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Abstract

Offline data are both valuable and practical
resources for teaching robots complex behaviors.
Ideally, learning agents should not be constrained
by the scarcity of available demonstrations, but
rather generalize beyond the training distribution.
However, the complexity of real-world scenarios
typically requires huge amounts of data to prevent
neural network policies from picking up on
spurious correlations and learning non-causal re-
lationships. We propose CAIAC, a data augmen-
tation method that can create feasible synthetic
transitions from a fixed dataset without having
access to online environment interactions. By uti-
lizing principled methods for quantifying causal
influence, we are able to perform counterfactual
reasoning by swapping action-unaffected parts of
the state-space between independent trajectories
in the dataset. We empirically show that this leads
to a substantial increase in robustness of offline
learning algorithms against distributional shift.
Videos, code and data are available at https:
//sites.google.com/view/caiac.

1. Introduction
Offline learning offers the opportunity of leveraging plen-
tiful amounts of prerecorded data in situations where en-
vironment interaction is costly (Bahl et al., 2022; Brohan
et al., 2022; 2023; Vlastelica et al., 2023). However, one of
the fundamental challenges of such a framework is that of
causal confusion.

Causal confusion arises when a trained agent misinterprets
the underlying causal mechanics of the environment and,
hence, fails to distinguish spurious correlations from causal
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Figure 1: Overview of the proposed approach. Interactions
between the agent and entities in the world are sparse. We
use causal action influence (CAI), a local causal measure,
to determine action-independent entities and create coun-
terfactual data by swapping states of these entities from
other observations in the dataset. Offline learning with these
augmentations leads to better generalization.

links (De Haan et al., 2019; Gupta et al., 2023). When
trying to reduce training loss, an agent can benefit from such
spurious correlations in the data and, therefore, they can
be inadvertently transferred to the mechanisms of learned
models (Gupta et al., 2023).

Problematically, causally confused agents, are prone to
catastrophic failure even in mild cases of distributional
shift (De Haan et al., 2019), i.e. when the test distribu-
tion deviates from the training distribution. Subtle forms
of distributional shift are common when learning from real-
world data: collected demonstrations can only encompass
a small fraction of the vast amount of possible configura-
tions stemming from the inherent presence of many entities
in the real world (Battaglia et al., 2018). Hence, at test
times, agents are often queried on unfamiliar (i.e. out of
distribution) configurations.

To illustrate the problem, let us imagine that we have
demonstrations of a robot performing several kitchen-
related activities: opening a microwave, sliding cabinets
and turning on and off a light switch. However, the
demonstrations only show how to perform those activities
in this pre-specified order. Hence, following the example,
the sliding cabinet (Event Y) is only shown to be open
when the microwave (Event X) is open as well.
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Figure 2: CAIAC counterfactual samples are consistent
with the environment’s dynamics and increase the support
of the joint state space distribution, enabling the agent to be
robust to distributional shift. Left: Log-likelihoods under
the environment transition kernel of counterfactuals created
with different methods. Right: Original data and counter-
factuals augmentations with CAIAC visualized with t-SNE.
Details on this evaluation are reported in Appendix A.7.

In this scenario, the trained agent happens to simultaneously
observe independent events X and Y whenever it executes
the sliding action (A), and hence may attribute the action
A to X and Y occurring jointly, even though event X is
independent of A. If the spurious correlation between X and
Y observed during training fails to persist at test time, such
a causally confused model may exhibit subpar performance.
Namely, the agent might not be able to slide open the cabinet
when the microwave is closed.

In contrast, humans are remarkably good at inferring what
parts of the environment are relevant to solve a task, possibly
due to relying on a causal representation of the world (Pearl
& Mackenzie, 2018). This hypothesis has motivated the
creation of causal approaches in machine learning that aim
to identify relationships in the environment that will remain
invariant under changes in the data-generating distribution.
Existing work at the intersection between RL and causality
has focused on an online learning (Lyle et al., 2021; Wang
et al., 2022; Ding et al., 2023), imitation learning (De Haan
et al., 2019) or partial observability setting (Forney et al.,
2017; Kallus & Zhou, 2018). When learning in the online
setting, some works operate in the interventional setting
(Lyle et al., 2021; De Haan et al., 2019), i.e. a user may be
able to "experiment" in the environment in order to discover
causal structures by assigning values to some subset of the
variables of interest and observing the effects on the rest of
the system. In contrast, we focus on the challenging offline
setting, where the agent is not capable of observing the real
effects of such an intervention, and we propose an obser-
vational approach. While one could also learn to predict
the outcome of the interventions by using a model-based
approach, we note that an uninformed dynamics model can
still be sensitive to spurious correlations and suffer from

approximating errors.

