
Practical Performance Guarantees for Pipelined DNN Inference

Aaron Archer * 1 Matthew Fahrbach * 1 Kuikui Liu 2 Prakash Prabhu 1

Abstract
We optimize pipeline parallelism for deep neural
network (DNN) inference by partitioning model
graphs into k stages and minimizing the running
time of the bottleneck stage, including commu-
nication. We give practical and effective algo-
rithms for this NP-hard problem, but our empha-
sis is on tackling the practitioner’s dilemma of
deciding when a solution is good enough. To this
end, we design novel mixed-integer programming
(MIP) relaxations for proving lower bounds. Ap-
plying these methods to a diverse testbed of 369
production models, for k ∈ {2, 4, 8, 16, 32, 64},
we empirically show that these lower bounds are
strong enough to be useful in practice. Our lower
bounds are substantially stronger than standard
combinatorial bounds. For example, evaluated via
geometric means across a production testbed with
k = 16 pipeline stages, our MIP formulations
raise the lower bound from 0.4598 to 0.9452, ex-
pressed as a fraction of the best partition found.
In other words, our improved lower bounds close
the optimality gap by a factor of 9.855x.

1. Introduction
Large-scale machine learning (ML) workloads rely on dis-
tributed systems and specialized hardware accelerators, e.g.,
graphics processing units (GPUs) and tensor processing
units (TPUs). Fully utilizing this hardware, however, re-
mains an increasingly important challenge. ML accelera-
tors have a small amount of fast memory co-located with
each computational unit (CU), and a much larger amount
of slow memory that is accessed via an interconnect shared
among the CUs. Achieving peak performance for deep neu-
ral network (DNN) training and inference requires the ML
compiler and/or practitioner to pay significant attention to
where intermediate data is stored and how it flows between
CUs. This work addresses pipeline partitioning for DNNs
to maximize inference throughput, with a particular focus

*Equal contribution 1Google 2MIT. Correspondence to:
Matthew Fahrbach <fahrbach@google.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

time

0 t 2t 3t 4t

1

2

3

s
t
a
g
e
s

(
C
U
s
)

i
23

o
23

w
23

i
13

w
13

o
13

i
22

o
22

w
22

i
12

w
12

o
12

i
32

o
32

w
32

i
11

w
11

o
11

i
21

w
21

o
21

i
31

w
31

o
31

i
41

w
41

o
41

Figure 1. Inference pipeline from startup to steady state with k = 3
stages. Each inference batch is represented with the same color as
it advances through the pipeline. Values ib`, wb`, ob` are the times
needed for stage ` to get its input for batch b, process it, and flush
its output. Stage 2 is the bottleneck, i.e., t = i∗2 + w∗2 + o∗2, and
limits system throughput. Empty space (white) denotes idle time.

on lower bound methods for proving per-instance approxi-
mation ratios.

ML inference handles two main types of data: model pa-
rameters (weights learned during training) and activations
(intermediate outputs of the model, e.g., from hidden layers).
Keeping activations in fast memory (e.g., SRAM) is critical,
so ML compilers often treat it as a hard constraint. Model
parameters can be streamed from slow memory, but caching
them in fast memory greatly boosts performance. When we
partition an end-to-end inference computation into a linear
pipeline with k stages and process each stage on a different
CU, we increase the amount of fast memory at our disposal
by a factor of k, allowing us to cache more parameters and
support larger activations (and hence larger models and/or
batch sizes). However, this introduces two main challenges:
(1) CUs must send their outputs downstream, often via a
slow and contended data channel, so we need to minimize
communication overhead; and (2) we must balance the run-
ning time across all stages of the partition since the overall
throughput is governed by the bottleneck stage.

1.1. Practioner’s dilemma
Suppose you are an ML engineer who has been tasked with
partitioning a model graph for pipelined inference as illus-
trated in Figure 1. We explain the practitioner’s dilemma
with a toy example. Assume you are searching for the best
way to partition a model among 8 processors, and you dis-
cover a solution where the bottleneck processor takes 10ms
to finish. In this case, the pipeline finishes one inference
every 10ms, so the throughput is 1 inference / 10ms = 100
inferences per second, and the latency of a single inference

1

Practical Performance Guarantees for Pipelined DNN Inference

is 8 x 10ms = 80ms. Is this a good solution? How do you
know there isn’t one that is ten times better?

Suppose now that you devise an approximation algorithm
and prove it has a worst-case approximation ratio of 2. Con-
gratulations, proving a worst-case bound is often no easy
feat! You run your algorithm on the same instance as before,
generating a partition with a bottleneck stage of 12ms, and
a lower bound of 6ms. Is this a good result? What if your
boss tells you that your company is about to spend millions
of dollars on hardware to run your inference pipeline. If
you can improve your 12ms solution all the way down to
6ms, then you can save half of this hardware or run twice as
many more inferences. This is great motivation to improve
your solution, but how do you know when to stop? It could
be that the lower bound is weak, not your solution.

Two things went wrong here. Your algorithm and your lower
bound are robust to all inputs, but you have a particular in-
stance in front of you, and that is all you care about. If you
could run a different heuristic to output a solution with a
bottleneck stage of 10ms, along with a lower bound certifi-
cate for this instance of 9.5ms, that means it is impossible
to improve the solution by more than 5%. Presumably, this
will make both you and your boss happier, and suggest that
you can now spend your time on something else.

In practice, we care about good performance on a whole
family of instances. Partitioning algorithms run inside ML
compilers, often with tight time constraints that preclude
computing strong lower bounds in the compiler itself. In
this case, one way to gain confidence in the quality of par-
titioning algorithms is to create a testbed of instances that
are representative of the ones we solve in practice, run our
algorithms to generate solutions and lower bounds offline,
and examine the approximation ratios we were able to prove
for these instances. If the average per-instance approxima-
tion ratio is 1.05 on the testbed, we argue this should give
us more confidence in the partitioning algorithm than would
the proof that a different algorithm has worst-case ratio 2.
If our lower bounds are fast enough to run within the com-
piler’s time limits, that is even better, as we can then bound
the suboptimality of each instance, rather than trusting that
the testbed results generalize to the instance at hand.

This ethos motivates the focus of our paper: we describe a
sequence of successively stronger (but costlier to compute)
lower bound methods that can be used to prove per-instance
lower bounds for the pipeline partitioning problem. We also
give algorithms for constructing partitions for the original
problem, and show that the cost of these partitions is close to
the lower bounds across a testbed of hundreds of production
models with a variety of architectures.

1.2. Our contributions and techniques
The main contributions of this work are as follows:

1. We formalize the max-throughput partitioning problem
(MTPP) for pipelined inference, and we prove that it
is NP-hard. We then formulate a novel mixed-integer
program (MIP) for MTPP, and study sparse relaxations
to obtain strong lower bounds (Section 3).

2. We give a fast and practical pipeline partitioning al-
gorithm called SliceGraph that combines dynamic
programming with a biased random-key genetic algo-
rithm (Section 4).

3. We present extensive experiments across real and syn-
thetic model graphs for a wide variety of ML archi-
tectures and workloads (Section 5). Using our (a
posteriori) MIP lower bounds, we demonstrate that
SliceGraph is highly effective in practice, e.g., for
k ≤ 16, our strongest lower bound is (on average)
95.5% of the SliceGraph solution, whereas the stan-
dard combinatorial lower bound is only 46.0%.

2. Preliminaries
To further build intuition, it is helpful to think of pipelined
inference as an assembly line where the model is split into
k stages and the inputs for each stage are produced earlier
in the assembly line. If t is the running time of the longest
stage (i.e., the bottleneck), each stage can finish its local
computation in parallel in time t. Every t units of time
we advance each batch one stage forward in the assembly
line (see Figure 1), so the end-to-end latency for a batch
of inferences is kt and the throughput of the system is 1/t
(i.e., one batch per t units of time). To maximize system
throughput, it is critical to the partition work in a way that
minimizes the bottleneck time t.

2.1. Computation graphs
An ML model is commonly represented as a computation
graph G = (V,E), where V is the set of node operations
(called ops) andE ⊆ V ×V are the data flow edges. Let n =
|V | and m = |E|. For simplicity, assume each op u outputs
one tensor consumed by (possibly many) downstream ops v,
which we represent by the edges (u, v). This corresponds to
a tensorflow.Graph (Abadi et al., 2016), and has analogs
in MLIR (Lattner et al., 2021), MXNet (Chen et al., 2015),
and PyTorch (Paszke et al., 2019).

We introduce a few node weights to help model the cost of
inference:

• work(v) is the running time of v ∈ V . This is typically
estimated with an analytic or learned cost model (Kauf-
man et al., 2021).

• sizeparam(v) is the memory footprint of the model pa-
rameters that v ∈ V uses. For example, if v is a matrix
multiplication op, sizeparam(v) is the storage cost for
the entries of the matrix.

2

Practical Performance Guarantees for Pipelined DNN Inference

u v

w

S T

1

1

1

1

1

1

100

20

f(P
3
)=102f(P

2
)=104

f(P
1
)=102

20

80

100

20

20

80

f(P
2
)=123

f(P
3
)=103

f(P
1
)=81

80 80

Figure 2. Partitioning computation graphs: (left) tensor cut property where io(S, T) = 2 because v and w consume the same tensor;
(middle) invalid partition because blocks P2 and P3 form a cycle in the quotient graph; (right) valid partition with block costs for k = 3.

