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Abstract
We introduce a method for online conformal pre-
diction with decaying step sizes. Like previous
methods, ours possesses a retrospective guaran-
tee of coverage for arbitrary sequences. How-
ever, unlike previous methods, we can simulta-
neously estimate a population quantile when it
exists. Our theory and experiments indicate sub-
stantially improved practical properties: in par-
ticular, when the distribution is stable, the cov-
erage is close to the desired level for every time
point, not just on average over the observed se-
quence.

1. Introduction
We study the problem of online uncertainty quantifica-
tion, such as that encountered in time-series forecasting.
Our goal is to produce a prediction set at each time,
based on all previous information, that contain the true
label with a specified coverage probability. Such predic-
tion sets are useful to the point of being requirements in
many sequential problems, including medicine (Robinson,
1978), robotics (Lindemann et al., 2023), finance (Myk-
land, 2003), and epidemiology (Cramer et al., 2022). Given
this broad utility, it comes as no surprise that prediction
sets have been studied for approximately one hundred years
(and possibly more; see Section 1.1 of Tian et al. (2022)).

Formally, consider a sequence of data points (Xt, Yt) ∈
X ×Y , for t = 1, 2, . . . . At each time t, we observe Xt and
seek to cover Yt with a set Ct(Xt), which depends on a base
model trained on all past data (as well as the current feature
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Xt). After predicting, we observe Yt, and the next time-
step ensues. Note that we have not made any assumptions
yet about the data points and their dependencies.

This paper introduces a method for constructing the predic-
tion sets Ct that has simultaneous best-case and worst-
case guarantees—that is, a “best of both worlds” prop-
erty. We will describe the method shortly in Section 1.1.
Broadly speaking, the method can gracefully handle both
arbitrary adversarial sequences data points and also inde-
pendent and identically distributed (I.I.D.) sequences. In
the former case, our method will remain robust, ensuring
that the historical fraction of miscovered labels converges
to the desired error rate, α ∈ (0, 1). In the latter case,
our method will converge, eventually producing the opti-
mal prediction sets. We summarize our results below:

1. Worst-case guarantee (Theorem 1): When the data
points are arbitrary, our algorithm achieves

1

T

T∑
t=1

1Yt∈Ct(Xt) ∈
(
1− α± C

T 1/2−ϵ

)
, (1)

for a constant C and any fixed ϵ > 0. We call this a
long-run coverage guarantee.

2. Best-case guarantee (Theorem 3): When the data
points are I.I.D., our algorithm achieves

lim
T→∞

P (YT ∈ CT (XT )) → 1− α. (2)

We call this a convergence guarantee.

Our algorithm is the first to satisfy both guarantees simul-
taneously. Moreover, the decaying step size yields more
stable behavior than prior methods, as we will see in ex-
periments. See Section 1.2 for a discussion of the relation-
ship with other methods, such as those of Gibbs & Candes
(2021), Angelopoulos et al. (2023), and Xu & Xie (2021).

1.1. Method and Setup

We now describe our prediction set construction. Borrow-
ing from conformal prediction, consider a bounded confor-
mal score function st : X×Y → [0, B], at each time t. This
score st = st(Xt, Yt) is large when the predictions of the
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base model disagree greatly with the observed label; an ex-
ample would be the residual score, st(x, y) = |y − f̂t(x)|,
for a model f̂t : X → R trained online. This concept is
standard in conformal prediction (Vovk et al., 2005), and
we refer the reader to Angelopoulos & Bates (2023) for a
recent overview. Given this score function, define

Ct(x) = {y ∈ Y : st(x, y) ≤ qt} , (3)

where the threshold qt is updated with the rule

qt+1 = qt + ηt(1Yt /∈Ct(Xt) − α). (4)

In particular, if we fail to cover Yt at time t, then the thresh-
old increases to make the procedure slightly more conser-
vative at the next time step (and vice versa).

Familiar readers will notice the similarity of the update
step (4) to that of Gibbs & Candes (2021); Bhatnagar et al.
(2023); Feldman et al. (2023); Angelopoulos et al. (2023),
the main difference being that here, ηt can change over
time—later on we will see that ηt ∝ t−1/2−ϵ, for some
small ϵ ∈ (0, 1/2), leads to guarantees (1) and (2) as de-
scribed above. We remark also that the update step for qt
can be interpreted as an online (sub)gradient descent algo-
rithm on the quantile loss ρ1−α(t) = (1− α)max{t, 0}+
αmax{−t, 0} (Koenker & Bassett Jr, 1978), i.e., we can
equivalently write the update step (4) as

qt+1 = qt − ηt∇ρ1−α(st − qt).

In this work, we will consider two different settings:
Setting 1 (Adversarial setting). We say that we are in
the adversarial setting if we allow (X1, Y1), (X2, Y2), . . .
to be an arbitrary sequence of elements in X × Y , and
s1, s2, . . . to be an arbitrary sequence of functions from
X × Y to [0, B].
Setting 2 (I.I.D. setting). We say that we are in the I.I.D.
setting if we require that (Xt, Yt)

iid∼ P for some dis-
tribution P , and require that the choice of the function
st : X × Y → [0, B] depends only on {(Xr, Yr)}r<t, for
each t (i.e., the model is trained online).

Of course, any result proved for Setting 1 will hold for Set-
ting 2 as well. We remark that Setting 2 can be relaxed to
allow for randomness in the choice of the score functions
st—our results for the I.I.D. setting will hold as long as the
function st is chosen independently of {(Xr, Yr)}r≥t.

Our method, like all conformal methods, has coverage
guarantees that hold for any underlying model and data
stream. Still, the quality of the output (e.g., the size of
the prediction sets) does critically depend on the quality
of the underlying model. This general interplay between
conformal methods and models is discussed throughout the
conformal literature (e.g., Vovk et al., 2005; Angelopoulos
& Bates, 2023).

1.2. Related work

We begin by reviewing the most closely related litera-
ture. Set constructions of the form in (3), which “invert”
the score function, are commonplace in conformal pre-
diction (Vovk et al., 2005), with qt chosen as a sample
quantile of the previous conformal scores. However, the
exchangeability-based arguments of the standard confor-
mal framework cannot give any guarantees in Setting 1.
The idea to set qt via online gradient descent with a fixed
step size appears first in Gibbs & Candes (2021), which in-
troduced online conformal prediction in the adversarial set-
ting. The version we present here builds also on the work
of Bhatnagar et al. (2023), Feldman et al. (2023), and An-
gelopoulos et al. (2023); in particular, Angelopoulos et al.
(2023) call the update in (4) the “quantile tracker”. These
papers all have long-run coverage guarantees in Setting 1,
but do not have convergence guarantees in Setting 2.