Our approach, which we refer to as Causal Influence Aware
Counterfactual Data Augmentation (CAIAC), introduces
counterfactual data augmentations without the need for ad-
ditional environment interactions, or reliance on counterfac-
tual model rollouts. Instead, we exploit collected data to
learn a causal model that explicitly reasons about causal in-
fluence and swap locally causally independent factors across
different observed trajectories. Estimating the entire causal
structure remains, however, a challenging task, particularly
if attempted from offline data.

Taking this into account, we focus on identifying the effects
the agent has on the environment; we thus assume action-
influence to be more important for policy learning than
potential object-object interactions. By partially trading off
generality, this inductive bias on the underlying causal struc-
ture reduces the problem of estimating the full causal struc-
ture to only measuring the influence of actions over objects.
Although causal discovery from observational data is known
to be impossible for the general case (Pearl, 2009; Peters
et al., 2017), methods exist that make use of some form of in-
dependence testing that have been successful in applications.

While other causal methods rely on heuristics to create new
samples (Ding et al., 2023), on implicit measures for detect-
ing causal influence among entities (Pitis et al., 2020) or on
regularization of the dynamical models to suppress spuri-
ous correlations (Ding et al., 2023; Wang et al., 2021), our
method is theoretically sound and relies on an explicit mea-
sure of influence, namely state-conditioned mutual informa-
tion (Cover, 1999). We find this approach to be significantly
more reliable at creating counterfactual samples that, not
only follow the environment’s dynamics (i.e. they are feasi-
ble), but also increase the support of the joint distribution
over environment entities, as shown in Fig. 2.

Moreover, we show that by providing an offline learning
agent with CAIAC’s counterfactual samples, we prevent the
agent from suffering from causal confusion, and we hence
improve robustness to distributional shifts at test time. Our
framework works as an independent module and can be used
with any data-driven control algorithm. We demonstrate this
through empirical results in high-dimensional offline goal-
conditioned tasks, applying our method to fundamentally
different data distributions and learning methods. Namely,
we couple our method with offline goal-conditioned skill
learning on the Franka-Kitchen environment (Gupta et al.,
2019), and classical offline goal-conditioned reinforcement
learning on Fetch-Push and FetchPick&Lift (Plappert et al.,
2018). Across experiments, we show that CAIAC leads to
enhanced performance in out-of-distribution settings and
when learning from a modest amount of demonstrations.
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2. Background
2.1. Reinforcement Learning

Markov Decision Processes (MDPs) are used as the basic
formalism for sequential decision-making problems.
Definition 2.1 (Markov Decision Process (MDP)). A
Markov Decision Process is a tuple (S,A,P,R, ρ0, γ), con-
sisting of state space S, action space A, transition kernel
P(S′ | S,A), reward function R : S ×A 7→ R, initial state
distribution ρ0 and discount factor γ, respectively.

The goal of a learning algorithm is to extract a pol-
icy π : S 7→ A for maximizing the expected return
Eπ[

∑∞
t=0 γ

tr(st, at)]. Online algorithms have access to
samples from the transition kernel P , while offline methods
leverage a fixed dataset D of trajectories which may be
suboptimal. In this work, we focus on the offline setting,
which particularly suffers from issues of distributional shift
and out-of-distribution generalization.

2.2. Causal Graphical Models

Generally, a joint distribution P (X) has a particular inde-
pendence structure which induces a specific factorization.
This independence structure is a consequence of the func-
tional relationship (also called mechanism) between the
variables that can be accurately described through a Struc-
tural Causal Model (SCM).
Definition 2.2 (SCM (Pearl, 2009)). A SCM is a tuple
(U ,V, F, Pu), where U is a set of exogenous (unobserved)
variables (e.g. the unobserved source of stochasticity in
the environment) sampled from PU , V is a set of endoge-
nous (observed) variables (e.g. the observed state, the
action and the reward in RL). F is the set of structural
functions capturing the causal relations, such that functions
fV : Pa(V )×U → V with Pa(V ) ⊂ V denoting the set of
parents of V , determine the value of endogenous variables
V for each V ∈ V .