• sizeout(v) is the size of the output of v (e.g., in bytes).

We use standard graph theory notation to denote dependen-
cies between nodes:

• N−(v) = {u ∈ V : (u, v) ∈ E} is the set of nodes
whose output is consumed by v.

• N+(v) = {w ∈ V : (v, w) ∈ E} is the set of nodes
that consume the output of v.

• N−(S) =
⋃
v∈S N

−(v) \ S and N+(S) =⋃
v∈S N

+(v) \ S extend the neighborhood notation
to sets of nodes.

The reason for excluding S from the neighborhoods will
become clear when we consider the inter-block communica-
tion costs for a partition of G.

2.2. Problem statement
Acyclic quotient graph constraint Let Pk(G) be the set
of partitions of V into k blocks (possibly empty) such that
the induced quotient graph of G is acyclic. Formally, let
P = {P1, P2, . . . , Pk} be a partition of V , i.e., P1 ∪ P2 ∪
· · ·∪Pk = V and Pi∩Pj = ∅ for all i 6= j. Since Pi can be
empty, we can think of partitioning V into at most k blocks.
For each v ∈ V , let [v]P denote the block in P containing v.
The quotient graph Q = (P,E′) for partition P has blocks
of P as its nodes and reduced edge set E′ = {([u]P , [v]P) :
(u, v) ∈ E and [u]P 6= [v]P }. We require Q to be acyclic
so that there is valid data flow when G is partitioned across
different processors.

Inter-block communication Let B be the bandwidth of
the interconnect between blocks. For disjoint sets S, T ⊆ V ,
the IO cost (in units of time) from S to T is

io(S, T) =
1

B

∑
v∈N−(T)∩S

sizeout(v). (1)

We overload singleton notation: io(u, v) = io({u}, {v}).

By summing over the set of producer ops v ∈ N−(T) ∩ S,
each tensor going from S to T is counted once, even if it

has many consumers in T . This is different from the cost of
a traditional edge-cut set since it considers only one edge
in each tensor edge equivalence class (see Figure 2). Re-
fining how the cost of communication is modeled is where
computation graph partitioning begins to deviate from more
familiar cut-based graph partitioning problems.

Streaming model parameters Each block is a computa-
tional unit with a fixed amount of fast memory, e.g., SRAM
for GPUs and multi-chip packages (Mei & Chu, 2016; Gao
et al., 2020; Dasari et al., 2021) and high-bandwidth memory
for TPUs (Jouppi et al., 2017; 2023). To achieve peak per-
formance, it is essential that all model parameters assigned
to a block be fully cached. Otherwise, some of these param-
eters must be streamed to the block during each inference
batch from slow memory, e.g., shared DRAM. Inter-block
bandwidth is typically at least an order of magnitude slower
than intra-block bandwidth (Dao et al., 2022), so we ignore
the communication between ops within a block and refer to
the time needed to stream parameters that spill over as the
overflow cost of a block.

There are two key factors for deciding if all model parame-
ters can be fully cached on a block: (1) the size of its fast
memory, and (2) the peak activation memory. We start by
describing the peak memory scheduling problem (Marchal
et al., 2019; Paliwal et al., 2020; Ahn et al., 2020; Lin et al.,
2021; Vee et al., 2021; Zhang et al., 2022; Fradet et al.,
2023; Jin et al., 2023). For a set of ops Pi, the peak memory
scheduling problem is to find a linear execution order of
v ∈ Pi minimizing the amount of working memory needed
for all intermediate computations. Once we know how much
fast memory to reserve for the activations, we allocate the
rest for caching parameters.

The overflow cost for a set of ops S ⊆ V on a block with M
fast memory, peak memory peak(S), and inter-block band-
width B is

overflow(S) =
(sizeparam(S) + peak(S)−M)

+

B
, (2)

where we use the notation x+ = max(x, 0).

3

Practical Performance Guarantees for Pipelined DNN Inference

Total block cost The total cost of a block with ops S ⊆ V
(i.e., its running time) in a pipeline partition is

f(S) =

input tensors︷ ︸︸ ︷
io(V \ S, S)+

∑
v∈S

work(v) + overflow(S)

+

output tensors︷ ︸︸ ︷
io(S, V \ S) . (3)

Putting everything together, we arrive at the following min-
max objective function.

Definition 2.1. For a computation graph G and number of
blocks k, the max-throughput partitioning problem (MTPP)
is

P ∗ = argmin
P∈Pk(G)

{
max
i∈[k]

f(Pi)

}
, (4)

where [k] = {1, . . . , k}. Let OPT = maxi∈[k] f(P
∗
i) de-

note the minimum bottleneck cost.

Remark 2.2. There are many more moving parts to ML per-
formance than partitioning model graphs—it is just one of
many ML compiler passes (e.g., op fusion, tensor sharding,
fine-grained subgraph partitioning, peak memory schedul-
ing). However, it is one of the highest-order components
with a significant impact on overall system efficiency.

3. Mixed-integer programming lower bounds
We first prove that MTPP is NP-hard and cannot have a fully
polynomial-time approximation scheme (FPTAS), unless
P = NP, by giving a reduction from the minimum makespan
scheduling problem on k identical parallel processors, which
is strongly NP-hard (Hochbaum & Shmoys, 1987). We defer
all proofs in this section to Appendix A.

Theorem 3.1. For k = 2, MTPP is NP-hard. Furthermore,
there does not exist a fully polynomial-time approximation
scheme for MTPP, unless P = NP.

In light of this hardness, we formulate a novel mixed-integer
program to solve MTPP and focus on deriving strong lower
bounds. Even for medium-sized models and moderate val-
ues of k, the exact program pushes the limits of MIP solvers,
so we relax the formulation to give strong lower bounds
while using fewer variables, constraints, and non-zeros. The
exact MIP in (5) and its relaxations are the main theoreti-
cal contribution of our work, allowing us to provide strong
per-instance approximation guarantees.

To simplify the presentation, we ignore the overflow terms
in (3) since peak(S) depends on how the ops in a block
are scheduled (Paliwal et al., 2020). This is equivalent to
reserving a buffer for activations in each block and treating
the remaining amount of fast memory as the new budget.

3.1. Exact MIP formulation
We now present the MIP for solving MTPP in Figure 3. The
main idea is to number the blocks from 1 to k in DAG order
(i.e., a topological order of the induced quotient graph) and
use binary decision variables to assign nodes to blocks.

Decision variables There are O(nk) binary variables:

• xvb indicates whether node v ∈ V is assigned to block
b ∈ [k].

• yvb indicates whether node v ∈ V is assigned to some
block at or before b. For any feasible assignment, this
means yvk = 1, for all v ∈ V , and yv(b−1) ≤ yvb,
for all v ∈ V, b ∈ [k]. We let yv0 = 0 for notational
convenience.

• cub indicates whether any edge (u, v) ∈ E, correspond-
ing to the tensor that u produces, flows into or out of
block b.

All decision variables are nominally binary in (12), but we
can relax the x and c variables to [0,∞) since they naturally
lie in {0, 1} whenever the y variables do.

The x and y variables represent the same information in two
ways, and hence are redundant. Using both, however, allows
us to express some constraints more naturally. In our code,
we use (11) to eliminate each occurrence of xvb. Doing so
offers two advantages relative to eliminating the y variables.
First, the tensor cut constraints require O(mk2) non-zeros
if expressed purely in terms of the x variables. Second, and
more crucial, branching on the y variables works in tandem
with the acyclicity constraints to create more asymmetry in
the branch-and-bound process, allowing the MIPs to solve
faster compared to branching on the x variables.

Objective value The auxiliary bottleneck variable al-
lows us to minimize the max block cost via constraint (6).
The blockb variables defined in (7) capture the total node
cost assigned to block b plus the induced cut costs, counting
each tensor edge in the cut-set exactly once.

DAG constraints Given the “completed-by-block b” vari-
ables yvb, we use constraint (8) to force the quotient graph
to be acyclic. If (u, v) ∈ E and v is assigned to block b or
earlier, the DAG constraints guarantee that u is also assigned
to block b or earlier, so (8) holds, and conversely.

