist and community manager.
She is currently working as a Marketing Manager at Meta Platforms. She com-
pleted her graduation from MIT with a degree in Communications. She was born on
2nd October 1996 in Princeton, NJ and was brought up in the same city. She later
moved to Menlo Park in California to be a part of Facebook’s team. She is an avid
reader and loves traveling.

We diversified our instructive prompts by drawing from a
pool of templates and employed rejection sampling to guar-
antee the inclusion of all six attributes. In the basic configu-
ration, we produce a single biographical entry for each per-

4We have a follow-up to push this to N = 20, 000, 000 and
similar results hold (Allen-Zhu & Li, 2024).
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son (denoted as “bioR single”). For comparison, we also
consider multiM augmentation which generates M entries
per person and the fullname augmentation. Additional ex-
amples can be found in Appendix D.

QA dataset. This paper explores the effectiveness of a
trained language model in retaining knowledge from BIO
data. As discussed in the introduction, memorization is
more than just predicting the next token when given exact
sentences from BIO. It includes the model’s ability to truly
extract knowledge from the BIO. We assess this knowl-
edge extraction using a question and answer (QA) frame-
work. For each individual, we pose six questions targeting
their six unique attributes:

1. What is the birth date of Anya Briar Forger? Answer: October 2, 1996.
2. What is the birth city of Anya Briar Forger? Answer: Princeton, NJ.
3. Which university did Anya Briar Forger study? Answer: Massachusetts In-

stitute of Technology.
4. What major did Anya Briar Forger study? Answer: Communications.
5. Which company did Anya Briar Forger work for? Answer: Meta Platforms.
6. Where did Anya Briar Forger work? Answer: Menlo Park, CA.

For each question, we use it as a prompt for the model to
generate a response. QA accuracy is measured by the pro-
portion of answers that exactly match the correct response.5

Model architectures. In this ICML version we stick to
the GPT2 architecture.6 The standard GPT2-small archi-
tecture comprises 12 layers with 12 heads and 768 dimen-
sions (Radford et al., 2019). Due to GPT2’s limitations
from its absolute positional embedding, we use its mod-
ern rotary positional embedding variant (Black et al., 2022;
Su et al., 2021), referred to as GPT2 for brevity. We re-
tain the GPT2 small architecture (124M) for pre-training
on the bioS data, but use a larger 12-layer, 20-head, 1280-
dim GPT (302M) for the bioR data to accommodate its
increased complexity. Only in Figure 2 when presenting
a negative result, we tried a 12-layer 32-head 2048-dim
GPT2 (682M). The default GPT2 tokenizer is used, which
converts simple words into single tokens, but names and
most other attributes into tokens of varying lengths.

Training. We investigate two types of autoregressive
training, detailed in Appendix E.

PRETRAIN + INSTRUCTION FINETUNE. Here, we pre-
train the language model from scratch on the BIO data,
randomly sampling and concatenating them into 512-token
sentences, separated by a standard <EOS> token. The

5We disregard partial matches or synonyms, emphasizing the
model’s precision in knowledge extraction.

6For others, see our arxiv version at https://arxiv.
org/abs/2309.14316. Since this paper appeared, Jiang et al.
(2024) confirms our results also apply to the pretrained LLaMA-
7B model.

model is then fine-tuned using half of the QA data and eval-
uated on the remaining half, mirroring the typical instruc-
tion finetune process.

MIX TRAINING. In mix training, we train the model from
scratch on all BIO data and half of the QA data. BIO and
QA entries are randomly sampled without requiring them
to be from the same individual. We use a parameter QAr to
control the QA data amount, primarily setting QAr = 0.8
(a 2 : 8 BIO to QA entry ratio). The model’s generation
accuracy is evaluated using the remaining QA data.7

LoRA + full finetune. In full finetuning a pretrained
model is tuned for a downstream task such as QAs. LoRA
finetuning (Hu et al., 2021) improves upon this by freez-
ing all pretrained model parameters and adding low-rank
updates to a subset of the weight matrices for fine-tuning.
We apply a low-rank update to the query/value matrices
of the transformer model (suggested by (Hu et al., 2021))
and the embedding layer to account for input data distribu-
tion shifts. Full finetuning is also included when presenting
negative results.

3. Mix Training
Mix training involves training the model using BIO data
for all individuals and QAs for half of them. The group of
individuals whose QAs are included in the training set is
referred to as in-distribution or Ptrain. The model’s genera-
tive accuracy is then tested on the QAs from the remaining
individuals (Ptest) to assess its out-of-distribution general-
ization capability.

As shown in Figure 1(a), a mix-trained model exhibits
strong out-of-distribution generalization, answering most
QAs with mean accuracies of 86.6% for bioS and 77.7%
for bioR. This indicates that the model can extract and
utilize knowledge from the BIO data, addressing queries
about an individual’s attributes even when no QA about
that person was used in training; only their BIO entry was
provided. However, our detailed analysis reveals that the
model employs a somewhat unconventional method to ex-
tract knowledge through mix training.