SCMs are usually visualized as a directed acyclic graph G
whose nodes are associated with the variables in the SCM
and whose edges indicate causal relationships. We say that
a pair of variables vi and vj are confounded by a variable C
(confounder) if they are both caused by C, i.e., C ∈ Pa(vi)
and C ∈ Pa(vj). When two variables vi and vj do not
have a direct causal link, they are still correlated if they
are confounded, in which case this correlation is a spurious
correlation. Given an SCM, one can make inferences about
causal effects through the concept of an intervention.
Definition 2.3 (do-intervention (Pearl, 2009)). An interven-
tion do(V = v) on V induces a new SCM = (U ,V, F ′, Pu),
where F ′ = {fW ∈ F | W ̸= V } ∪ {fV=v} and
fV=v(p, u) = v ∀p ∈ Pa(V ), u ∈ U .

An intervention on a set of nodes of the SCM effectively

changes their structural equations, mostly replacing them
by an explicit value. Interventional queries of the form
P (Y | do(X = x)) are the so-called second rung of causa-
tion (Pearl, 2009). In this work we are interested in the third,
counterfactual queries.

Definition 2.4 (Counterfactual). A counterfactual query is
a query of the form P (Y | do(X = x),U = u), where
Y,X ⊂ V and U is the set of exogenous variables of the
underlying SCM.

A counterfactual query about variables Y is asking what
would have happened to Y if under the same conditions
U = u the intervention do(X = x) had been performed.

3. Problem Definition
We assume a known and fixed state-space factorization
S = S1 × ... × SN for N entities, where each factor Si

corresponds to the state of an entity. In practice, there are
methods that allow to automatically determine the number
of factors (Zaheer et al., 2017) and to learn latent represen-
tations of each entity (Burgess et al., 2019; Zadaianchuk
et al., 2023; Locatello et al., 2020; Greff et al., 2019; Jiang
et al., 2019; Seitzer et al., 2022). While we do not consider
them for simplicity, our method can be applied on top of
such techniques.

An MDP coupled with a policy π : S 7→ A induces an
SCM describing the resulting trajectory distribution. Given
the Markovian property of the MDP and flow of time, there
only exist direct causal links {St, At} → St+1 by definition,
i.e. St+1 ⊥⊥ V | {St, At} for non-descendant nodes V /∈
{St, At}. For our purposes, it suffices to look at the time
slice sub-graph which is governed by the MDP transition
kernel P between state S, action A and next state S′ with
state factors {Si}Ni=1.

In most non-trivial environments, there exists an edge
Si/A → S′

j for most i, j (Fig. 3(a)). However, interac-
tions often become sparse once we observe a particular state
configuration. We capture these local interactions by the
notion of a local causal model.

Definition 3.1 (Local Causal Model (Pitis et al., 2020)).
Given an SCM (U ,V, F, Pu), the local SCM induced by
observing V = v with V ⊂ V is the SCM with FV=v and
the graph Gdo(V=v) resulting from removing edges from
Gdo(V=v) until the graph is causally minimal.

We shall use shorthand Gv for Gdo(V=v) and similar to
reduce notational clutter. Where normally the vertex set
{A} ∪ {S′

j}Nj=1 would be densely connected in the direc-
tion A → S′, intervening on S results in a sparser causal
dependency in Gs. An example of this local causal structure
is given in Fig. 3(b): the robot can only influence the kettle
and its own end-effector through its actions, but none of
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the other entities. We will make heavy use of sparsity and
locality in constructing a counterfactual data augmentation.

4. Method
The main challenge that we aim to tackle in this work is that
of learning policies in the offline regime that are more robust
to distributional shift, i.e. are not susceptible to spurious
correlations. We achieve this by augmenting real data with
counterfactual modifications to causally action-unaffected
entities, hence creating samples outside the support of the
data distribution. Our method relies on the observation that
performing the intervention do(S = s) reduces the number
of edges between A and S′ as per Definition 3.1, leaving
some factors independent of A. Now, assuming that we
observe the transition S = s,A = a, S′ = s′ we pose
the question of how we can do counterfactual reasoning
without access to the true set of structural equations FS=s,
i.e. synthesize counterfactual transitions.