Tensor edge-cut constraints Each tensor τ can be repre-
sented by multiple edges in G, each with the same source
node u(τ). If any of these edges is cut by block b, we must
set cub = 1. Constraint (9) captures the case where an edge
(u, v) flows into block b from the left—namely that when v
is assigned to block b (i.e., xvb = 1) and u is assigned to an
earlier block (i.e., yu(b−1) = 1), then cub is forced to be 1,

4

Practical Performance Guarantees for Pipelined DNN Inference

minimize bottleneck (5)
such that bottleneck ≥ blockb ∀b ∈ [k] (6)

blockb =
∑
v∈V

work(v) · xvb +
1

B

∑
u∈V

sizeout(u) · cub ∀b ∈ [k] (7)

yub ≥ yvb ∀(u, v) ∈ E, b ∈ [k] // DAG constraints (8)
cub ≥ yu(b−1) + xvb − 1 ∀(u, v) ∈ E, b ∈ [k] // cut input tensors (9)
cub ≥ xub − yvb ∀(u, v) ∈ E, b ∈ [k] // cut output tensors (10)
cub ≥ 0 ∀(u, v) ∈ E, b ∈ [k]

yv(b−1) ≤ yvb ∀v ∈ V, b ∈ [k]

yv0 = 0 ∀v ∈ V // convenience variable

yvk = 1 ∀v ∈ V // boundary condition

xvb = yvb − yvb−1 ∀v ∈ V, b ∈ [k] (11)
yvb, xvb, cvb ∈ {0, 1} ∀v ∈ V, b ∈ [k] (12)

Figure 3. Exact MIP for solving MTPP, where variables xvb ∈ {0, 1} indicate whether node v ∈ V is assigned to block b ∈ [k].

and otherwise it is not. For outgoing edges, if u is assigned
to block b (i.e., xub = 1) and v is assigned to a later block
(i.e., yvb = 0), then constraint (10) forces cub = 1.

Theorem 3.2. The mixed-integer program in Eq. (5) solves
the max-throughput partitioning problem using O(nk) vari-
ables, O(mk) constraints, and O(mk) non-zeros.

3.2. Relaxing to a three-superblock formulation
If the exact MIP is too difficult to solve, then we can use a
relaxed “three-superblock” formulation whose size does not
depend on k to compute a lower bound for OPT. The idea
is to imagine the bottleneck block, consolidate all earlier
blocks into one superblock, and all later blocks into a third
superblock. Then, we use a combinatorial lower bound L to
ensure that the middle block is sufficiently expensive.

Lemma 3.3 (Simple lower bound). For any computation
graph G = (V,E), cost function work : V → R≥0, and
partition of V into k ≥ 1 blocks, there exists a block with at
least L units of work, where

L = max

(
max
v∈V

work(v),
1

k

∑
v∈V

work(v)

)
≤ OPT. (13)

This formulation is the same as the exact MIP in Figure 3,
for k = 3, except for two small changes:

1. Add a constraint that forces the node cost of block 2 to
be at least the simple lower bound in Lemma 3.3:∑

v∈V
work(v) · xv2 ≥ L. (14)

2. Remove block1, block3, and all constraints involving
them from the MIP. This simplifies the objective to

minimize block2,

as the middle block aims to model the bottleneck cost.

Observe that the true bottleneck block can hide inside of
superblocks 1 or 3, and hence would not contribute to the
objective. Therefore, this relaxation can give strictly weaker
lower bounds than the exact MIP.

Corollary 3.4. For any computation graph G and number
of blocks k ≥ 1, the three-superblock MIP uses O(n) vari-
ables, O(m) constraints, and O(m) non-zeros, and gives a
lower bound for the MTPP objective.

3.3. “Guess the bottleneck block” formulation
The three-superblock MIP is agnostic about which block in
the original instance (represented by block 2 in the relax-
ation) is the one with work ≥ L. Building on this, another
approach is to guess that the bottleneck is block j ∈ [k],
and get a stronger lower bound LBj under this assumption.
Since the guess could be wrong, we must compute LBj for
all j ∈ [k] and take minj∈[k] LBj as the valid lower bound
for OPT.

The formulation for LBj is the same as the exact MIP with
k = 3 in Figure 3, except we add constraint (14) and make
one other change. For b ∈ {1, 3}, the right-hand side of (7)
defining blockb is the combined node cost and cut cost for
superblock b, excluding the tensors that are cut by blocks
in the same superblock and counting tensors that enter su-
perblock 3 only once, even if their edges terminate in dif-

5

Practical Performance Guarantees for Pipelined DNN Inference

ferent blocks within superblock 3. The worst block in the
superblock is at least as expensive as the average block,
so we can replace the constraints in (6) with the following
lower bounds:

bottleneck ≥ 1

j − 1
· block1

bottleneck ≥ 1

k − j
· block3.

If j = 1, this forces xv1 = 0 for all v ∈ V ; and if j = k,
this forces xv3 = 0 for all v ∈ V . Said differently, nodes
cannot be assigned before block 1 or after block k. If k = 3,
then there is no reason to prefer one relaxation over the other
(i.e., Section 3.2 and Section 3.3), but for k � 3, the two
relaxations use substantially fewer variables and constraints
than the exact formulation in Section 3.1.

4. Algorithm
We now present our approach to pipeline partitioning. This
algorithm is simple by design and runs inside ML compilers
with tight latency requirements (e.g., XLA for TensorFlow).
In Section 5, we prove that it is near-optimal across a pro-
duction testbed by computing per-instance approximation
guarantees using our new MIP formulations.

4.1. Reducing to a search over topological orderings
We first reduce MTPP to a search over topological orderings
as follows:

1. An optimal partition P ∗ in Eq. (4) has a corresponding
topological order π∗.

2. There exist node weights x∗ ∈ [0, 1]n such that Kahn’s
topological sorting algorithm with tiebreaking on x∗

recovers π∗ (see Appendix B.1).

3. For any topological order π ∈ SV , we can efficiently
compute an optimal segmentation of π via dynamic
programming. By slicing a topological order this way,
we easily satisfy the acyclicity constraint.

One method for searching over topological orders in Item 2
is to sample random node weights. Another is to learn the
weights using a genetic algorithm or reinforcement learning.
To implement the dynamic program in Item 3 efficiently, we
use a fast data structure for segment cost queries.

Lemma 4.1. There is a SegmentCostDataStructure that
takes computation graph G = (V,E) and topological order
π ∈ SV as input, and supports the following operations:

• Initialize(G, π): Preprocesses the graph inO(n2+
m log2(n)) time.

• Query(`, r): Returns f({vπ(`), . . . , vπ(r)}) in Eq. (3)
in constant time, after initialization.

Algorithm 1 Optimal MTPP slicing of topological order π
into at most k blocks.

1: function SliceGraph(G, k, π)
2: // Partitions the full topological order π
3: Initialize segment_cost data structure for (G, π)
4: return DP(segment_cost, n, k)

5: function DP(segment_cost, r, k′)
6: // Recursively partitions the first r nodes

optimally into k′ blocks
7: if k′ = 1 then
8: return segment_cost.Query(1, r)
9: ans←∞

10: for ` = 1 to r do
11: a← DP(segment_cost, `, k′ − 1)
12: b← segment_cost.Query(`+ 1, r)
13: ans← min(ans,max(a, b))

14: return ans

All proofs for this section are deferred to Appendix B, but
at a high level, SegmentCostDataStructure computes the
cost of each [`, r] slice of the topological order π (counting
each tensor in a cut once) using a sliding window algorithm
and two-dimensional Fenwick tree (Mishra, 2013).

Lemma 4.2. SliceGraph runs in time O(n2k +m log2 n)
and finds an optimal segmentation of topological order π
into at most k blocks for MTPP.

4.2. Searching over topological orders
Any topological order π ∈ SV can be realized using Kahn’s
algorithm with the right node priorities x ∈ [0, 1]n. Thus,
we now focus on methods for finding good vectors of node
weights. Note that we only recast MTPP into a search
over topological orders to bypass the acyclic quotient graph
constraint—it is still provably hard to find an optimal topo-
logical order. Our next result formalizes this observation.

Theorem 4.3. There exist node priorities x∗ ∈ [0, 1]n such
that Kahn’s algorithm with tie-breaking outputs a topologi-
cal order π∗ for which SliceGraph(G, k, π∗) = OPT.

Since it is NP-hard to find an optimal topological order π∗,
we explore heuristics that are fast and work well in practice.

Random weights. Each weight xi ∼ U(0, 1) is drawn i.i.d.
from the uniform distribution. Note that this is not the same
as sampling topological orders uniformly at random, which
has its own rich history (Matthews, 1991; Bubley & Dyer,
1999; Huber, 2006; García-Segador & Miranda, 2019).

Biased random-key genetic algorithm (BRKGA). BRKGA
is a problem-agnostic metaheuristic that evolves real-valued
vectors x ∈ [0, 1]N (called chromosomes) using a decoder
function that links BRKGA’s evolutionary rules to the prob-
lem at hand (Gonçalves & Resende, 2011). We use BRKGA

6

Practical Performance Guarantees for Pipelined DNN Inference

to optimize the node priorities x by evaluating the quality of
its induced optimal segmentation P (x). In the language of
genetic algorithms, the fitness of x is the MTPP objective
maxi∈[k] fP (x)(i). We present this decoder in Algorithm 2.

Algorithm 2 BRKGA decoder using Kahn’s algorithm and
SliceGraph to partition G.

1: function BrkgaSortAndSliceDecoder(G, k, chromo-
some x ∈ [0, 1]n of node priorities)

2: π ← KahnWithNodePriorities(G,x)
3: return SliceGraph(G, k, π)

5. Experiments
We now present an empirical study of our MIP lower bound
formulations. To motivate this, we revisit the practitioner’s
dilemma (Section 1.1) with a case study for a specific model
in our production dataset called net10_new_ckpt-4000009
for k = 4 blocks. Suppose you want to optimize this model
to run efficiently in production on millions of dollars worth
of hardware. You use BrkgaSortAndSliceDecoder to par-
tition the model, and the best solution you find has a bottle-
neck time of 3454.79. Is this good or bad? How hard should
you work to improve it?