3.1. Model’s Abnormal Learning Behavior

We examine the model’s mixed training for knowledge
storage and extraction by monitoring its accuracies on the
BIO/QA data and for Ptrain/Ptest separately. Specifically,8

7See Appendix F for a comparison of how QAr affects perfor-
mance. We used beam=4 without sampling throughout this paper;
results are almost identical if disabling beam.

8Interested readers may consider “whole-attribute” accuracies
instead of “first-token” accuracies. They are similar, so we omit
them here.
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MIX mean acc
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(b) training behavior on bioS dataset
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Figure 1: Accuracies and loss curves for mix training. b date,b city,c name,c city stand for birth date, birth city, company name,
company city, and mean acc stands for the mean accuracy of the six attributes. Baseline is majority-guessing (c city has large
accuracy because many companies are based in NYC).

0 (freeze) 16 32 64 128 train all
LoRA embedding rank

train all
32
16
8
4
2Lo

RA
 q

/v
 ra

nk (98.9) 7.5
(26.2) 7.8 (28.8) 9.2 (29.5) 9.4 (30.6) 9.5 (32.2) 9.5 (40.7) 9.1
(22.7) 7.9 (24.9) 9.9 (25.5) 10.0 (26.1) 9.8 (27.3) 9.7 (33.2) 8.8
(21.0) 7.8 (23.3) 10.1 (23.7) 10.5 (24.2) 9.9 (25.0) 9.4 (29.8) 9.0
(19.9) 7.3 (22.2) 10.1 (22.4) 9.9 (22.8) 9.7 (23.8) 9.4 (27.8) 8.6
(18.6) 5.7 (21.2) 9.7 (21.5) 9.7 (21.9) 9.6 (22.6) 9.0 (26.4) 8.0

(a) 124M model, pre-trained 540 passes on bioS

0 (freeze) 16 32 64 128 train all
LoRA embedding rank

train all
32
16
8
4
2Lo

RA
 q

/v
 ra

nk (99.0) 7.8
(28.6) 9.6 (31.1) 9.3 (32.9) 9.5 (36.7) 9.7 (43.5) 9.5 (66.7) 9.9
(21.7) 9.3 (23.6) 9.4 (24.5) 9.7 (26.3) 9.8 (30.3) 10.1 (51.2) 9.9
(18.8) 9.4 (20.8) 9.9 (21.5) 9.9 (22.7) 10.2 (24.9) 9.7 (42.5) 9.8
(16.9) 8.5 (19.4) 10.2 (20.2) 10.3 (21.0) 10.0 (22.8) 9.8 (37.7) 9.7
(14.5) 6.5 (18.8) 10.0 (19.4) 10.0 (20.2) 10.2 (21.8) 9.7 (35.0) 9.0

(b) 302M model, pre-trained 1000 passes on bioR

0 (freeze) 16 32 64 128 train all
LoRA embedding rank

train all
32
16
8
4
2Lo

RA
 q

/v
 ra

nk (99.0) 4.4
(34.5) 9.8 (40.4) 10.0 (42.4) 10.3 (46.5) 9.8 (54.9) 9.5 (78.4) 9.6
(27.2) 10.0 (30.0) 10.5 (31.1) 10.5 (32.5) 10.2 (37.2) 10.1 (60.6) 9.8
(23.3) 10.3 (25.5) 10.7 (26.1) 10.5 (18.8) 6.7 (29.8) 10.2 (49.7) 9.6
(21.4) 10.4 (23.1) 10.8 (23.6) 10.6 (24.4) 10.5 (26.4) 10.3 (44.2) 9.6
(20.0) 10.4 (21.8) 11.0 (22.2) 10.8 (23.1) 10.4 (16.3) 6.5 (40.7) 9.3
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Figure 2: BIO pretrain + QA finetune (train acc) / test acc. Bold number indicates QA generation accuracy on Ptest, and the smaller num-
ber in bracket represents QA (first-token) accuracy on Ptrain. For LoRA fine-tune we consider a rank r = 2, 4, 8, 16, 32 update
on the query/value (q/v) matrices and a rank r′ = 0, 16, 32, 64, 128 update on the word embedding matrix. Full finetune is
included in the upper-right corners (train all / train all). More details are in Appendix G.

- BIO first-token accuracy: we track the model’s next-
token-prediction accuracy on the first token of each of
the six attributes (birthdate, birthcity, etc.) in the BIO
data, separately for Ptrain/Ptest. This measures the
model’s BIO data memorization performance. (De-
spite all individuals’ BIO data appearing in training,
we still separately track them for Ptrain/Ptest.)

- QA first-token accuracy: we track the model’s next-
token-prediction accuracy on the first answer token in
the QA data, separately for Ptrain/Ptest. This loosely
estimates the model’s QA generation performance.

- QA generation accuracy: we track the model’s
whole-attribute generation accuracy on Ptest.

From Figure 1(b) and 1(c), we find that the model employs
an unconventional learning strategy.

• Initially, the model uses the QA data from the train-
ing set to encode knowledge for people in Ptrain, as

indicated by the rapid increase in QA in-dist accu-
racy. This also aids in memorizing in-dist BIO data,
as shown by the subsequent rise of the BIO in-dist
accuracy.