Subsequent work to these has explored time-varying step
sizes that respond to distribution shifts, primarily for the
purpose of giving other notions of validity, such as re-
gret analyses (Gibbs & Candès, 2022; Zaffran et al., 2022;
Bastani et al., 2022; Noarov et al., 2023; Bhatnagar et al.,
2023). From an algorithmic perspective, these methods de-
part significantly from the update in (4), generally by incor-
porating techniques from online learning—such as strongly
adaptive online learning (Daniely et al., 2015), adaptive re-
gret (Gradu et al., 2023), and adaptive aggregation of ex-
perts (Cesa-Bianchi & Lugosi, 2006). To summarize, the
long-run coverage and regret bounds in these papers apply
to substantially different, usually more complicated algo-
rithms than the simple expression we have in (4). We re-
mark that “best of both worlds” guarantees appear in the
online learning literature (e.g., Bubeck & Slivkins, 2012;
Koolen et al., 2016; Zimmert & Seldin, 2021; Jin et al.,
2021; Chen et al., 2023; Dann et al., 2023), where the aim
is to find a single algorithm whose regret is optimal both in
a stochastic setting (i.e., data sampled from a distribution)
and in an adversarial setting. A crucial difference, however,
is that our paper’s guarantees are concerned with inference
and predictive coverage, rather than with estimation or re-
gret.

Farther afield from our work, there have been several other
explorations of conformal prediction in time-series, but
these are quite different. For example, the works of Bar-
ber et al. (2022) and Chernozhukov et al. (2018) provide
conformal-type procedures with coverage guarantees un-
der certain relaxations of exchangeability; both can pro-
vide marginal coverage in Setting 2, but cannot give any
guarantees in Setting 1. Xu & Xie (2021; 2023) study the
behavior of conformal methods under classical nonpara-
metric assumptions such as model consistency and distri-
butional smoothness for its validity, and thus cannot give
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distribution-free guarantees in Settings 1 or 2. Lin et al.
(2022) studies the problem of cross-sectional coverage for
multiple exchangeable time-series. The online conformal
prediction setup was also considered early on by Vovk
(2002) for exchangeable sequences. These works are not
directly comparable to ours, the primary point of difference
being the adversarial guarantee we can provide in Setting 1.

Finally, traditional solutions to the prediction set prob-
lem have historically relied on Bayesian modeling (e.g.,
Foreman-Mackey et al., 2017) or distributional assump-
tions such as autoregression, smoothness, or ergodic-
ity (e.g., Biau & Patra, 2011). A parallel literature on cali-
bration exists in the adversarial sequence model (e.g., Fos-
ter & Vohra, 1998). Our work, like that of Gibbs & Candes
(2021), is clearly related to the literatures on both calibra-
tion and online convex optimization (Zinkevich, 2003), and
we hope these connections will continue to reveal them-
selves; our work takes online conformal prediction one step
closer to online learning by allowing the use of decaying
step sizes, which is typical for online gradient descent.

1.3. Our contribution

We provide the first analysis of the online conformal pre-
diction update in (4) with an arbitrary step size. Our anal-
ysis gives strong long-run coverage bounds for appropri-
ately decaying step sizes, even in the adversarial setting
(Setting 1). We also give a simultaneous convergence guar-
antee in the I.I.D. setting (Setting 2), showing that the pa-
rameter qt converges to the optimal value q∗. Importantly,
this type of convergence does not hold with a fixed step size
(the case previously analyzed in the online conformal pre-
diction literature). In fact, we show that with a fixed step
size, online conformal prediction returns meaningless pre-
diction sets (i.e., either ∅ or Y) infinitely often. From the
theoretical point of view, therefore, our method is the first
to provide this type of “best-of-both-worlds” guarantee.

While these theoretical results show an improvement (rela-
tive to the fixed-step-size method) in an I.I.D. setting, from
the practical perspective we will see that a decaying step
size also enables substantially better results and more sta-
ble behavior on real time series data, which lies somewhere
between the I.I.D. and the adversarial regime.

2. Main results in the adversarial setting
We now present our main results for the adversarial set-
ting, Setting 1, which establish long-run coverage guaran-
tees with no assumptions on the data or the score functions.

2.1. Decreasing step sizes

Our first main result shows that, for a nonincreasing step
size sequence, the long-run coverage rate

1

T

T∑
t=1

1Yt∈Ct(Xt) (5)

will converge to the nominal level 1− α.
Theorem 1. Let (X1, Y1), (X2, Y2), . . . be an arbitrary se-
quence of data points, and let st : X ×Y → [0, B] be arbi-
trary functions. Let ηt be a positive and nonincreasing se-
quence of step sizes, and fix an initial threshold q1 ∈ [0, B].

Then online conformal prediction satisfies∣∣∣∣∣ 1T
T∑

t=1

1Yt∈Ct(Xt) − (1− α)

∣∣∣∣∣ ≤ B + η1
ηTT

for all T ≥ 1.

As a special case, if we choose a constant step size ηt ≡
η then this result is analogous to Gibbs & Candes (2021,
Proposition 4.1). On the other hand, if we choose ηt ∝ t−a

for some a ∈ (0, 1), then the long-run coverage at time T
has error bounded as O( 1

T 1−a ).

2.2. Arbitrary step sizes

As discussed above, if the data appears to be coming from
the same distribution then a decaying step size can be ad-
vantageous, to stabilize the behavior of the prediction sets
over time. However, if we detect a sudden distribution shift
and start to lose coverage, we might want to increase the
step size ηt to recover coverage more quickly. To accom-
modate this, the above theorem can be generalized to an
arbitrary step size sequence, as follows.
Theorem 2. Let (X1, Y1), (X2, Y2), . . . be an arbitrary se-
quence of data points, and let st : X × Y → [0, B] be ar-
bitrary functions. Let ηt be an arbitrary positive sequence,
and fix an initial threshold q1 ∈ [0, B].