Since the units are arbitrary, we rescale the solution to have
value 1. Applying Lemma 3.3, you prove the simple com-
binatorial lower bound of 0.2775 for this instance (in the
rescaled units). This is not enough to satisfy your boss since
you could hypothetically reduce your costs by 72%. Next
you turn to the bottleneck lower bound in Section 3.2,
which computes to 0.6570 (i.e., 2.37x stronger than simple).
This makes your boss less cranky, but there is still an un-
comfortable gap, so you compute bottleneck-guess in
Section 3.3, yielding another 1.39x increase in your lower
bound to 0.9152. This is enough to satisfy your boss, but
for your own curiosity you run Gurobi on the exact MIP,
and arrive at a lower bound of 0.9913. As it turns out, your
original solution was nearly optimal the whole time, and you
just didn’t know it! However, this increasing sequence of
certificates—obtained with increasing computational effort—
steadily increased your confidence.

Our experiments repeat this exercise for hundreds of com-
putation graphs across our production testbed, for all k ∈

{2, 4, 8, 16, 32, 64}. We rescale each lower bound to repre-
sent it as a fraction of the best solution value found, and then
we summarize the quality of the lower bounds in Table 1 by
taking their geometric mean across all graphs.

Datasets Our production testbed is a superset of the mod-
els in the experiments of Xie et al. (2022). This includes 369
computation graphs from many application domains. (e.g.,
BERT, ResNet, MobileNet, vision models, LSTMs, speech
encoders, and WaveRNN). Most of these graphs are publicly
available, but we cannot publish the node and edge weights
as they come from an internal proprietary cost model.

We also run the same experiment on 1000 publicly available
synthetic model graphs from REGAL (Paliwal et al., 2020).
See Appendix C.2 for the results and more details.

Setup We solve the MIPs using a combination of Gurobi
v9.0.2 (Gurobi Optimization, LLC, 2023) and SCIP v7.0.1
(Bestuzheva et al., 2021). Each instance is run on a heteroge-
neous cluster containing, e.g., Intel Xeon Platinum 8173M
@ 2.00GHz processors, and the best lower bound proven in
a fixed time limit is reported.

Partitioning algorithms We compare several topological
sort heuristics for SliceGraph: random weights, BRKGA,
and minimum linear arrangement. Overall, BRKGA worked
best, so we use its solutions to normalize the lower bounds
in Table 1. We provide more details in Appendix C.1.

Results We discuss several interesting properties about
the results in Table 1. First, bottleneck-guess and exact
produce the same lower bounds for k = 2. This is not a
coincidence since the MIPs are equivalent for k = 2. For
larger values of k, bottleneck-guess MIPs can “cheat”
in two ways: (1) by ignoring communication costs within
the superblocks, and (2) effectively counting the total work
of each superblock as if it is smeared uniformly across its
blocks. As the value of k increases, so does the opportunity
to cheat since a larger fraction of the communication cost is
ignored and the smearing effect is more pronounced. Hence,
bottleneck-guess loses ground relative to exact. The ad-
vantage of bottleneck-guess over bottleneck is that it
considers edges crossing the superblock boundary. However,
larger values of k dilute this advantage since the communi-
cation costs get amortized over a larger number of blocks im-

Table 1. Geometric means of the best available lower bound from the MIP hierarchy, normalized by the best solution found using BKRGA,
across the production dataset.

Lower bound k = 2 k = 4 k = 8 k = 16 k = 32 k = 64

simple (Lemma 3.3) 0.8340 0.6627 0.5236 0.4598 0.4435 0.4401
bottleneck 0.9597 0.7911 0.6481 0.5770 0.5590 0.5543
bottleneck-guess 0.9901 0.8446 0.6601 0.5780 0.5593 0.5543
exact 0.9901 0.9737 0.9588 0.9452 0.8749 0.7874

7

Practical Performance Guarantees for Pipelined DNN Inference

Figure 4. Running times of SliceGraph and different MIP lower bound computations across the production models. Each point denotes a
run for one graph, color-coded to denote SliceGraph partitioning vs. bottleneck, bottleneck-guess, and exact lower bounds. The
bottleneck-guess times are summed across all k MIP instances involved. Each plot is for a different value of k. In order to facilitate
visual comparisons across the plots, all three employ the same y-axis. Some of the data tops out at 3600 seconds since that is where we set
the MIP time limit.

plicitly contained in each superblock. By k = 64, the lower
bounds produced by bottleneck-guess and bottleneck
are the same.

Interestingly, the additive gaps between bottleneck and
simple in Table 1 hold for each k, hovering near 0.12. This
makes sense because the advantage of bottleneck is that it
considers communication costs while simple does not, and
its treatment of these costs does not depend on k.

The running times show that bottleneck-guess and exact
are about four orders of magnitude slower than SliceGraph
in Figure 4. Therefore, this MIP-based analysis is most
valuable for offline analysis, rather than running as part
of the compiler. For k ≤ 16, bottleneck-guess run-
ning times are roughly on par with exact. We note that
bottleneck-guess in Figure 4 depicts the sum of the run-
ning times for all k sub-MIP solves when guessing the k
bottlenecks to compute the lower bound. Since these solves
are independent, they could be run in parallel to achieve a
faster wall-clock time. Further, MIP solve times tend to be
strongly superlinear in the problem size (observe the log-log
scale), so we would expect bottleneck-guess to show an
advantage even with total running time for larger k. Indeed,
this behavior clearly emerges by k = 64.

6. Related work
Model parallelism Two of the seminal works on pipeline
parallelism for machine learning are GPipe (Huang et al.,
2019) and PipeDream (Narayanan et al., 2019; 2021). These
works focus on scaling up DNN training and have spawned
a long list of related work: torchgpipe (Kim et al., 2020),
FPDeep (Wang et al., 2020), Pipemare (Yang et al., 2021),
TeraPipe (Li et al., 2021), BaPipe (Zhao et al., 2022),
SAPipe (Chen et al., 2022), BPipe (Kim et al., 2023), syn-
chronous pipeline planning (Luo et al., 2022), scheduling in
heterogenous settings (Park et al., 2020; Yuan et al., 2022),

breadth-first pipeline parallelism (Lamy-Poirier, 2023), and
SWARM parallelism (Ryabinin et al., 2023).

Of these works, PipeDream considers the most similar math-
ematical model (Narayanan et al., 2019, Section 3.1). There
is some overlap with MTPP (e.g., a min-max running time
objective), but there are also major differences:

1. PipeDream assumes a single topological order and that
the induced quotient graph is a path graph. This means
IO can only flow between adjacent blocks instead of to
shared memory for downstream consumers.

2. PipeDream uses communication-work concurrency, so
the running time of a processor executing ops S ⊆ V
is max(work(S), io(V \ S, S) + io(S, V \ S)).

3. PipeDream supports data parallelism and is designed to
use replicated workers for training. The model weight
updates for replicated workers use weight stashing and
a syncing technique that is not necessary for inference.

Another technique for going beyond data parallelism is ten-
sor sharding, e.g., Mesh TensorFlow (Shazeer et al., 2018),
Megatron-LM (Shoeybi et al., 2019), GShard (Lepikhin
et al., 2021), and GSPMD (Xu et al., 2021).

Acyclic graph partitioning The origins of acyclic graph
partitioning are in multiprocessor scheduling (Garey & John-
son, 1979). There have since been several key applications
for pipeline parallelism (Cong et al., 1994; Gordon et al.,
2006; Sanchez et al., 2011). The computational hardness
and inapproximability of balanced acyclic partitioning has
recently been revisited in Moreira et al. (2017); Papp et al.
(2023). Some practical methods for acyclic graph partition-
ing use graph coarsening (Moreira et al., 2020; Herrmann
et al., 2019; Popp et al., 2021) and MIP with branch-and-
bound solvers (Nossack & Pesch, 2014; Albareda-Sambola
et al., 2019; Özkaya & Çatalyürek, 2022).

8

Practical Performance Guarantees for Pipelined DNN Inference

Conclusion
This work formalizes MTPP for pipelined DNN inference,
proposes novel mixed-integer programs for computing lower
bounds for this partitioning objective, and presents fast and
effective partitioning algorithms for maximizing inference
throughput. Our lower bounds allow us to prove strong a
posteriori approximation guarantees, which can be invalu-
able in practice since countless software engineering hours
are spent partitioning mission-critical ML models across ac-
celerators to improve system efficiency. Without good lower
bounds, it is often unclear if practitioners should continue
searching for better partitions, or if they are near optimal-
ity and just don’t know it. Our MIP formulations allow us
to compute certificates that act as a stopping condition on
further investment of software engineering time.

Impact statement
We present work that advances the field of ML efficiency.
There are many potential societal consequences of our work,
none which we feel must be specifically highlighted here.

Acknowledgements
We thank Dong Hyuk Woo for encouraging us to research
pipeline partitioning algorithms. Part of this work was done
while Kuikui Liu was an intern at Google Research.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean,

J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al.
TensorFlow: A system for large-scale machine learning.
In 12th USENIX Symposium on Operating Systems De-
sign and Implementation, pp. 265–283, 2016.