• The model then gradually aligns the encoded knowl-
edge with the BIO data to learn to extract knowledge
and generalize it to Ptest. Notably, it takes a while be-
fore the BIO out-dist accuracy catches up, followed
by an increase in the QA out-dist accuracy.

This is akin to the “study to pass the test” approach in
schools, where students prepare using past exam questions
and textbooks for answers. While this may yield high
scores, it doesn’t reflect the natural progression of human
knowledge acquisition. To address this, we explore a more
challenging scenario in the next section where the model is
pretrained on the BIO data without exposure to the ques-
tions.

Remark 3.1. In mixed training, we selected QAr = 0.8,

5



Physics of Language Models: Part 3.1, Knowledge Storage and Extraction

maintaining a 8 : 2 QA to BIO ratio as outlined in
Section 2. We found that a higher QA ratio during train-
ing improved out-of-distribution QA accuracy (Figure 10
in Appendix F), further supporting our observation of the
model’s abnormal behavior: it first learns knowledge from
QA and then associates it with BIO. For comparison,
LLaMA was trained using only 2% of tokens from Stack-
Exchange (Touvron et al., 2023).

4. BIO Pretrain + QA Instruction Finetune
We now examine a scenario where the model is pre-trained
solely on the BIO data of all individuals. It is then fine-
tuned using QAs from half of these individuals, denoted
as Ptrain, without further use of biographies. The model’s
generalization is evaluated on questions related to the re-
maining half, denoted as Ptest, whose BIO/QA data were
not used during fine-tuning. This process mirrors human
knowledge acquisition, where learning from textbooks is
applied to later answer exam questions.

4.1. Model May Fail to Extract Knowledge After
Pretraining on BIO data

We first pretrain on the basic bioS and bioR datasets, each
containing a single biography per person. The QA fine-
tune generalization accuracies (on Ptest) are reported in
Figure 2, using both full and LoRA finetuning (Hu et al.,
2021). The model’s QA finetune training accuracy on Ptrain

is also included for comparison.

Despite a 99+% first-token accuracy during pretraining, the
model exhibits near-zero QA accuracy on Ptest for all fine-
tuning parameters. This suggests that while the model can
memorize the BIO data token-by-token, it struggles to ex-
tract the underlying knowledge. Full-finetuning achieves
high in-distribution QA finetune accuracy (nearly perfect
on Ptrain), indicating it can memorize the QAs for individ-
uals in the finetuning set. However, it is largely ineffective
for QAs concerning individuals in Ptest. In sum, we ob-
serve:

perfect BIO token memorization
+ perfect QA answers for half the people

̸=⇒ correct QA answers for the other half.
(knowledge extraction does not come for free)

This holds true even when the model size is approximately
7000 times larger than N = 100k, the number of indi-
viduals, each individual is exposed 1350 times during pre-
training, and numerous finetune parameters have been ex-
plored.9 Despite memorizing all knowledge from the BIO
data during pretraining, the model encodes it in a disor-

9In our follow-up work (Allen-Zhu & Li, 2024), we pushes the
model size to 1B and N to 20M and confirmed the same holds.

ganized manner within the transformer, preventing knowl-
edge extraction during finetuning.10

Figure 2 seems to contradict the success of large models
like GPT3.5, trained on internet data such as Common
Crawl and known for effective knowledge extraction upon
fine-tuning. Why is this? Analyzing the test accuracy
breakdown for the six attributes on the bioS data (Figure 3,
the “bioS single” row), we see that QA fine-tuning in fact
achieves a 33% generalization accuracy on the “birthdate”
attribute but fares poorly on others. This is because our
bioS single data consistently places birthdate as the first
attribute after a person’s name, unlike internet data which
presents information variably, often repeating it with di-
verse wordings and orderings. The following subsection
on knowledge augmentation supports this hypothesis.

4.2. Knowledge Augmentation

We explore how knowledge augmentation enhances a
model’s capacity to store and efficiently extract knowl-
edge from training data. We focus on three augmentations:
adding multiplicity, introducing permutations, and repeat-
ing full names, typically found in internet data. The orig-
inal datasets without augmentation are referred to as bioS
single and bioR single.

• MULTIPLICITY. We denote the method of creating
M distinct biography entries for each individual, us-
ing varied language but retaining the same informa-
tion, as multiM .11 An example of adding multiplicity
to the biography in (2.1) is:
Anya Briar Forger came into this world on October 2, 1996. She originated
from Princeton, NJ. She pursued advanced coursework at Massachusetts
Institute of Technology. She dedicated her studies to Communications. She
developed her career at Meta Platforms. She gained work experience in
Menlo Park, CA.

Remark. As a special case, we also experimented
with translation (e.g., English to French) to increase
sentence diversity, which proved beneficial for the
model’s knowledge extraction, but we have not in-
cluded these details in this paper for clarity.

• PERMUTATION. We denote adding random permuta-

10This is not a direct result of catastrophic forgetting, a com-
mon issue during heavy fine-tuning where the model forgets the
pretraining data. Even with LoRA fine-tuning, which introduces
minimal low-rank updates to model weights while preserving the
pretrained model, test accuracy only slightly improves.