Then online conformal prediction satisfies∣∣∣∣∣ 1T
T∑

t=1

1Yt∈Ct(Xt) − (1− α)

∣∣∣∣∣
≤ B +max1≤t≤T ηt

T
· ∥∆1:T ∥1

for all T ≥ 1, where the sequence ∆ is defined with values

∆1 = η−1
1 , and ∆t = η−1

t − η−1
t−1 for all t ≥ 2.

We can see that Theorem 1 is indeed a special case of this
more general result, because in the case of a nonincreasing
sequence ηt, we have max1≤t≤T ηt = η1, and
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∥∆1:T ∥1 = |η−1
1 |+

T∑
t=2

|η−1
t − η−1

t−1|

= η−1
1 +

T∑
t=2

(η−1
t − η−1

t−1) = η−1
T .

But Theorem 2 can be applied much more broadly. For ex-
ample, we might allow the step size to decay during long
stretches of time when the distribution seems stationary,
but then reset to a larger step size whenever we believe
the distribution may have shifted. In this case, we can ob-
tain an interpretable error bound from the result of Theo-
rem 2 by observing that ∥∆1:T ∥1 ≤ 2NT

min1≤t≤T ηt
, where

NT =
∑T

t=2 1ηt>ηt−1
is the number of times we increase

the step size. Thus, as long as the step size does not decay
too quickly, and the number of “resets” NT is o(T ), the
upper bound of Theorem 2 will still be vanishing.

3. Results for I.I.D. data
We now turn to studying the setting of I.I.D. data, Set-
ting 2, where (X1, Y1), (X2, Y2), . . . are sampled I.I.D.
from some distribution P on X × Y . While Theorems 1
and 2 show that the coverage of the procedure converges in
a weak sense, as in (5), for any realization of the data (or
even with a nonrandom sequence of data points), we would
also like to understand whether the procedure might sat-
isfy stronger notions of convergence with “nice” data. Will
the sequence of prediction intervals converge in a suitable
sense? We will see that decaying step size does indeed lead
to convergence, whereas a constant step size leads to oscil-
lating behavior.

In order to make our questions precise, we need to intro-
duce one more piece of notation to capture the notion of
coverage at a particular time t—the “instantaneous” cover-
age. Let

Coveraget(q) = PP (st(X,Y ) ≤ q | st) ,

where the probability is calculated with respect to a data
point (X,Y ) ∼ P drawn independently of st. Then,
at time t, the prediction set Ct(Xt) has coverage level
Coveraget(qt), by construction. We will see in our results
below that for an appropriately chosen decaying step size,
Coveraget(qt) will concentrate around 1 − α over time,
while if we choose a constant step size, then Coveraget(qt)
will be highly variable.

3.1. Results with a pretrained score function

To begin, we assume that the score function is pretrained,
i.e., that s1 = s2 = . . . are all equal to some fixed function
s : X × Y → [0, B]. The reader should interpret this as
the case where the underlying model is not updated online

(e.g., s(x, y) = |y − f̂(x)| for a pretrained model f̂ that is
no longer being updated). This simple case is intended only
as an illustration of the trends we might see more generally;
in Section 3.2 below we will study a more realistic setting,
where model training is carried out online as the data is
collected.

In this setting, since the score function does not vary with
t, we have Coveraget(·) ≡ Coverage(·) where

Coverage(q) = PP (s(X,Y ) ≤ q) ,

i.e., instantaneous coverage at time t is Coverage(qt).

First, we will see that choosing a constant step size leads
to undesirable behavior: while coverage will hold on aver-
age over time (as recorded in Theorem 1 and in the earlier
work of Gibbs & Candes (2021)), there will be high vari-
ability in Coverage(qt) over time—for instance, we may
have Ct(Xt) = ∅ infinitely often.

Proposition 1. Let (Xt, Yt)
iid∼ P for some distribution P .

Suppose also that st ≡ s for some fixed function s : X ×
Y → [0, B], and that ηt ≡ η for a positive constant step
size η > 0. Assume also that α is a rational number.

Then online conformal prediction satisfies

Coverage(qt) = 0 for infinitely many t,

and
Coverage(qt) = 1 for infinitely many t,

almost surely.

In other words, even in the simplest possible setting of
I.I.D. data and a fixed model, we cannot expect conver-
gence of the method if we use a constant step size.

On the other hand, if we choose a sequence of step sizes
ηt that decays at an appropriate rate (such as ηt ∝ t−1/2−ϵ,
for some ϵ ∈ (0, 1/2), as mentioned earlier) then over time,
this highly variable behavior can be avoided. Instead, we
will typically see coverage converging to 1 − α for each
constructed prediction set Ct(Xt), i.e., Coverage(qt) →
1 − α. We will need one more assumption: defining q∗

as the (1 − α)-quantile of s(X,Y ), we assume that q∗ is
unique:

Coverage(q) < 1− α for all q < q∗,
Coverage(q) > 1− α for all q > q∗.

(6)

Theorem 3. Let (Xt, Yt)
iid∼ P for some distribution P .

Suppose also that st ≡ s for some fixed function s : X ×
Y → [0, B]. Assume that ηt is a fixed nonnegative step size
sequence satisfying

∞∑
t=1

ηt = ∞,

∞∑
t=1

η2t < ∞. (7)
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Assume also that q∗ is unique as in (6).

Then online conformal prediction satisfies

qt → q∗ almost surely.

With an additional assumption, this immediately implies
convergence of the coverage, Coverage(qt):

Corollary 1. Under the setting and assumptions of Theo-
rem 3, assume also that s(X,Y ) has a continuous distribu-
tion (under (X,Y ) ∼ P ). Then

Coverage(qt) → 1− α almost surely.

That is, instead of the high variance in coverage incurred
by a constant step size (as in Proposition 1), here the cov-
erage converges to the nominal level 1 − α. Finally, with
additional assumptions, we can also characterize the rate at
which the threshold qt converges to q∗:

Proposition 2. Under the setting and assumptions of
Corollary 1, assume also that the distribution of s(X,Y )
(under (X,Y ) ∼ P ) has density lower-bounded by γ in
the range [q∗ − δ, q∗ + δ], for some γ, δ > 0. Take the
step size sequence ηt = ct−1/2−ϵ, for some c > 0 and
ϵ ∈ (0, 1/2). Then it holds for all t ≥ 1 that

E
[
(qt − q∗)2

]
≤ bt−1/2−ϵ,

where b is a constant that depends only on B, γ, δ, c, ϵ.