Ahn, B. H., Lee, J., Lin, J. M., Cheng, H.-P., Hou, J., and Es-
maeilzadeh, H. Ordering chaos: Memory-aware schedul-
ing of irregularly wired neural networks for edge devices.
Proceedings of Machine Learning and Systems, 2:44–57,
2020.

Albareda-Sambola, M., Marín, A., and Rodríguez-Chía,
A. M. Reformulated acyclic partitioning for rail-rail con-
tainers transshipment. European Journal of Operational
Research, 277(1):153–165, 2019.

Bestuzheva, K., Besançon, M., Chen, W.-K., Chmiela, A.,
Donkiewicz, T., van Doornmalen, J., Eifler, L., Gaul,
O., Gamrath, G., Gleixner, A., Gottwald, L., Graczyk,
C., Halbig, K., Hoen, A., Hojny, C., van der Hulst, R.,
Koch, T., Lübbecke, M., Maher, S. J., Matter, F., Mühmer,
E., Müller, B., Pfetsch, M. E., Rehfeldt, D., Schlein,
S., Schlösser, F., Serrano, F., Shinano, Y., Sofranac, B.,
Turner, M., Vigerske, S., Wegscheider, F., Wellner, P.,
Weninger, D., and Witzig, J. The SCIP Optimization Suite

8.0. Technical report, Optimization Online, December
2021. URL http://www.optimization-online.org/
DB_HTML/2021/12/8728.html.

Bubley, R. and Dyer, M. Faster random generation of linear
extensions. Discrete Mathematics, 201(1):81–88, 1999.

Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao,
T., Xu, B., Zhang, C., and Zhang, Z. MXNet: A flexible
and efficient machine learning library for heterogeneous
distributed systems. arXiv preprint arXiv:1512.01274,
2015.

Chen, Y., Xie, C., Ma, M., Gu, J., Peng, Y., Lin, H., Wu, C.,
and Zhu, Y. SAPipe: Staleness-aware pipeline for data
parallel DNN training. In Advances in Neural Information
Processing Systems, 2022.

Cong, J., Li, Z., and Bagrodia, R. Acyclic multi-way par-
titioning of boolean networks. In Proceedings of the
31st Annual Design Automation Conference, pp. 670–675,
1994.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. FlashAt-
tention: Fast and memory-efficient exact attention with
IO-awareness. Advances in Neural Information Process-
ing Systems, 35:16344–16359, 2022.

Dasari, U. K., Temam, O., Narayanaswami, R., and Woo,
D. H. Apparatus and mechanism for processing neural
network tasks using a single chip package with multiple
identical dies, March 2 2021. US Patent 10,936,942.

Fradet, P., Girault, A., and Honorat, A. Sequential schedul-
ing of dataflow graphs for memory peak minimization.
In Proceedings of the 24th ACM SIGPLAN/SIGBED In-
ternational Conference on Languages, Compilers, and
Tools for Embedded Systems, pp. 76–86, 2023.

Gao, Y., Liu, Y., Zhang, H., Li, Z., Zhu, Y., Lin, H., and
Yang, M. Estimating GPU memory consumption of deep
learning models. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineer-
ing, pp. 1342–1352, 2020.

García-Segador, P. and Miranda, P. Bottom-up: A new
algorithm to generate random linear extensions of a poset.
Order, 36(3):437–462, 2019.

Garey, M. R. and Johnson, D. S. Computers and Intractabil-
ity. W. H. Freeman, 1979.

Gonçalves, J. F. and Resende, M. G. Biased random-key ge-
netic algorithms for combinatorial optimization. Journal
of Heuristics, 17(5):487–525, 2011.

Gordon, M. I., Thies, W., and Amarasinghe, S. Exploit-
ing coarse-grained task, data, and pipeline parallelism

9

http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://www.optimization-online.org/DB_HTML/2021/12/8728.html

Practical Performance Guarantees for Pipelined DNN Inference

in stream programs. ACM SIGPLAN Notices, 41(11):
151–162, 2006.

Gurobi Optimization, LLC. Gurobi Optimizer Reference
Manual, 2023. URL https://www.gurobi.com.

Herrmann, J., Ozkaya, M. Y., Uçar, B., Kaya, K., and
Çatalyürek, Ü. V. V. Multilevel algorithms for acyclic
partitioning of directed acyclic graphs. SIAM Journal on
Scientific Computing, 41(4):A2117–A2145, 2019.

Hochbaum, D. S. and Shmoys, D. B. Using dual approx-
imation algorithms for scheduling problems theoretical
and practical results. Journal of the ACM, 34(1):144–162,
1987.

Huang, Y., Cheng, Y., Bapna, A., Firat, O., Chen, D., Chen,
M., Lee, H., Ngiam, J., Le, Q. V., Wu, Y., et al. GPipe:
Efficient training of giant neural networks using pipeline
parallelism. Advances in Neural Information Processing
Systems, 32, 2019.

Huber, M. Fast perfect sampling from linear extensions.
Discrete Mathematics, 306(4):420–428, 2006.

Jin, C., Purohit, M., Svitkina, Z., Vee, E., and Wang, J. R.
New tools for peak memory scheduling. arXiv preprint
arXiv:2312.13526, 2023.

Jouppi, N., Kurian, G., Li, S., Ma, P., Nagarajan, R., Nai, L.,
Patil, N., Subramanian, S., Swing, A., Towles, B., et al.
TPU v4: An optically reconfigurable supercomputer for
machine learning with hardware support for embeddings.
In Proceedings of the 50th Annual International Sympo-
sium on Computer Architecture, pp. 1–14, 2023.

Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal,
G., Bajwa, R., Bates, S., Bhatia, S., Boden, N., Borchers,
A., et al. In-datacenter performance analysis of a tensor
processing unit. In Proceedings of the 44th Annual Inter-
national Symposium on Computer Architecture, pp. 1–12,
2017.

Kahn, A. B. Topological sorting of large networks. Com-
munications of the ACM, 5(11):558–562, 1962.

Kaufman, S., Phothilimthana, P., Zhou, Y., Mendis, C., Roy,
S., Sabne, A., and Burrows, M. A learned performance
model for tensor processing units. Proceedings of Ma-
chine Learning and Systems, 3:387–400, 2021.

Kim, C., Lee, H., Jeong, M., Baek, W., Yoon, B., Kim, I.,
Lim, S., and Kim, S. torchgpipe: On-the-fly pipeline
parallelism for training giant models. arXiv preprint
arXiv:2004.09910, 2020.

Kim, T., Kim, H., Yu, G.-I., and Chun, B.-G. BPipe:
Memory-balanced pipeline parallelism for training large
language models. International Conference on Machine
Learning, pp. 16639–16653, 2023.

Lamy-Poirier, J. Breadth-first pipeline parallelism. Proceed-
ings of Machine Learning and Systems, 5, 2023.

Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis,
A., Pienaar, J., Riddle, R., Shpeisman, T., Vasilache, N.,
and Zinenko, O. MLIR: Scaling compiler infrastructure
for domain specific computation. In 2021 IEEE/ACM
International Symposium on Code Generation and Opti-
mization (CGO), pp. 2–14. IEEE, 2021.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang, Y.,
Krikun, M., Shazeer, N., and Chen, Z. GShard: Scaling
giant models with conditional computation and automatic
sharding. In 9th International Conference on Learning
Representations, 2021.

Li, Z., Zhuang, S., Guo, S., Zhuo, D., Zhang, H., Song, D.,
and Stoica, I. Terapipe: Token-level pipeline parallelism
for training large-scale language models. In Interna-
tional Conference on Machine Learning, pp. 6543–6552.
PMLR, 2021.

Lin, J., Chen, W.-M., Cai, H., Gan, C., and Han, S.
Mcunetv2: Memory-efficient patch-based inference for
tiny deep learning. arXiv preprint arXiv:2110.15352,
2021.

Luo, Z., Yi, X., Long, G., Fan, S., Wu, C., Yang, J., and Lin,
W. Efficient pipeline planning for expedited distributed
DNN training. In IEEE INFOCOM 2022-IEEE Confer-
ence on Computer Communications, pp. 340–349. IEEE,
2022.

Marchal, L., Simon, B., and Vivien, F. Limiting the memory
footprint when dynamically scheduling DAGs on shared-
memory platforms. Journal of Parallel and Distributed
Computing, 128:30–42, 2019.

Matthews, P. Generating a random linear extension of a
partial order. The Annals of Probability, 19(3):1367–
1392, 1991.

Mei, X. and Chu, X. Dissecting GPU memory hierarchy
through microbenchmarking. IEEE Transactions on Par-
allel and Distributed Systems, 28(1):72–86, 2016.

Mishra, P. A new algorithm for updating and querying
sub-arrays of multidimensional arrays. arXiv preprint
arXiv:1311.6093, 2013.

Moreira, O., Popp, M., and Schulz, C. Graph partitioning
with acyclicity constraints. In 16th International Sympo-
sium on Experimental Algorithms (SEA), volume 75, pp.
30:1–30:15, 2017.

Moreira, O., Popp, M., and Schulz, C. Evolutionary multi-
level acyclic graph partitioning. Journal of Heuristics, 26
(5):771–799, 2020.