11For bioS data, each of the six sentences is selected from
around 50 templates, with a new template resampled for each sen-
tence in the M entries. For bioR data, we recreate the biography
using LLaMA for each of the M entries.
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Observation. Knowledge augmentation
in pretraining data improves model gen-
eralization to out-of-distribution QAs af-
ter finetuning. Accuracy increases with
more augmentations introduced; while
mixed training is minimally impacted by
knowledge augmentation.
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y
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baseline
bioS single                   
bioS single                    + fullname
bioS single + permute1
bioS single + permute2
bioS single + permute5
bioS single + permute1 + fullname
bioS single + permute2 + fullname
bioS single + permute5 + fullname
bioS multi2                   
bioS multi2                    + fullname
bioS multi2 + permute 
bioS multi2 + permute  + fullname
bioS multi5                   
bioS multi5                    + fullname
bioS multi5 + permute 
bioS multi5 + permute  + fullname

2.7 0.0 0.5 0.3 1.0 0.4 13.7 2.7 0.0 0.5 0.3 1.0 0.4 13.7
9.7 33.5 6.3 2.3 4.0 1.1 13.8 86.6 96.1 97.4 90.1 94.8 88.8 53.4
48.9 56.2 58.8 63.0 55.7 50.5 14.1 85.9 95.8 97.7 88.7 94.4 86.0 55.9
4.4 0.5 3.3 2.4 5.0 3.5 13.7 82.5 92.2 94.5 86.4 87.4 70.2 67.2
53.2 57.3 48.3 53.1 55.0 51.8 58.3 91.6 95.7 97.8 89.6 92.1 88.6 89.2
70.0 56.4 57.7 58.3 64.9 90.5 97.7 93.7 97.0 97.4 89.7 91.6 92.2 96.5
31.7 26.6 29.3 36.9 31.1 31.4 37.9 89.8 94.9 97.4 89.7 90.7 84.0 84.7
73.1 69.0 60.6 64.2 64.0 87.9 95.0 92.6 95.6 98.1 89.2 91.5 90.6 93.4
80.2 83.7 67.8 72.6 69.1 93.0 98.6 93.4 95.1 97.9 88.9 92.7 90.7 97.4
41.1 100 71.7 33.1 26.1 5.2 14.0 89.2 99.4 98.3 89.6 96.6 92.2 61.3
84.0 100 97.7 89.5 97.6 91.3 35.3 87.9 99.8 98.8 88.6 96.6 87.6 58.0
91.2 99.3 98.7 89.8 96.7 83.3 83.5 91.6 98.1 97.6 88.1 96.2 87.2 85.4
96.1 100 98.8 91.3 98.1 93.7 97.8 94.4 99.3 98.6 89.7 96.6 92.2 92.6
41.0 100 50.8 30.9 43.5 10.2 13.8 91.8 99.9 99.0 91.1 97.2 93.7 71.7
82.4 100 98.6 88.4 96.1 91.9 26.8 92.0 99.9 98.7 91.0 97.4 93.2 74.6
96.6 100 99.0 91.3 97.7 95.1 98.7 95.5 99.8 98.1 90.0 97.4 93.7 96.8
96.2 100 98.7 90.6 97.9 93.7 99.0 95.7 99.8 98.7 89.5 97.4 93.2 97.9

Figure 3: Comparison of BIO pretraining + QA finetuning (left) versus their mixed training counterparts (right) under various knowledge
augmentations on the bioS data. Displayed values indicate QA generation accuracies for six attributes in Ptest. Refer to
Figure 12 for bioR data and Appendix G for more details.

tions to the biography sentences as permute.12 For
instance, the example above can be permuted as fol-
lows:
Anya Briar Forger originated from Princeton, NJ. She dedicated her studies
to Communications. She gained work experience in Menlo Park, CA. She
developed her career at Meta Platforms. She came into this world on Octo-
ber 2, 1996. She pursued advanced coursework at Massachusetts Institute of
Technology.

• FULLNAME. We denote the augmentation where all
pronouns or partial names in bioS/bioR are replaced
with the person’s full name as fullname. 13 An ex-
ample of this augmentation is:
Anya Briar Forger originated from Princeton, NJ. Anya Briar Forger dedi-
cated her studies to Communications. Anya Briar Forger gained work expe-
rience in Menlo Park, CA. Anya Briar Forger developed her career at Meta
Platforms. Anya Briar Forger came into this world on October 2, 1996.
Anya Briar Forger pursued advanced coursework at Massachusetts Institute
of Technology.

Results. In Figure 3, we present our results for the
bioS dataset. (Parallel results for the bioR dataset are in
Figure 12.) We implemented each knowledge augmenta-
tion individually and in combinations, then compared the
model’s QA finetune accuracy on Ptest using LoRA. The
model architecture and training parameters remained con-
sistent, but the pre-training datasets varied based on the ap-
plied augmentations. Further details are in Appendix G.

We find that adding multiplicity, permutations, or repeat-
ing full names all improve the model’s ability to memo-
rize the person’s information during pretraining, making

12For bioS single, we denote random permutation of the same
six sentences P times as permuteP . For bioS multiM , we de-
note random permutation of each of the M biography entries as
permute. The bioR data, generated by LLaMA, already has some
randomness in sentence ordering, so no extra permutations are
added.