3.2. Results with online training of the score function

The result of Theorem 3 above is restricted to a very simple
setting, where the score functions are given by st ≡ s for
some fixed s, i.e., we are using a pretrained model. We
now consider the more interesting setting where the model
is trained online. Formally, we consider Setting 2 where
we allow the score function st to depend arbitrarily on the
data observed before time t, i.e., on {(Xr, Yr)}r<t.

First, we will consider a constant step size ηt ≡ η.

Proposition 3. Let (Xt, Yt)
iid∼ P for some distribution P ,

and assume the score functions st : X × Y → [0, B] are
trained online. Let ηt ≡ η for a positive constant step size
η > 0.

Then online conformal prediction satisfies

lim inf
t→∞

Coveraget(qt) = 0, lim sup
t→∞

Coveraget(qt) = 1

almost surely.

This result is analogous to Proposition 1 for the case of a
pretrained score function (but with a slightly weaker con-
clusion due to the more general setting). As before, the

conclusion we draw is that a constant step size inevitably
leads to high variability in Coveraget(qt).

On the other hand, if we take a decaying step size, Theo-
rem 3 established a convergence result given a pretrained
score function. We will now see that similar results hold
in for the online setting as long as the model converges
in some sense. In many settings, we might expect st to
converge to some score function s—for example, if our
fitted regression functions, f̂t, converge to some “true”
model f∗, then st(x, y) = |y − f̂t(x)| converges to
s(x, y) = |y − f∗(x)|. As before, we let Coverage(q) =
PP (s(X,Y ) ≤ q), and write q∗ to denote the (1 − α)-
quantile of this distribution. We now extend the conver-
gence results of Theorem 3 to this setting.

Theorem 4. Let (Xt, Yt)
iid∼ P for some distribution P ,

and assume the score functions st are trained online. As-
sume that ηt is a fixed nonnegative step size sequence satis-
fying (7). Let s : X ×Y → [0, B] be a fixed score function,
and assume that q∗ is unique as in (6).

Then online conformal prediction satisfies the following
statement almost surely:1

If st
d→ s, then qt → q∗.

As in the previous section, an additional assumption im-
plies convergence of the coverage, Coveraget(qt):

Corollary 2. Under the setting and assumptions of Theo-
rem 4, assume also that s(X,Y ) has a continuous distribu-
tion (under (X,Y ) ∼ P ). Then online conformal predic-
tion satisfies the following statement almost surely:

If st
d→ s, then Coveraget(qt) → 1− α.

To summarize, the results of this section show that
the coverage of each prediction set Ct(Xt), given by
Coveraget(qt), will converge even in a setting where the
model is being updated in a streaming fashion, as long as
the fitted model itself converges over time.

In particular, if we choose ηt ∝ t−1/2−ϵ for some ϵ ∈
(0, 1/2), then in the adversarial setting the long-run cov-
erage error is bounded as O( 1

T 1/2−ϵ ) by Theorem 1, while
in the I.I.D. setting, Theorem 4 guarantees convergence. In
other words, this choice of ηt simultaneusly achieves both
types of guarantees.

While the results of this section have assumed I.I.D. data,
the proof techniques used here can be extended to han-
dle broader settings—for example, a stationary time series,

1We use st
d→ s in the sense of convergence in distribution

under (X,Y ) ∼ P , while treating the st’s as fixed. Specifically,
we are assuming Coveraget(q) → Coverage(q), for all q ∈ R at
which Coverage(q) is continuous.
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where despite dependence we may still expect to see con-
vergence over time. We leave these extensions to future
work.

4. Experiments
We include two experiments: an experiment on the Elec2
dataset (Harries et al., 1999) where the data shows signifi-
cant distribution shift over time, and an experiment on Im-
agenet (Deng et al., 2009) where the data points are ex-
changeable.2

The experiments are run with two different choices of step
size for online conformal: first, a fixed step size (ηt ≡
0.05); and second, a decaying step size (ηt = t−1/2−ϵ with
ϵ = 0.1). We also compare to an oracle method, where
online conformal is run with q∗ in place of qt at each time
t, and q∗ is chosen to be the value that gives 1 − α aver-
age coverage over the entire sequence t = 1, . . . , T . All
methods are run with α = 0.1.

4.1. Results

Figures 1 and 2 display the results of the experiment for
the Elec2 data and the Imagenet data, respectively. We now
discuss our findings.

The thresholds qt. The first panel of each figure plots
the value of the threshold qt over time t. We can see that
the procedure with a fixed step size has significantly larger
fluctuations in the quantile value as compared to the decay-
ing step size procedure.

The instantaneous coverage Coveraget(qt). The sec-
ond panel of each figure plots the value of the instan-
taneous coverage Coveraget(qt) over time t. For each
dataset, since the true data distribution is unknown, we es-
timate Coveraget(qt) using a holdout set. We observe that
Coveraget(qt) is substantially more stable for the decaying
step size as compared to fixed step size in both experiments.
While Coveraget(qt) concentrates closely around the nom-
inal level 1 − α for decaying ηt, for fixed ηt the coverage
level oscillates and does not converge.

Long-run coverage and rolling coverage. The third
panel of each figure plots the value of the long-run cov-
erage, 1

r

∑t
r=1 1Yr∈Cr(Xr), over time t. We see that the

long-run coverage converges quickly to 1−α for all meth-
ods, and we cannot differentiate between them in this plot.

Consequently, in the fourth panel of each figure, we also
plot the “rolling” coverage, which computes coverage rate

2Code to reproduce these experiments is avail-
able at https://github.com/aangelopoulos/
online-conformal-decaying.

averaged over a rolling window of 1000 time points. We
can see that this measure is tighter around 1 − α for the
fixed step size procedure; for the decaying step size pro-
cedure, rolling coverage fluctuates more, but is not larger
than the fluctuations for the oracle method. At first glance,
it might appear that having lower variance in the rolling
coverage indicates that the fixed step size procedure is ac-
tually performing better than decaying step size—but this
is not the case. The low variance with fixed ηt ≡ η is due
to overcorrecting. For example, if we have several mis-
coverage events in a row (which can happen by random
chance, even with the oracle intervals), then the fixed-step-
size method will necessarily return an overly wide interval
(e.g., Ct(Xt) = R) to give certain coverage at the next time
step. Thus, the fixed-step-size method ensures low variance
in rolling coverage at the cost of extremely high variance in
the width and instantaneous coverage of the interval Ct(Xt)
at each time t. This type of overcorrection is undesirable.