10

https://www.gurobi.com

Practical Performance Guarantees for Pipelined DNN Inference

Narayanan, D., Harlap, A., Phanishayee, A., Seshadri, V.,
Devanur, N. R., Ganger, G. R., Gibbons, P. B., and Za-
haria, M. PipeDream: Generalized pipeline parallelism
for DNN training. In Proceedings of the 27th ACM Sym-
posium on Operating Systems Principles, pp. 1–15, 2019.

Narayanan, D., Phanishayee, A., Shi, K., Chen, X., and
Zaharia, M. Memory-efficient pipeline-parallel DNN
training. In International Conference on Machine Learn-
ing, pp. 7937–7947. PMLR, 2021.

Nossack, J. and Pesch, E. A branch-and-bound algorithm
for the acyclic partitioning problem. Computers & Oper-
ations Research, 41:174–184, 2014.

Özkaya, M. Y. and Çatalyürek, Ü. V. A simple and elegant
mathematical formulation for the acyclic DAG partition-
ing problem. arXiv preprint arXiv:2207.13638, 2022.

Paliwal, A., Gimeno, F., Nair, V., Li, Y., Lubin, M., Kohli, P.,
and Vinyals, O. Reinforced genetic algorithm learning for
optimizing computation graphs. In Proceedings of the 8th
International Conference on Learning Representations,
2020.

Papp, P. A., Anegg, G., and Yzelman, A.-J. N. Partition-
ing hypergraphs is hard: Models, inapproximability, and
applications. In Proceedings of the 35th ACM Sympo-
sium on Parallelism in Algorithms and Architectures, pp.
415–425, 2023.

Park, J. H., Yun, G., Chang, M. Y., Nguyen, N. T., Lee,
S., Choi, J., Noh, S. H., and Choi, Y.-r. HetPipe: En-
abling large DNN training on (whimpy) heterogeneous
GPU clusters through integration of pipelined model par-
allelism and data parallelism. In 2020 USENIX Annual
Technical Conference, pp. 307–321, 2020.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. PyTorch: An imperative style, high-performance
deep learning library. Advances in Neural Information
Processing Systems, 32, 2019.

Popp, M., Schlag, S., Schulz, C., and Seemaier, D. Mul-
tilevel acyclic hypergraph partitioning. In Proceedings
of the Workshop on Algorithm Engineering and Experi-
ments, pp. 1–15. SIAM, 2021.

Ryabinin, M., Dettmers, T., Diskin, M., and Borzunov, A.
SWARM parallelism: Training large models can be sur-
prisingly communication-efficient. In International Con-
ference on Machine Learning, pp. 29416–29440. PMLR,
2023.

Sanchez, D., Lo, D., Yoo, R. M., Sugerman, J., and
Kozyrakis, C. Dynamic fine-grain scheduling of pipeline
parallelism. In 2011 International Conference on Paral-

lel Architectures and Compilation Techniques, pp. 22–32.
IEEE, 2011.

Shazeer, N., Cheng, Y., Parmar, N., Tran, D., Vaswani, A.,
Koanantakool, P., Hawkins, P., Lee, H., Hong, M., Young,
C., et al. Mesh-TensorFlow: Deep learning for super-
computers. Advances in Neural Information Processing
Systems, 31, 2018.

Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper,
J., and Catanzaro, B. Megatron-LM: Training multi-
billion parameter language models using model paral-
lelism. arXiv preprint arXiv:1909.08053, 2019.

Vee, E. N., Purohit, M. D., Wang, J. R., Ravikumar, S.,
and Svitkina, Z. Scheduling operations on a computation
graph, March 30 2021. US Patent 10,963,301.

Wang, T., Geng, T., Li, A., Jin, X., and Herbordt, M.
FPDeep: Scalable acceleration of cnn training on deeply-
pipelined FPGA clusters. IEEE Transactions on Comput-
ers, 69(8):1143–1158, 2020.

Xie, X., Prabhu, P., Beaugnon, U., Phothilimthana, P., Roy,
S., Mirhoseini, A., Brevdo, E., Laudon, J., and Zhou, Y.
A transferable approach for partitioning machine learning
models on multi-chip-modules. Proceedings of Machine
Learning and Systems, 4:370–381, 2022.

Xu, Y., Lee, H., Chen, D., Hechtman, B., Huang, Y., Joshi,
R., Krikun, M., Lepikhin, D., Ly, A., Maggioni, M., et al.
GSPMD: General and scalable parallelization for ML
computation graphs. arXiv preprint arXiv:2105.04663,
2021.

Yang, B., Zhang, J., Li, J., Ré, C., Aberger, C., and De Sa, C.
Pipemare: Asynchronous pipeline parallel DNN training.
Proceedings of Machine Learning and Systems, 3:269–
296, 2021.

Yuan, B., He, Y., Davis, J., Zhang, T., Dao, T., Chen, B.,
Liang, P. S., Re, C., and Zhang, C. Decentralized training
of foundation models in heterogeneous environments.
Advances in Neural Information Processing Systems, pp.
25464–25477, 2022.

Zhang, K., Wang, H., Hu, H., Zou, S., Qiu, J., Li, T., and
Wang, Z. TENSILE: A tensor granularity dynamic GPU
memory scheduling method toward multiple dynamic
workloads system. IEEE Transactions on Knowledge and
Data Engineering, 2022.

Zhao, L., Xu, R., Wang, T., Tian, T., Wang, X., Wu, W.,
Ieong, C.-I., and Jin, X. BaPipe: Balanced pipeline
parallelism for DNN training. Parallel Processing Letters,
32(3&4):2250005:1–2250005:17, 2022.

11

Practical Performance Guarantees for Pipelined DNN Inference

A. Missing analysis for Section 3
Theorem 3.1. For k = 2, MTPP is NP-hard. Furthermore, there does not exist a fully polynomial-time approximation
scheme for MTPP, unless P = NP.

Proof. The minimum makespan scheduling problem on k identical parallel processors is as follows. We are given processing
times for n jobs (p1, p2, . . . , pn) and asked to find an assignment of jobs to processors so that the completion time (i.e.,
makespan) is minimized. We reduce to MTPP by constructing a graphGwith n vertices and no edges, setting work(vi) = pi,
and computing a max-throughput partition of G to solve the original makespan instance.

For k = 2, this is the NP-hard partition problem. More generally, minimum makespan scheduling is strongly NP-hard, so
there cannot exist an FPTAS, unless P = NP (Hochbaum & Shmoys, 1987).

Theorem 3.2. The mixed-integer program in Eq. (5) solves the max-throughput partitioning problem using O(nk) variables,
O(mk) constraints, and O(mk) non-zeros.

Proof. The x, y, and c variables are each indexed over all nodes and blocks, so there are O(nk) variables total. Constraints
Eqs. (8) to (10) are each indexed over all edges and blocks, so there are O(mk) of those. Each constraint except for (7) has
a constant number of non-zeros, so they contribute O(mk) non-zeros. Each of the k constraints of type (7) has n each of
the x and c variables, so nk non-zeros overall. Thus, there are O(mk) non-zeros in total.

To prove this MIP correctly models MTPP, we must prove that (a) every solution to the problem corresponds to a solution
of the MIP (with the same objective value), and (b) every solution to the MIP can be transformed into a solution with the
same or better cost that corresponds to a solution of the problem (with the same objective value).

To prove (a), start with any MTPP solution. Each node v is assigned to exactly one block b, so set xvb = 1 and xvb′ = 0,
for all b′ 6= b. Set y to match, i.e., yv0 = · · · = yv(b−1) = 0 and yvb = · · · = yvk = 1. For each edge (u, v) and block b, set
cub = 1 if the edge crosses into or out of the block, and 0 otherwise. Finally, set blockb to satisfy (7) and set bottleneck
to be the maximum of the block costs.

We must now check that all of the constraints are satisfied. Constraints (6) and (7) are satisfied by construction. Since the
original solution satisfies the DAG constraints, each edge goes from some block to the same or a later block, so constraint (8)
is satisfied. Constraint (9) cannot be violated unless yu(b−1) = xub = 1, because otherwise the RHS is zero or negative. But
in this case, edge (u, v) originates before block b and terminates inside block b, so the edge is cut as an input tensor, so we
set cub = 1, satisfying constraint (9). Similarly, the only way constraint (10) can be violated is if xub = 1 and yvb = 0. In
this case, edge (u, v) originates in block b and terminates after block b, so the edge is cut as an output tensor, so we have set
cub = 1, satisfying constraint (10). Constraint (11) and the y monotone ordering constraints are satisfied by construction.
Finally, bottleneck really does capture the objective value since it equals the cost of the most expensive block, and the
block costs are defined in (7). Therefore, every solution to MTPP corresponds to a solution of the MIP with the same cost.

Now we prove property (b). First, note that constraints (9) and (10) each place one lower bound on cub for each edge
(u, v) ∈ E. Since the only other place cub appears is in the objective function (implicitly via constraints (7) and (6)), setting
cub to the maximum of those lower bounds can only improve the objective function without harming feasibility. Similarly,
bottleneck should be set to the maximum of the lower bounds in (6). For a fixed v ∈ V , the yvb variables start at 0 when
b = 0 and end at 1 when b = k, and by (11) we have xvb = 1 for the value of b when yvb first jumps up to 1. Thus, the set
{v ∈ V : xvb = 1} defines the b-th block of the partition, and these blocks disjointly cover all nodes v ∈ V . Moreover, by a
similar argument as above, if any of the edges (u, v) ∈ E forces cub = 1 via constraints (9) or (10) then edge (u, v) really is
cut by block b in this partition, and otherwise none of the edges out of u is cut by block b. Thus, (7) captures the cost of each
block in this solution, and bottleneck captures the cost of the bottleneck block.