13In the synthetic bioS dataset, a person’s full name is pre-
sented only once, at the start of the initial sentence, with subse-
quent sentences using solely pronouns. For the LLaMa-generated
bioR data, typically, the person’s full name appears once at the
start; later sentences use either pronouns or parts of the name,
such as the first or last name.

knowledge extraction easier later.14 Notably, pretraining on
a dataset where each individual has five diverse biography
entries (i.e., different wording, different sentence shuffling)
boosts the QA fine-tune accuracy (on Ptest) from 9.7% to
96.6%. Moreover, such accuracy increases as data multi-
plicity or permutation number increases, highlighting the
model’s improved ability to store and extract knowledge
when presented with repeated information during pretrain-
ing.

One might infer that exposing the model to varied expres-
sions of identical knowledge encourages it to focus on the
underlying logical structure of the information, rather than
its superficial presentation. This could foster a more direct
link between an individual’s name and their attributes. We
will introduce probing techniques to substantiate this hy-
pothesis in Section B.

4.3. Celebrity Can Help Minority

The previous subsection highlighted the significant bene-
fits of knowledge augmentation. However, in practice, we
may not have augmented data for all individuals. This sub-
section explores whether partially augmenting data can im-
prove knowledge extraction for non-augmented data. In
our biography dataset, the augmented subset is akin to a
“celebrity” group with plentiful online biographical infor-
mation, potentially included in the fine-tuning dataset as
well. The non-augmented subset is comparable to a “mi-
nority” group with limited biographical data.

For comparison, we introduce an additional set of N =
100, 000 individuals, the celebrity group Pcel, while the
original N individuals form the minority group Pmin.
We test both synthetic bioS and more realistic bioR
data. For bioS, the celebrity group’s biographies use the

14An exception is when permutation is directly added to the
single data without multiplicity (see “bioS single + permute1”),
this hurts the QA performance as it makes knowledge extraction
harder.
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baseline
bioS single + permute1
bioS single + permute1 + CEL
bioR single                   
bioR single                    + wiki
bioR single                    + CEL

2.7 0.0 0.5 0.3 1.0 0.4 13.7
4.4 0.5 3.3 2.4 5.0 3.5 13.7
86.8 98.3 96.8 90.7 90.2 71.7 80.1
10.0 25.1 13.9 2.4 5.5 2.0 14.1
7.3 18.4 5.2 2.6 4.3 1.8 14.1
76.3 94.3 85.3 82.9 79.4 67.0 56.6

Figure 4: QA finetune accuracy on the minority group with vs.
without celebrity data in the pretraining process. Exper-
iment details are in Appendix J, where we also include
additional experiments in Figure 17.

multi5+permute augmentation, simulating varied expres-
sions found on internet. For bioR, the celebrity group uses
the multi5 augmentation, generating their biographies five
times using LLaMA.

The language model is pretrained on the combined set
Pcel∪Pmin biographies and then fine-tuned using QAs from
the celebrity group Pcel. We evaluate the model’s QA ac-
curacy on the Pmin group.15 Our results are presented in
Figure 4.

Results. In the synthetic bioS case, introducing celebrity
data boosts the minority group’s QA accuracy from 4.4%
to 86.8%. This is significant because:

- the minority group’s BIO pretrain data remains un-
changed in both cases, with Pmin using bioS sin-
gle+permute1 for biographies, and

- the minority group’s QA data is not used during fine-
tuning.

This highlights that simply including celebrity data dur-
ing pretraining significantly improves the model’s ability
to store and extract knowledge from the minority group.
Similarly, in the more realistic bioR case, introducing
celebrity data also increases the minority group’s QA ac-
curacy from 10.0% to 76.3%. We believe this strongly sug-
gests that this phenomenon also occurs in real-world sce-
narios. We will introduce probing techniques to validate
the above findings in Section B.
Remark 4.1. Using the bioR dataset, we find the posi-
tive impact of celebrity data is not universal. Substitut-
ing it with the WikiBook dataset improves the model’s En-
glish comprehension, yet it still struggles with biographi-
cal knowledge extraction. This suggests that only celebrity
data of similar form truly aids knowledge extraction for
minority groups. In Figure 17 in Appendix J, we further
investigate different celebrity data types and instances of
minor format differences between minority and celebrity
knowledge.

15Other fine-tuning variations, such as QA fine-tuning with half
of Pmin as training and half as testing, show negligible differences.

5. Knowledge Probes on the BIO Pretrained
Model

We investigate how a pretrained language model on BIO
data encodes knowledge in its hidden representations us-
ing two probing techniques: position-based probing (P-
probing) and query-based probing (Q-probing). Both tech-
niques employ simple (nearly-linear) probes to extract a
person’s attributes from the model’s hidden representa-
tions. Detailed findings are in Appendix B.