4.2. Implementation details for Elec2 Time Series

The Elec2 (Harries et al., 1999) dataset is a time-series
of 45312 hourly measurements of electricity demand in
New South Wales, Australia. We use even-numbered time
points as the time series, and odd-numbered time points
as a holdout set for estimating Coveraget(qt). The de-
mand measurements are normalized to lie in the interval
Yt ∈ [0, 1]. The covariate vector Xt = (Y1, . . . , Yt−1) is
the sequence of all previous demand values. The forecast
Ŷt is one-day-delayed moving average of Yt (i.e., at time t,
our predicted value Ŷt is given by the average of observa-
tions taken between 24 and 48 hours earlier), and the score
is st(Xt, Yt) = |Yt − Ŷt|.

4.3. Implementation details for Imagenet

The Imagenet (Deng et al., 2009) is a standard computer
vision dataset of natural images. We take the 50000 vali-
dation images of Imagenet 2012 and treat them as a time
series for the purpose of evaluating our methods. Because
the validation split of Imagenet is shuffled, this comprises
an exchangeable time series. We use 45000 points for the
time series, and the remaining 5000 points as a holdout set
for estimating Coveraget(qt). As the score function, we use
st(Xt, Yt) = 1 − maxy∈Y f̂(Xt)y (here maxy∈Y f̂(Xt)y
is the softmax score of the pretrained ResNet-152 model).

4.4. Additional experiments

As discussed in Section 2.2, in applications where the dis-
tribution of the data may drift or may have changepoints,
it might be beneficial to allow ηt to increase at times to
allow for updates in the learning process. To study this
empirically, in the Appendix, we include additional exper-
iments in a broader range of settings—we test over 3000
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Figure 1. Elec2 results. From left to right, the panels display the following (over all times t): first, the value of the threshold qt; second,
the instantaneous coverage Coveraget(qt); third, the long-run coverage 1

t

∑t
r=1 1Yr∈Cr(Xr); and fourth, the rolling coverage, averaged

over a rolling window of 1000 time points.
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Figure 2. Imagenet results. Same details as for Figure 1.

real datasets, and compare the fixed step size method, the
decaying step size method, and a “decay+adapt” version of
our method where the sequence ηt adapts to trends in the
data (decaying if the distribution of the data appears sta-
tionary, but increasing if distribution shift is detected).

5. Proofs
In this section, we prove Theorems 1, 2, 3, and 4, and
Propositions 1 and 3. All other results are proved in the
Appendix.

5.1. Proof of Theorems 1 and 2

First, we need a lemma to verify that the values qt are uni-
formly bounded over all t. This result is essentially the
same as that in Lemma 4.1 of Gibbs & Candes (2021), ex-
cept extended to the setting of decaying, rather than con-
stant, step size. The proof is given in the Appendix.
Lemma 1. Let (X1, Y1), (X2, Y2), . . . be an arbitrary se-
quence of data points, and let st : X × Y → [0, B] be
arbitrary functions. Let ηt be an arbitrary nonnegative se-
quence, and fix an initial threshold q1 ∈ [0, B].

Then online conformal prediction satisfies

−αMt−1 ≤ qt ≤ B + (1− α)Mt−1 for all t ≥ 1, (8)

where M0 = 0, and Mt = max1≤r≤t ηr for each t ≥ 1.

We are now ready to prove the theorems. As discussed ear-

lier, Theorem 1 is simply a special case, so we only prove
the more general result Theorem 2.

By definition of ∆, we have η−1
t =

∑t
r=1 ∆r for all t ≥ 1.

We then calculate∣∣∣∣∣ 1T
T∑

t=1

1Yt∈Ct(Xt) − (1− α)

∣∣∣∣∣ =
∣∣∣∣∣ 1T

T∑
t=1

1Yt ̸∈Ct(Xt) − α

∣∣∣∣∣
=

∣∣∣∣∣ 1T
T∑

t=1

(
t∑

r=1

∆r

)
· ηt
(
1Yt ̸∈Ct(Xt) − α

)∣∣∣∣∣
=

∣∣∣∣∣ 1T
T∑

r=1

∆r

(
T∑

t=r

ηt
(
1Yt ̸∈Ct(Xt) − α

))∣∣∣∣∣
=

∣∣∣∣∣ 1T
T∑

r=1

∆r (qT+1 − qr)

∣∣∣∣∣ by (4)

≤ 1

T

T∑
r=1

|∆r| · max
1≤r≤T

|qT+1 − qr|

≤ 1

T
· ∥∆1:T ∥1 · (B + max

1≤t≤T
ηt),

where the last step holds since qr, qT+1 are bounded by
Lemma 1.

5.2. Proof of Proposition 3

First we prove that lim supt→∞ Coveraget(qt) = 1 almost
surely. Equivalently, for any fixed ϵ > 0, we need to prove
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that P (lim supt→∞ Coveraget(qt) < 1− ϵ) = 0.

We begin by constructing a useful coupling between the
online conformal process, and a sequence of I.I.D. uniform
random variables. For each t ≥ 1, define

Ut ∼

{
Uniform[0,Coveraget(qt)], if Yt ∈ Ct(Xt),

Uniform[Coveraget(qt), 1], if Yt ̸∈ Ct(Xt),

drawn independently for each t after condi-
tioning on all the data, {(Xt, Yt)}t≥1. Since
P (Yt ∈ Ct(Xt) | {(Xr, Yr)}r<t) = Coveraget(qt) by
construction, we can verify that Ut

iid∼ Uniform[0, 1].

Next fix any integer N ≥ B+ηα
η(1−α) . Let Ai be the event that

Ut > 1− ϵ for all (i− 1)N < t ≤ iN.

Since the Ut’s are I.I.D. uniform random variables, we have
P (Ai) = ϵN for each i, and the events Ai are mutu-
ally independent. Therefore, by the second Borel–Cantelli
lemma, P

(∑
i≥1 1Ai

= ∞
)
= 1. Now we claim that

If Ai occurs then max
(i−1)N<t≤iN+1

Coveraget(qt) > 1− ϵ.