Corollary 3.4. For any computation graph G and number of blocks k ≥ 1, the three-superblock MIP uses O(n) variables,
O(m) constraints, and O(m) non-zeros, and gives a lower bound for the MTPP objective.

Proof. The three-superblock MIP is essentially the same as the formulation in Figure 3 for k = 3, which means k gets
absorbed in the big-O notation and the sizes become O(n) variables, O(m) constraints, and O(m) non-zeros.

To prove this MIP gives a valid lower bound, we start with any solution P ∗ to MTPP and generate a MIP solution whose
value is the same or lower. Lemma 3.3 shows that some block must be assigned at least L units of work, so find one such

12

Practical Performance Guarantees for Pipelined DNN Inference

block b in P ∗. For each node v, set xv2 = 1 if v is in block b, xv1 = 1 if v is in an earlier block, and xv3 = 1 if v is in a
later block. Set all other x variables to 0, the y variables as implied by constraints (11), and the c variables to the minimum
value that satisfies constraints (9) and (10). We have satisfied the work constraint by construction, and by the same reasoning
as in the proof of Theorem 3.2, the value of the MIP solution we constructed equals the cost of block b, which is at most the
cost of the bottleneck block in the partition. Since this construction works for all solutions to MTPP, we have proven that
the optimal solution of the three-superblock MIP is a lower bound for the true optimal solution.

B. Missing algorithms and analysis for Section 4
B.1. Kahn’s algorithm with node priorities
Kahn’s algorithm is a topological sort algorithm that repeatedly peels off the leaves of a DAG (Kahn, 1962). It is particularly
useful because it can output different orderings—if there are multiple leaves, different tie-breaking rules produce different
topological orders. We give pseudocode for KahnWithNodePriorities in Algorithm 3, which takes a vector x ∈ [0, 1]n of
node priorities as input, and runs in time O(n log n+m) if implemented with a heap-based priority queue for the active set
of leaves.

Algorithm 3 Kahn’s topological sorting algorithm with tie-breaking by node priorities.
1: function KahnWithNodePriorities(graph G = (V,E), node priorities x ∈ [0, 1]n)
2: Initialize π ← 0n, indegree← 0n, and i← 1
3: for each v ∈ V do
4: indegree[v]← |N−(v)|
5: Initialize priority queue q // Max heap implementation
6: for each leaf node v ∈ V do
7: Insert priority-node pair (xv, v) into q
8: while q is not empty do
9: u← top(q); pop(q)

10: π[i]← u
11: for each v ∈ N+(u) do
12: indegree[v]← indegree[v]− 1
13: if indegree[v] = 0 then
14: Insert priority-node pair (xv, v) into q
15: i← i+ 1

16: return π

B.2. Segment cost data structure
We start with a simpler version of the segment cost data structure that makes entrywise updates to the io_struct[][] array
during initialization. We give a proof of its correctness, and then we explain how to speed up this preprocessing step with a
two-dimensional Fenwick tree to achieve faster O(log2(n)) subrectangle updates (Mishra, 2013).

Warmup B.1. There is a SegmentCostDataStructure that takes a computation graph G = (V,E) and topological order
π ∈ SV as input, and supports the following operations:

• Initialize(G, π): Preprocesses the graph in O(n3) time.

• Query(`, r): Returns f({vπ(`), . . . , vπ(r)}) in Eq. (3) in constant time, after initialization.

Proof. The correctness is clear by inspection since we are memoizing the contributions of work, io, and sizeparam to the
overall cost of each segment. Calls to Query(`, r) take constant time since we are only performing O(1) array look-ups and
arithmetic operations. It remains to show that the memoization data structures can be built in O(mn2) time.

The prefix-sum data structures work_struct and mem_struct can all be built in O(n) time since we take one pass over
each vertex of the computation graph, and updating each entry requires O(1) time (assuming O(1)-time queries to work and
sizeparam). Furthermore, io_struct can be constructed in O(n3) time. To see this, observe that we take a single pass over
all vertices u ∈ V , and for each vertex, we perform at most O(n2) arithmetic operations and calls to sizeout since each
update is for a distinct [`, r] interval.

13

Practical Performance Guarantees for Pipelined DNN Inference

Algorithm 4 Segment cost data structure for blocks of the form P = {vπ(`), vπ(`+1), . . . , vπ(r)}.
1: function Initialize(G, π)
2: work_struct← InitWorkStruct(G, π)
3: mem_struct← InitMemStruct(G, π)
4: io_struct← InitIOStruct(G, π)

5: function Query(`, r)
6: Query work← work_struct[r]− work_struct[`− 1]
7: Query sizeparam ← mem_struct[r]− mem_struct[`− 1]
8: Set overflow← sizeparam + peak([vπ(`), vπ(`+1), . . . , vπ(r)])−M
9: Update overflow← 1

B max {overflow, 0}
10: Query io← io_struct[`][r]
11: return work+ overflow+ io

In Algorithm 5, we use the fact that π ∈ SV is a permutation of the vertices and that π−1 : V → [n] tells us the index at
which a given node appears in the topological order.

Now we demonstrate how the preprocessing time can be reduced using subrectangle range updates to subtract sizeout(u)
from disjoint regions of the two-dimensional io_struct[][] array.

Algorithm 5 Segment cost data structure helper functions.
1: function InitWorkStruct(G, π)
2: // Builds 1D array of work prefix sums
3: Initialize work_struct← 0n
4: work_struct[1]← work(π(1))
5: for i = 2 to n do
6: work_struct[i]← work_struct[i− 1] + work(π(i))

7: return work_struct

8: function InitMemStruct(G, π)
9: // Builds 1D array of sizeparam prefix sums

10: Initialize mem_struct← 0n
11: mem_struct[1]← sizeparam(π(1))
12: for i = 2 to n do
13: mem_struct[i]← mem_struct[i− 1] + sizeparam(π(i))

14: return mem_struct

15: function InitIOStruct(G, π)
16: // Builds 2D array of io segment costs
17: Compute total←

∑
v∈V sizeout(v)

18: Initialize n× n array io_struct with total
19: for u ∈ V do // Remove sizeout(u) from eligible segments
20: Let S = (v1, v2, . . . , vd) be the nodes in {u} ∪N+(u) sorted s.t. π−1(vi) < π−1(vi+1)
21: for 1 ≤ ` ≤ r < π−1(v1) do
22: io_struct[`][r]← io_struct[`][r]− sizeout(u)

23: for i = 1 to d− 1 do
24: for π−1(vi) < ` ≤ r < π−1(vi+1) do
25: io_struct[`][r]← io_struct[`][r]− sizeout(u)

26: for π−1(vd) < ` ≤ r ≤ n do
27: io_struct[`][r]← io_struct[`][r]− sizeout(u)

28: for 1 ≤ ` ≤ π−1(v1) do // Segments fully containing {v1, vd}
29: for π−1(vd) ≤ r ≤ n do
30: io_struct[`][r]← io_struct[`][r]− sizeout(u)

31: return io_struct

14

Practical Performance Guarantees for Pipelined DNN Inference

Lemma 4.1. There is a SegmentCostDataStructure that takes computation graph G = (V,E) and topological order
π ∈ SV as input, and supports the following operations:

• Initialize(G, π): Preprocesses the graph in O(n2 +m log2(n)) time.

• Query(`, r): Returns f({vπ(`), . . . , vπ(r)}) in Eq. (3) in constant time, after initialization.

Proof. We use a two-dimensional Fenwick tree (Mishra, 2013) to implement the io_struct array. This data structure needs
O(n2) time and space to initialize as 0n×n. It also supports the operation Update(p, q, x) where p = (i1, j1) and q = (i2, j2)
define two corners of a rectangular sub-array, and adds x to all entries io_struct[i][j] for all (i, j) ∈ [i1, i2]× [j1, j2] in
time O(log2(n)). Therefore, we can first initialize all entries to total in O(log2(n)) time.

For each u ∈ V , we describe how to update io_struct inO(deg+(u) log2(n)) time. First, observe that there are deg+(u)+
2 updates in Lines 17–24 of the form i ≤ ` ≤ r ≤ j. It follows that we can call Update((`, `), (r, r),−sizeout(u)) to
correctly update the Fenwick tree. Note that this updates entries that will never be queried (i.e., when ` > r), but this is not
a problem. Finally, we call Update((1, π−1(u)), (π−1(vd), n),−sizeout(u)) to update segments that fully contain {u, vd}.
Putting everything together, the total running time to maintain io_struct as a two-dimensional Fenwick tree is

O
(
n2
)
+
∑
u∈V

O
(
deg+(u) log2(n)

)
= O

(
n2 +m log2(n)

)
.