In P-probing, we input biography entries into the pre-
trained model and train a linear classifier on the last hid-
den layer to predict six target attributes. To accommo-
date varied data lengths, we identify six special token po-
sitions preceding the first occurrences of the six attributes
in each biography entry. We use the transformer’s last hid-
den layer at these positions to (linearly) predict the six tar-
get attributes (Figure 7).16 Our results (Figure 5) show that
increased knowledge augmentation in the pretrain data im-
proves P-probing prediction accuracies from earlier token
positions. In the basic bioS single setup, P-probing accu-
racy remains low until the token immediately preceding the
target attribute. This suggests the model memorizes BIO
data but encodes knowledge in a complex manner, reveal-
ing a person’s attribute only after encountering all prior
attributes. This prevents knowledge extraction during
QA finetuning, particularly when only the person’s name
is given. In Appendix B, we use a Venn diagram to pre-
cisely illustrate which attribute is stored after observing an-
other, further confirming this finding.

In Q-probing, we focus on the knowledge directly linked
to a person’s name. We evaluate input sentences contain-
ing only the person’s full name and train a linear classifier
on the last layer’s hidden states to predict the person’s six
attributes.17 Our results (Figure 6 in Appendix B.2) show
that the knowledge-extraction accuracy is directly linked to
whether the knowledge is (nearly-)linearly stored on the
person’s name in the pretrained model. This is independent
of the finetune parameters, suggesting the model does not
utilize contextual or global information from the biogra-
phies to extract knowledge about the individual.

6. Conclusion
This study explores the ability of pre-trained language
models to store and extract knowledge during inference us-

16For each target attribute prediction task, we freeze the pre-
trained network but add a trainable rank-2 update on the embed-
ding layer to account for the task change.

17We freeze all transformer layers (acquired through pretrain-
ing), except the embedding layer, to which we apply a rank-16
update. This adjustment is arguably the minimal change neces-
sary since we are tackling a notably different input distribution.
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bioS single + permute5
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bioS single + permute5 + fullname
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bioS multi2 + permute 
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8.3 8.3 8.3 8.3 8.3 8.3 2.5 2.5 2.5 2.5 2.5 2.5 37.0 37.0 37.0 37.0 37.0 37.0 4.0 4.0 4.0 4.0 4.0 4.0 1.5 1.5 1.5 1.5 1.5 1.5 14.8 14.8 14.8 14.8 14.8 14.8
100 5.9 100 38.0 37.1 99.2 4.7 4.6 5.4 99.9 1.5 1.2 1.3 2.4 99.5 15.4 15.4 14.9 13.0 69.1 100
100 52.1 100 67.3 74.2 99.9 51.9 56.3 58.4 99.8 47.2 53.1 52.5 55.5 99.3 28.2 31.3 30.9 32.9 75.8 99.9
26.1 28.9 32.8 40.5 56.8 100 19.2 22.9 28.5 36.8 53.3 100 47.5 50.1 53.0 57.6 69.2 98.8 20.2 24.2 28.8 37.6 55.5 100 21.4 33.0 45.5 57.9 72.6 98.3 27.1 45.3 62.2 78.1 92.2 100
87.7 88.8 90.1 91.6 94.0 100 52.1 55.5 60.0 64.7 73.7 100 65.6 67.8 70.6 74.6 80.7 99.9 61.1 64.4 68.5 72.4 80.6 100 61.6 70.1 77.3 84.7 91.9 99.9 66.9 76.1 83.7 91.1 97.1 100
96.1 96.3 96.7 97.1 97.9 100 58.0 60.8 63.7 67.8 76.8 100 71.5 73.1 74.8 77.9 84.1 99.9 72.5 74.5 76.3 79.2 84.7 100 97.0 97.1 97.3 97.9 98.6 100 99.3 99.5 99.6 99.8 99.9 100
58.8 64.3 69.6 74.4 82.9 100 37.4 41.6 47.9 56.1 69.7 99.9 54.9 59.1 64.0 70.1 79.0 98.9 42.0 47.2 52.7 60.1 71.8 100 43.2 54.2 65.3 76.8 88.3 99.8 49.5 61.8 74.6 85.1 95.6 100
81.5 85.0 86.7 88.2 92.1 100 57.7 63.2 65.9 71.1 78.2 100 69.7 72.4 75.5 78.0 83.6 99.7 65.3 69.6 72.8 76.6 82.2 100 91.9 93.9 94.8 96.0 97.4 100 96.3 97.4 98.2 98.8 99.6 100
88.8 90.4 91.5 92.3 94.6 100 63.5 67.3 69.9 73.6 80.4 100 76.8 80.0 81.8 83.8 88.1 99.9 70.4 72.9 75.1 78.2 83.9 100 98.0 98.0 98.3 98.7 99.0 100 99.9 100 100 100 100 100
100 70.7 100 47.8 74.8 99.9 18.9 30.1 60.1 99.6 3.0 3.8 8.4 34.6 99.3 15.0 14.6 13.9 21.8 66.9 100
100 100 100 99.6 100 100 99.7 99.9 100 100 99.6 99.9 99.9 99.9 100 66.2 71.4 72.7 74.5 76.5 99.9
100 100 100 100 100 100 99.9 100 100 100 100 100 99.9 100 100 100 100 100 99.5 99.7 99.8 99.9 100 100 93.3 95.3 96.8 98.0 98.8 99.9 90.2 92.8 95.0 96.8 98.6 100
99.9 100 100 100 100 100 100 100 100 100 100 100 100 99.9 100 100 100 100 99.9 100 100 100 100 100 99.7 99.8 99.9 99.9 100 100 99.0 99.3 99.3 99.5 99.8 100
100 44.6 100 44.0 77.2 99.8 42.0 60.1 76.1 99.5 5.5 7.1 10.7 37.5 98.5 14.0 13.8 14.8 21.6 56.2 100
100 100 100 98.7 99.8 100 99.3 99.9 99.9 99.9 98.1 99.6 99.7 99.7 100 58.8 65.1 67.2 68.6 72.0 99.9
100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99.9 99.9 99.9 100 100 100 99.8 99.8 99.9 100 100 100
100 100 100 100 100 100 100 99.9 99.9 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 99.9 100 99.9 100 100 100 99.7 99.8 99.8 99.9 99.9 100