(9)
Suppose that Ai holds and that Coveraget(qt) ≤ 1 − ϵ for
all t in the range (i−1)N < t ≤ iN . Then by construction
of the Ut’s, we have Yt ̸∈ Ct(Xt) for all (i − 1)N < t ≤
iN . Therefore by (4),

qiN+1 = q(i−1)N+1 +

iN∑
t=(i−1)N+1

η(1Yt ̸∈Ct(Xt) − α)

= q(i−1)N+1 +N · η(1− α) ≥ B,

where the last step holds by our choice of N , together
with the fact that q(i−1)N+1 ≥ −αη by Lemma 1. But
since the score function siN+1 takes values in [0, B] by
assumption, we therefore have CoverageiN+1(qiN+1) ≥
CoverageiN+1(B) = 1. Therefore, we have verified the
claim (9).

Since Ai occurs for infinitely many i, almost surely, by (9)
we therefore have lim supt→∞ Coveraget(qt) ≥ 1 − ϵ, al-
most surely, as desired. Since ϵ > 0 is arbitrary, this com-
pletes the proof that lim supt→∞ Coveraget(qt) = 1 al-
most surely.

Finally, a similar argument verifies
lim inft→∞ Coverage(qt) = 0 almost surely.

5.3. Proof of Proposition 1

Since st ≡ s, we have Coveraget(qt) = Coverage(qt), for
each t. By Proposition 3, lim inft→∞ Coverage(qt) = 0
and lim supt→∞ Coverage(qt) = 1, almost surely. Since

we have assumed that α is a rational number, by the defini-
tion of the procedure (4), all values qt must lie on a discrete
grid (i.e., if α = k/K for some integers k,K then, for all
t, qt − q1 must be an integer multiple of η/K). Moreover,
by Lemma 1, qt is uniformly bounded above and below for
all t, so qt can only take finitely many values. This implies
Coverage(qt) also can take only finitely many values, and
in particular, this means that if lim inft→∞ Coverage(qt) =
0 (respectively, if lim supt→∞ Coverage(qt) = 1) then
Coverage(qt) = 0 (respectively, Coverage(qt) = 1) for
infinitely many t.

5.4. Proofs of Theorems 3 and 4

We observe that Theorem 3 is simply a special case of The-
orem 4 (obtained by taking st ≡ s for all t), so we only
need to prove Theorem 4.

First, consider the sequence

Zt =

t∑
r=1

ηr(1Yr∈Cr(Xr) − Coverager(qr)).

Define events EZ , the event that limt→∞ Zt exists, and Es,
the event that st

d→ s. In the Appendix, we will verify that

lim
t→∞

Zt exists, almost surely, (10)

i.e., P (EZ) = 1, using martingale theory.

To establish the theorem, then, it suffices for us to verify
that on the event EZ ∩ Es, it holds that qt → q∗. From this
point on, we assume that EZ and Es both hold.

Fix any ϵ > 0. Since q 7→ Coverage(q) is monotone, it
can have at most countably infinitely many discontinuities.
Without loss of generality, then, we can assume that this
map is continuous at q = q∗ − ϵ/3 and at q = q∗ + ϵ/3 (by
taking a smaller value of ϵ if needed).

First, since Zt converges, we can find some finite time T1

such that

sup
t′≥t≥T1

∣∣∣∣∣∣
t′∑

r=t

ηr(1Yr∈Cr(Xr) − Coverager(qr))

∣∣∣∣∣∣
= sup

t′≥t≥T1

|Zt′ − Zt−1| ≤
ϵ

3
. (11)

Moreover, since
∑

t η
2
t < ∞, we have ηt → 0 and so

we can find some finite time T2 such that ηt ≤ ϵ
3 for all

t ≥ T2. Furthermore, on Es, we have Coveraget(q) →
Coverage(q), at each q = q∗± ϵ/3. Thus we can find some
finite time T3 and some δ > 0 such that

Coveraget(q
∗ − ϵ/3) ≤ 1− α− δ (12)
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for all t ≥ T3 (we are using the fact that Coverage(q∗ −
ϵ/3) < 1− α by (6)). Similarly we can find a finite T4 and
some δ′ > 0 such that Coveraget(q

∗ + ϵ/3) ≥ 1 − α + δ′

for all t ≥ T4. Let T = max{T1, T2, T3, T4}.

We will now split into cases. If it does not hold that qt ∈
q∗ ± ϵ for all sufficiently large t, then one of the following
cases must hold:

• Case 1a: qt < q∗ − ϵ/3 for all t ≥ T .

• Case 1b: qt > q∗ + ϵ/3 for all t ≥ T .

• Case 2a: for some t′ ≥ t ≥ T , it holds that qt ≥
q∗ − ϵ/3 and qt′ < q∗ − ϵ.

• Case 2b: for some t′ ≥ t ≥ T , it holds that qt ≤
q∗ + ϵ/3 and qt′ > q∗ + ϵ.

We now verify that each case is impossible.

Case 1a is impossible. We have

q∗ − ϵ

3
− qT ≥ sup

t>T
qt − qT

= sup
t>T

t−1∑
r=T

ηr(1Yr ̸∈Cr(Xr) − α) by (4)

≥ sup
t>T

t−1∑
r=T

ηr ((1− α)− Coverager(qr))−
ϵ

3
by (11)

≥ sup
t>T

{[
t−1∑
r=T

ηr · δ

]
− ϵ

3

}
,

where the last step holds since qr < q∗ − ϵ/3 for r ≥ T ,
and q 7→ Coverager(q) is nondecreasing, and so we have

Coverager(qr) ≤ Coverager(q
∗−ϵ/3) ≤ 1−α−δ, (13)

by (12). Since
∑

r ηr = ∞, we therefore have that q∗ −
ϵ
3 − qT ≥ ∞, which is a contradiction.

Case 1b is impossible. This proof is analogous to the
proof for Case 1a.

Case 2a is impossible. First, by assumption for this case,
we can find a unique time t′′ ≥ T such that

qt′′ ≥ q∗ − ϵ/3,

qr < q∗ − ϵ/3 for all t′′ < r < t′,

qt′ < q∗ − ϵ.