Since each element-wise query takes O(log2(n)) time in isolation, we use the fact that we can iterate over all O(n2) entries
of the Fenwick tree and write the values of io_struct[`][r] in a separate two-dimensional array in amortized O(n2) time.
This allows us to achieve O(1) time queries for the segment cost data structure after initialization. Correctness follows from
Mishra (2013) and Warmup B.1.

B.3. Analysis of the SliceGraph algorithm

Lemma 4.2. SliceGraph runs in time O(n2k +m log2 n) and finds an optimal segmentation of topological order π into
at most k blocks for MTPP.

Proof. For any topological order π ∈ SV , initialize segment_cost for G(π) in O(n2 +m log2(n)) time and O(n2) space
by Lemma 4.1. Then, run the dynamic programming algorithm DP(segment_cost, n, k) on the full topological order π,
which can be done in O(n2k) time and O(n2) space since there are O(nk) states and each state can be computed recursively
in O(n) time after preprocessing all [`, r] segment costs. This gives an optimal stars-and-bars partition of π into k (possibly
empty) blocks for the MTPP objective in Eq. (4), which proves the result.

Theorem 4.3. There exist node priorities x∗ ∈ [0, 1]n such that Kahn’s algorithm with tie-breaking outputs a topological
order π∗ for which SliceGraph(G, k, π∗) = OPT.

Proof. Let P ∗ be an optimal MTPP partition of the nodes, and let Q = (P ∗, E′) be the induced acyclic quotient graph on
the blocks. Let σ be a topological ordering of the blocks P ∗ in Q. Then, set x∗v ← k − σ−1[[v]P∗] for every v ∈ V , where
[v]P denotes the block index i ∈ [k] of the partition P = {P1, P2, . . . , Pk} and σ−1 is the inverse permutation of σ ∈ SP∗ .
This means nodes appearing in the first block of P ∗ according to σ have highest priority. Running Kahn’s algorithm with x∗

recovers a topological order π∗ ∈ SV such that when optimally segmented into k blocks, has an objective value that is
equal to partition P ∗.

Even with optimal topological order slicing, there exist worst-case instances (k,G, π), for any k ≥ 2, that can be as bad as
the trivial MTPP algorithm that puts all nodes into the same block.

Lemma B.2. For any k ≥ 2, there is a computation graph G and topological order π such that when optimally sliced,
SliceGraph(G, k, π) = k · OPT.

Proof. Consider a graph with n = 2k nodes of two types: nodes {1, 2, . . . , k} are heavy with weight work(vi) = 1− ε, and
nodes {k+1, k+2, . . . , 2k} are light with weight work(vi) = ε. Add one directed edge (1, k+1) with weight 10k. Clearly

15

Practical Performance Guarantees for Pipelined DNN Inference

OPT = 1 since G can be partitioned as P ∗ = {{1, k+1}, {2, k+2}, . . . , {k, 2k}}, which means f(P ∗i) = (1− ε)+ ε = 1
for all i ∈ [k] since each block has no incoming or outgoing edges.

Now consider the topological order π = (1, 2, . . . , k, 2k, 2k− 1, . . . , k+1). Any stars-and-bars partition P with an internal
separator must cut the edge (1, k + 1), which means maxi∈[k]{f(Pi)} ≥ 10k. Therefore, the optimal slicing of π groups
all nodes into the same block and has objective value k(1− ε) + kε = k.

Remark B.3. Going a step further, consider graph G above without edge (1, k + 1). Any topological sort-based algorithm
for k blocks can be as bad as 2k

k+1 · OPT since any stars-and-bars partition must have an MTPP objective value of at least
max{2(1 − ε), (1 − ε) + kε}. To see this, observe that either two heavy nodes must be in the same block or there is a
divider between each pair of adjacent heavy nodes. Setting ε = 1

k+1 proves the claim.

C. Missing details and experiments for Section 5
C.1. Partitioning algorithms
We now describe the partitioning algorithms used in our experiments to compute graph partitions for the MTPP problem:

• Random This random topological sort algorithm samples T i.i.d. weight vectors x(t) ∈ [0, 1]n where x(t)i ∼ U(0, 1),
maps them to topological orders π(t) as described in Section 4.2, and returns mint∈[T] SliceGraph(G, π

(t), k).

• BRKGA We run BRKGA with BrkgaSortAndSliceDecoder (Algorithm 2), and we set the population to size 100
and the number of generations to 100, for 104 total candidate evaluations, which we denote as brkga-10000 in Table 2.
brkga-100 sets the population size to 10 and the number of generations to 10, for 100 total candidate evaluations.

• MLA A minimum linear arrangement (MLA) of an undirected graph G = (V,E,w) is a node permutation π ∈ SV

minimizing the objective

h(π) =
∑

{u,v}∈E

w(u, v) ·
∣∣π−1(u)− π−1(v)∣∣.

To generalize this idea to computation graphs, we restrict the search by setting h(π) =∞ if π is not a topological order,
and setting w(u, v) = 1 for the (unweighted) mla objective or w(u, v) = io(u, v) for the mla-weighted objective.
MLA is also an NP-hard problem, so we use BRKGA to optimize this objective (similar to Algorithm 2), but now the
fitness is h(π(x)). We set the population to size 100 and the number of generations to 100, for a total of 104 candidate
evaluations. We observed that there is a clear benefit to using mla-weighted over mla for MTPP, which agrees with
intuition. Even though MLA orderings optimize for a different objective, they are still competitive, especially for being
a zero-shot heuristic.

We compare the quality of these linear ordering heuristics for SliceGraph on the production data in Table 2.

C.2. REGAL
Dataset The synthetic computation graphs from Paliwal et al. (2020, Appendix A.1.4) are constructed as follows. The
base graphs are sampled from a set of classic random graph model (see Table 2 therein for the parameters of each random

Table 2. Geometric means of approximation ratio upper bounds SliceGraph(G, k, π)/L(G, k) for the production models. Compares the
MTPP objective value induced by different linear ordering algorithms relative to the simple lower bound in Lemma 3.3 (lower is better).
The random-T heuristic generates T i.i.d. node-weight vectors x(t) and returns the best solution found.

Algorithm k = 2 k = 4 k = 8 k = 16 k = 32 k = 64

mla 1.216 1.538 1.950 2.224 2.304 2.326
mla-weighted 1.206 1.516 1.920 2.182 2.258 2.283

random-1 1.220 1.551 1.959 2.230 2.309 2.333
random-100 1.201 1.512 1.916 2.179 2.258 2.282
random-10000 1.199 1.509 1.911 2.176 2.256 2.281

brkga-100 1.201 1.516 1.919 2.184 2.263 2.288
brkga-10000 1.199 1.509 1.910 2.175 2.255 2.272

16

Practical Performance Guarantees for Pipelined DNN Inference

Figure 5. Running times of SliceGraph and different MIP lower bound computations across the REGAL models. Each point denotes a
run for one graph, color-coded to denote SliceGraph partitioning vs. bottleneck, bottleneck-guess, and exact lower bounds. The
bottleneck-guess times are summed across all k MIP instances involved. Each plot is for a different value of k. In order to facilitate
visual comparisons across the plots, all three employ the same y-axis. Some of the data tops out at 3600 seconds since that is where we set
the MIP time limit.

graph model). The graphs have 50 ≤ n ≤ 200 nodes, and are converted to directed acyclic graphs via a random topological
order. The size of each tensor is sampled from the normal distribution N (50, 10). Each node cost is the sum of its input and
output tensor costs plus a random fraction r of the total memory cost (i.e., the sum of all tensor sizes), where r ∼ N (0, 0.1).
If a node has more than one output tensor, we use the lexicographically least according to the tensor index. Finally, Paliwal
et al. (2020) filter these graphs and only keep those that are sufficiently hard for their min-peak scheduling objective.

Results We report a parallel set of results on the REGAL dataset (see Figure 5 and Table 3) to accompany our running
time plots and table of lower bound ratios for the production models in Section 5.

Table 3. Geometric means of the best available lower bound from the MIP hierarchy, normalized by the best solution found using BKRGA,
across the REGAL dataset.

Lower bound k = 2 k = 4 k = 8 k = 16 k = 32 k = 64

simple (Lemma 3.3) 0.9579 0.8795 0.7911 0.5821 0.4087 0.3336
bottleneck 0.9794 0.8818 0.7918 0.5824 0.4090 0.3338
bottleneck-guess 0.9804 0.8826 0.7918 0.5824 0.4090 0.3338
exact 0.9804 0.9579 0.9407 0.8929 0.5910 0.3810

C.3. Solving the MIPs
To solve the MIPs that underpin Table 1 and Table 3, we used a combination of the Gurobi (Gurobi Optimization, LLC,
2023) and SCIP (Bestuzheva et al., 2021) solvers. For bottleneck, we used Gurobi with a 15-minute time limit, and for
exact, we relaxed this to 60 minutes because these MIPs are tougher to solve. For technical reasons having to do with our
computing setup, we instead used SCIP for bottleneck-guess, with a 60-minute time budget that was shared across all
values of k of the MIPs that compose a single bottleneck-guess instance (one MIP per guess). A non-trivial fraction of
the instances failed to solve to provable optimality within the time limit, especially for exact with k = 64. In these cases,
the solver still returns a valid lower bound, and we use that.

17