Figure 5: P-probing accuracies for various pretrained models on bioS data. Each row represents a pretrained model using a different
knowledge augmentation, and each column labeled “i-field” shows the accuracy of predicting the first token of field from
position i. Details are in Section B and Appendix H (where we also include experiments for the bioR data and for predicting
the full-attribute field.)
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bioS multi5                     + fullname
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2.7 0.0 0.5 0.3 1.0 0.4 13.7 8.3 2.5 37.0 4.0 1.5 14.8 0.5 0.3 1.0 0.4 13.7
9.7 33.5 6.3 2.3 4.0 1.1 13.8 63.4 1.9 37.5 3.1 0.2 13.1 1.1 0.3 1.4 0.1 11.6
48.9 56.2 58.8 63.0 55.7 50.5 14.1 78.8 47.5 65.4 51.0 47.4 28.9 43.9 31.2 40.8 44.4 28.9
4.4 0.5 3.3 2.4 5.0 3.5 13.7 10.2 1.2 37.5 2.9 0.7 12.8 0.5 0.4 1.5 0.6 12.0
53.2 57.3 48.3 53.1 55.0 51.8 58.3 85.4 42.1 60.1 55.7 53.8 59.1 39.6 30.9 48.8 53.5 58.5
70.0 56.4 57.7 58.3 64.9 90.5 97.7 95.3 49.7 66.6 68.6 96.5 99.1 47.7 40.7 63.0 96.2 98.9
31.7 26.6 29.3 36.9 31.1 31.4 37.9 50.1 20.9 42.6 27.1 27.3 34.7 19.3 13.5 21.2 26.8 33.4
73.1 69.0 60.6 64.2 64.0 87.9 95.0 77.8 51.0 63.3 61.4 92.1 96.7 48.1 35.0 51.5 91.9 96.6
80.2 83.7 67.8 72.6 69.1 93.0 98.6 86.5 59.0 73.5 64.2 98.0 99.9 56.8 40.8 56.6 97.9 99.9
41.1 100 71.7 33.1 26.1 5.2 14.0 100 70.3 45.1 19.6 0.7 13.0 66.8 14.9 14.8 0.7 11.8
84.0 100 97.7 89.5 97.6 91.3 35.3 100 100 99.7 99.7 99.8 69.2 94.5 62.2 84.2 95.2 72.5
91.2 99.3 98.7 89.8 96.7 83.3 83.5 99.9 99.9 99.6 99.4 93.9 90.2 98.2 78.6 95.5 93.1 89.4
96.1 100 98.8 91.3 98.1 93.7 97.8 99.7 100 100 99.9 99.9 99.4 95.4 64.6 88.1 99.4 99.1
41.0 100 50.8 30.9 43.5 10.2 13.8 100 39.8 40.3 40.1 3.2 13.2 38.1 9.7 36.1 2.3 11.9
82.4 100 98.6 88.4 96.1 91.9 26.8 100 100 98.3 99.4 98.5 63.1 95.2 58.7 87.1 94.1 66.9
96.6 100 99.0 91.3 97.7 95.1 98.7 100 100 99.9 100 99.9 99.8 96.1 72.6 94.9 99.6 99.7
96.2 100 98.7 90.6 97.9 93.7 99.0 100 100 99.8 100 100 99.8 95.4 68.1 92.0 99.9 99.8

Figure 6: Q-probing accuracies. Each row denotes a pretrained model with its specific knowledge augmentation. The left block reiterates
QA finetune accuracies from Figure 3. The middle block showcases Q-probing accuracies on the first-token prediction for the
six attributes, and the right block focuses on Q-probing for the whole-attribute prediction. (Further details for bioR and more
are in Appendix H. Note: For birth date, first token predicts the whole birth month; we do not have whole-attribute prediction
for it since it has too many choices.)