In other words, t′′ is the last time before time t′ when the
threshold is ≥ q∗ − ϵ/3. Then we have

− 2ϵ

3
> qt′ − qt′′ =

t′−1∑
r=t′′

ηr
(
1Yr ̸∈Cr(Xr) − α

)
by (4)

≥

 t′−1∑
r=t′′

ηr ((1− α)− Coverager(qr))

− ϵ

3
by (11)

≥ −ηt′′ +

 t′−1∑
r=t′′+1

ηr ((1− α)− Coverager(qr))

− ϵ

3

≥ −ηt′′ −
ϵ

3
by (13).

But since ηt′′ ≤ ϵ/3 (because t′′ ≥ T ), we have therefore
reached a contradiction.

Case 2b is impossible. This proof is analogous to the
proof for Case 2a.

We have verified that all four cases are impossible. There-
fore, qt ∈ q∗ ± ϵ for all sufficiently large t. Since ϵ > 0 is
arbitrarily small, this completes the proof.

6. Discussion
Our paper analyzes online conformal prediction that with
a decaying step size, enabling simultaneous guarantees of
convergence for I.I.D. sequences and long-run coverage for
adversarial ones. Moreover, it helps further unify online
conformal prediction with online learning and online con-
vex optimization, since decaying step sizes are known to
have desirable properties and hence standard for the latter.
Of course, the usefulness of the method will rely on choos-
ing score functions that are well suited to the (possibly
time-varying) data distribution, and choosing step sizes that
decay at an appropriate rate and perhaps adapt to the level
of distribution shift—building a better understanding of
how to make these choices in practice is crucial for achiev-
ing informative and stable prediction intervals. Many ad-
ditional open questions about extending the methodology
to broader settings and understanding connections to other
tools remain. In particular, we expect fruitful avenues of
future inquiry would be: (1) to extend this analysis to on-
line risk control, as in Feldman et al. (2021); (2) to adapt
our analysis of Theorem 3 to deal with stationary or slowly
moving time-series which may not be I.I.D. but are slowly
varying enough to permit estimation; and (3) to further un-
derstand the connection between this family of techniques
and the theory of online learning.
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A. Additional proofs
A.1. Proof of Lemma 1

The proof of this result is similar to the proof of Lemma 4.1 of Gibbs & Candes (2021). We prove this by induction. First,
q1 ∈ [0, B] by assumption, so (8) is satisfied at time t = 1. Next fix any t ≥ 1 and assume qt lies in the range specified
in (8), and consider qt+1. We now split into cases:

• If qt ∈ [0, B], then we have

qt+1 = qt + ηt
(
1Yt ̸∈Ct(Xt) − α

)
∈ [qt − ηtα, qt + ηt(1− α)] ⊆ [−αMt, B + (1− α)Mt].

• If qt ∈ (B,B + (1− α)Mt−1], then we must have Ct(Xt) = Y . Then 1Yt ̸∈Ct(Xt) = 0, and so

qt+1 = qt − ηtα ∈ [B − ηtα,B + (1− α)Mt−1] ⊆ [−αMt, B + (1− α)Mt].

• If qt ∈ [−αMt−1, 0), then we must have Ct(Xt) = ∅. Then 1Yt ̸∈Ct(Xt) = 1, and so

qt+1 = qt + ηt(1− α) ∈ [−αMt−1, ηt(1− α)] ⊆ [−αMt, B + (1− α)Mt].

In all cases, then, (8) holds for t+ 1 in place of t, which completes the proof.

A.2. Proof of 10

We need to prove that Zt converges almost surely (note that the limit of Zt may be a random variable). For each t ≥ 1, we
have

P (Yt ∈ Ct(Xt) | {(Xr, Yr)}r<t) = P (st(Xt, Yt) ≤ qt | {(Xr, Yr)}r<t) = Coveraget(qt),

since qt and st are functions of {(Xr, Yr)}r<t and are therefore independent of (Xt, Yt) ∼ P . This proves that Zt is a
martingale with respect to the filtration generated by the sequence of data points. We also have supt≥1 Var(Zt) < ∞, since
we have assumed

∑∞
t=1 η

2
t < ∞. This means that Zt is a uniformly integrable martingale, and therefore, Zt converges

almost surely (to some random variable), by Doob’s second martingale convergence theorem.

A.3. Proofs of Corollaries 1 and 2

As for the theorems, it suffices to prove Corollary 2, since Corollary 1 is simply a special case.

Using the notation defined in the proof of Theorem 4, suppose that events EZ and Es both hold. Now we need to show
that Coveraget(qt) → 1 − α holds as well. Fix any ϵ > 0. Since s(X,Y ) has a continuous distribution, the map
q 7→ Coverage(q) is continuous, and so we can find some δ > 0 such that

|Coverage(q)− Coverage(q∗)| ≤ ϵ/2 for all q ∈ q∗ ± δ.

Moreover, Coverage(q∗) = 1−α, since the distribution of s(X,Y ) is continuous and q∗ is its (1−α)-quantile, so we have

|Coverage(q)− (1− α)| ≤ ϵ/2 for all q ∈ q∗ ± δ.

Next, by Theorem 4, for all sufficiently large t, we have

|qt − q∗| ≤ δ.

By definition of the event Es, for all sufficiently large t we have

|Coveraget(q∗ − δ)− Coverage(q∗ − δ)| ≤ ϵ/2

and
|Coveraget(q∗ + δ)− Coverage(q∗ + δ)| ≤ ϵ/2.

Then, combining all of these calculations, for all sufficiently large t we have

Coveraget(qt) ≥ Coveraget(q
∗ − δ) ≥ Coverage(q∗ − δ)− ϵ/2 ≥ (1− α− ϵ/2)− ϵ/2 = 1− α− ϵ,

where the first step holds since qt ≥ q∗ − δ, and q 7→ Coveraget(q) is nondecreasing. Similarly, for all sufficiently large t
it holds that

Coveraget(qt) ≤ 1− α+ ϵ.

Since ϵ > 0 is arbitrary, this completes the proof.

12
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A.4. Proof of Proposition 2

By Lemma 1, qt ∈ [−αc,B+(1−α)c] for all t (since ηt ≤ c for all t). Since q∗ ∈ [0, B], we therefore have |qt−q∗| ≤ B+c
almost surely for all t. We also have 2γδ ≤ 1 and δ ≤ B ≤ B + c, since the density of s(X,Y ) is supported on [0, B] and
must integrate to 1.

Next, by the assumptions of the proposition, for any qt ≥ q∗, if qt ≤ q∗ + δ then

Coverage(qt) ≥ 1− α+ γ(qt − q∗)

while if qt > q∗ + δ then
Coverage(qt) ≥ Coverage(q∗ + δ) ≥ 1− α+ γδ.

Either way, then, if qt ≥ q∗ then

Coverage(qt) ≥ (1− α) + (qt − q∗) · γδ

B + c
.

A similar calculations shows that if qt ≤ q∗, then

Coverage(qt) ≤ (1− α)− (q∗ − qt) ·
γδ

B + c
.

Defining a = γδ
B+c > 0, we therefore have

Coverage(qt)− (1− α)

qt − q∗
≥ a (14)

whenever qt ̸= q∗. Note that we must have a ≤ 1/c, by construction.

Next, from the update step (4), we have

qt+1 − q∗ = (qt − q∗) + ηt
(
(1− α)− 1Yt∈Ct(Xt)

)
.

Since P (Yt ∈ Ct(Xt) | {(Xr, Yr)}r<t) = Coverage(qt), we then calculate

E [qt+1 − q∗ | {(Xr, Yr)}r<t] = (qt − q∗) + ηt
(
(1− α)− Coverage(qt)

)
,

and
Var
(
qt+1 − q∗ | {(Xr, Yr)}r<t

)
= η2t · Coverage(qt) · (1− Coverage(qt)) ≤ η2t /4.

Therefore,

E
[
(qt+1 − q∗)2

∣∣ {(Xr, Yr)}r<t

]
≤
(
(qt − q∗) + ηt

(
(1− α)− Coverage(qt)

))2
+ η2t /4

≤ (qt − q∗)2 · (1− aηt)
2 + η2t /4,

where the last step holds by (14) above. After marginalizing, then,

E
[
(qt+1 − q∗)2

]
≤ E

[
(qt − q∗)2

]
· (1− aηt)

2 + η2t /4.

Next recall ηt = ct−1/2−ϵ for each t. Fix some T ≥ 1 that satisfies T 1/2−ϵ ≥ 1/2+ϵ
ac . First, since |qt − q∗| ≤ B + c for all

t as above, by choosing b ≥ (B + c)2T 1/2+ϵ we must have (qt − q∗)2 ≤ bt−1/2−ϵ for all t ≤ T , almost surely. Next, for
each t ≥ T , we proceed by induction. Assume E

[
(qt − q∗)2

]
≤ bt−1/2−ϵ. Then

E
[
(qt+1 − q∗)2

]
≤ E

[
(qt − q∗)2

]
· (1− aηt)

2 + η2t /4

= E
[
(qt − q∗)2

]
(1− 2aηt) +

(
E
[
(qt − q∗)2

]
· a2 + 1/4

)
η2t

≤ bt−1/2−ϵ
(
1− 2act−1/2−ϵ

)
+ ((B + c)2a2 + 1/4)c2t−1−2ϵ

= bt−1/2−ϵ − 2abct−1−2ϵ + ((B + c)2a2 + 1/4)c2t−1−2ϵ

≤ b
(
t−1/2−ϵ − act−1−2ϵ

)
,

13
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Figure 3. Density plots of results on M4 datasets. These plots show the same quantities as in Table 1, but now as histograms over the
time-series in M4.

method coverage variance MSE infinite sets

DTACI 0.895491 4.107740 5.439935 0.036584
decay+adapt 0.885174 1.144337 1.967552 0.005011
decaying 0.900495 1.320579 2.366297 0.006883
fixed 0.901636 1.580243 2.922989 0.011179

Table 1. Table of results on M4 datasets. The table shows average results over all time series in the dataset—thus, all columns should
be interpreted on average over time-series in M4. The coverage column displays the long-run coverage. The variance column shows the
variance of the quantile normalized by the variance of the score sequence. The MSE column shows the squared error of the quantile
normalized by the variance of the score sequence. Finally, the infinite sets column shows the fraction of time steps in the sequence for
which the output is an infinite-width prediction set.

where the last step holds as long as we choose b ≥ ((B+c)2a2+1/4)c
a . And, since t ≥ T , we have

act−1−2ϵ = act1/2−ϵ · t−3/2−ϵ ≥ acT 1/2−ϵ · t−3/2−ϵ ≥ (1/2 + ϵ)t−3/2−ϵ ≥ t−1/2−ϵ − (t+ 1)−1/2−ϵ,

where the last step holds since t 7→ t−1/2−ϵ is convex, with derivative −(1/2 + ϵ)t−3/2−ϵ. Therefore, we have verified
that E

[
(qt+1 − q∗)2

]
≤ b(t+ 1)−1/2−ϵ, as desired.

B. Additional experiments
We compare against two additional methods: first, “decay+adapt”, a variant of our procedure that decays until it detects a
change point, then resets the learning rate. Change points are identified when at least Nmiscoverage consecutive miscoverage
events or Ncoverage events are observed in a row (we set these constants to 10 and 30 by default, respectively). When a
change point is identified, the learning rate is reset to B̂

(t−Tchangepoint)1/2+ϵ , where Tchangepoint is the time at which the
changepoint is detected and ϵ ∈ (0, 1/2). In these experiments, like in the main text, we set ϵ = 0.1.

We additionally compare against DTACI (Gibbs & Candès, 2022), an adaptive-learning-rate variant of ACI that uses
multiplicative weights to perform the updates (see (Gibbs & Candès, 2022) for further details.)

We compare these methods on a dataset of over 3000 time series subsampled from the M4 time series dataset. This dataset
is a diverse array of time series with varying numbers of samples and distribution shifts. Code is available in our GitHub
repository to run on all 100,000 time series in M4; here, we show results on the first 3000.

Finally, to showcase the conceptual differences between the standard decaying learning rate sequence and the ‘de-
cay+adapt’ method, we display a simulated score sequence in Figure 4. Here, the scores are simulated from N (µt, 1),
where µt = 0 for the first thousand time steps, µt = 2 for the second thousand, µt = 4 for the third thousand, and µt = 6
for the final thousand. Especially towards the end of the time series, ‘decay+adapt’ can more quickly adjust to the change
points.
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Figure 4. Simulation comparison of decaying step size and ‘decay+adapt’. The raw score sequence is shown in blue, the decaying
step size sequence is in orange, and ‘decay+adapt’ is in green.
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