Anya Briar Forger is a renowned social media strategist and community manager. She is currently working as a Marketing
Manager at Meta Platforms. She completed her graduation from MIT with a degree in Communications. She was born on
2nd October 1996 in Princeton, NJ and was brought up in the same city. She later moved to Menlo Park in California to be a
part of Facebook’s  team. She is an avid reader and loves traveling.

predict major / b_date / b_city / c_citypredict c_name / univ / major / b_date / b_city / c_city
predict univ / major / b_date / b_city / c_city

predict b_city / c_city predict c_city
predict b_date / b_city / c_city

Figure 7: Illustration of the P-probing. Underscore prepositions are the special token positions where we prob. The task is to predict all
attributes following these positions. Given the attribute ordering, there can be up to 6× 6 = 36 tasks across all data.

ing question-answering tasks. We created a controlled bi-
ography dataset and utilized probing techniques to exam-
ine the effect of knowledge augmentation on the storage
and extractability of knowledge in pre-trained transform-
ers. Synthetic data offers increased control over model
training and fine-tuning inputs, which is crucial for under-
standing the influence of different data sources on the in-
ternal mechanisms of transformers. This could be a sig-
nificant future direction for unraveling the complexities of

transformers.

Where is the Appendix?
We omit the appendix in this ICML version to encourage
readers to consult our full paper, which includes additional
results and future editions, at https://arxiv.org/
abs/2309.14316. An extended video presentation is
available at https://youtu.be/YSHzKmEianc.
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Petroni, F., Rocktäschel, T., Lewis, P., Bakhtin, A., Wu, Y.,
Miller, A. H., and Riedel, S. Language models as knowl-
edge bases? arXiv preprint arXiv:1909.01066, 2019.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Richardson, K. and Sabharwal, A. What does my QA
model know? devising controlled probes using expert
knowledge. Transactions of the Association for Com-
putational Linguistics, 8:572–588, 2020. doi: 10.1162/
tacl a 00331. URL https://aclanthology.

org/2020.tacl-1.37.
Singhal, K., Azizi, S., Tu, T., Mahdavi, S. S., Wei, J.,

Chung, H. W., Scales, N., Tanwani, A., Cole-Lewis, H.,
Pfohl, S., et al. Large language models encode clinical
knowledge. arXiv preprint arXiv:2212.13138, 2022.

Su, J., Lu, Y., Pan, S., Wen, B., and Liu, Y. Roformer:
Enhanced transformer with rotary position embedding,
2021.

Sun, K., Xu, Y. E., Zha, H., Liu, Y., and Dong, X. L. Head-
to-tail: How knowledgeable are large language models
(llm)? aka will llms replace knowledge graphs? arXiv
preprint arXiv:2308.10168, 2023.

Sushil, M., Suster, S., and Daelemans, W. Are we
there yet? exploring clinical domain knowledge of
BERT models. In Proceedings of the 20th Workshop
on Biomedical Language Processing, pp. 41–53, On-
line, June 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.bionlp-1.5. URL https:
//aclanthology.org/2021.bionlp-1.5.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., et al. Llama: Open and efficient founda-
tion language models. arXiv preprint arXiv:2302.13971,
2023.

Zhou, C., Liu, P., Xu, P., Iyer, S., Sun, J., Mao, Y., Ma, X.,
Efrat, A., Yu, P., Yu, L., et al. Lima: Less is more for
alignment. arXiv preprint arXiv:2305.11206, 2023.

Zhu, Y., Kiros, R., Zemel, R., Salakhutdinov, R., Urta-
sun, R., Torralba, A., and Fidler, S. Aligning books
and movies: Towards story-like visual explanations by
watching movies and reading books. In Proceedings of
the IEEE International Conference on Computer Vision
(ICCV), December 2015.

Zlotnik, G. and Vansintjan, A. Memory: An extended def-
inition. Frontiers in psychology, 10:2523, 2019. doi:
10.3389/fpsyg.2019.02523.

11

https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6b493230205f780e1bc26945df7481e5-Paper.pdf
https://aclanthology.org/2020.tacl-1.37
https://aclanthology.org/2020.tacl-1.37
https://aclanthology.org/2021.bionlp-1.5
https://aclanthology.org/2021.bionlp-1.5

	1 Introduction
	2 Preliminaries
	3 Mix Training
	3.1 Model's Abnormal Learning Behavior

	4 BIO Pretrain + QA Instruction Finetune
	4.1 Model May Fail to Extract Knowledge After Pretraining on BIO data
	4.2 Knowledge Augmentation
	4.3 Celebrity Can Help Minority

	5 Knowledge Probes on the BIO Pretrained Model
	6 Conclusion
	A Related Work
	B Knowledge Probes on the BIO Pretrained Model
	B.1 Position-Based Probing
	B.1.1 P-Probing Main Results
	B.1.2 Closer P-Probing at Knowledge Dependency
	B.1.3 P-Probing Extensions

	B.2 Query-Based Probing
	B.3 Probing on the Celebrity Augmentation

	C Knowledge Storage for Bidirectional Models
	D Details on Data Preparation
	D.1 BIO dataset bioS
	D.1.1 bioS couple

	D.2 BIO dataset bioR

	E Details on Model Architecture
	F Details on Pretrain and Mix Training
	G Details on QA Finetune
	H Details on P-probing
	H.1 Details on Closer P-Probing

	I Details on Q-probing
	J Details on Celebrity Augementation
	K Details on BERT Experiment