To this end, we need to learn the causal structure of the
LCM, which is known to be a hard problem (Peters et al.,
2017). Therefore, we make the key assumption that inter-
actions between entities are sparse (i.e. only occur rarely)
and are thus negligible. While the correctness of generated
counterfactuals will rely on this assumption to hold, we
argue that this is realistic in various robotics tasks. For
example, in the kitchen environment depicted in Fig. 1, the
entities can hardly influence each other. In fact, each entity
is mostly controlled by the agent actions. This would also
be the case in several manufacturing processes, in which
interaction between entities should only happen under direct
control of robots. Moreover, settings in which the assump-
tion does not hold remain a significant challenge for most
heuristic methods for causal discovery (Pitis et al., 2020),
which underperform despite their generality. More formally,
and in a graphical sense, we assume that there is no arrow
Si → S′

j , i ̸= j as visualized by the gray dashed lines in
Fig. 3(b). We note that only two groups of arrows remain in
the causal graph: Sj → S′

j , which we assume to always be
present, and A → S′

j . This practical assumption allows us
to reduce the hard problem of local causal discovery to the
more approachable problem of local action influence detec-
tion. As a result, instead of resorting to heuristics (Pitis et al.,
2020), we make use of a more principled explicit measure of
local influence, the Causal Action Influence (CAI) (Seitzer
et al., 2021) measure, which we introduce below.

4.1. Causal Action Influence Detection

To predict the existence of the edge A → S′
j in the local

causal graph Gs, Seitzer et al. (2021) use conditional mutual
information (CMI) (Cover, 1999) as a measure of depen-
dence, which is zero if S′

j ⊥⊥ A|S = s. Therefore, in each
state S = s we use the point-wise CMI as a state-dependent

quantity that measures causal action influence (CAI), given
by

Cj(s) := I(S′
j ;A | S = s)

= Ea∼π

[
DKL

(
PS′

j |S=s,A=a

∣∣∣∣ PS′
j |S=s

)]
.

(1)

The transition model PS′
j |S=s,A=a is modeled as a Gaus-

sian neural network (predicting mean and variance) which
maximizes a log-likelihood objective. The conditional dis-
tribution PSj

t+1|S=s is computed in practice using M em-
pirical action samples with the full model: PS′

j |S=s ≈
1
M

∑M
m=1 PS′

j |S=s,A=a(m) , a(m) ∼ π. The KL divergence
in (1) can be estimated using an approximation for Gaussian
mixtures from (Durrieu et al., 2012). We note that the tran-
sition model does not need to be queried autoregressively,
which avoids the issue of compounding errors. We refer the
reader to Seitzer et al. (2021) for more details.

4.2. Inferring Local Factorization

Having introduced the concepts of locality and object in-
dependence, as well as a method to detect causal action
influence, we proceed to infer the local factorization which
will be leveraged to create counterfactual experience. For
each state s in our data set D, we compute the uncontrol-
lable set, as the set of entities in s for which the agent has
no causal action influence, expressed as:

Us = {sj | Cj(s) ≤ θ, j ∈ [1, N ]} (2)

where θ is a fixed threshold. The set Us contains all entities
j for which the arrow A → S′

j in the local causal graph Gs

does not exist. The remaining entities are contained in the
set of controllable entities CRs = {s1, . . . , sN} \ Us. An
illustration is given in Fig. 3(b).

With our assumptions and the sets Us and CRs we find that
the local causal graph Gs is divided into the disconnected
subgraphs GCR

s , that contains the entities in CR and A, and
into |Us| disconnected subgraphs GU

si , i ∈ [1, |Us|], each
of which contains an entity in Us with only self-links, see
Fig. 3(b). We can also compute the uncontrollable set for
an extended time period κ, i.e. (I) Ust:t+κ =

⋂t+κ−1
τ=t Usτ .

4.3. Computing Counterfactuals

Given the partitioning of the graph described above, simi-
larly to (Pitis et al., 2020), we can think of each subgraph
as an independent causal mechanism that can be reasoned
about separately. Assuming no unobserved exogenous vari-
ables, we may obtain counterfactuals in the following way:
given two transitions (s, a, s′) and (ŝ, â, ŝ′) ∈ D sampled
for training, which have at least one uncontrollable sub-
graph structure in common (i.e. Us ∩ Uŝ ̸= ∅), we generate
a counterfactual transition (s̃, ã, s̃′) by swapping the en-
tity transitions (si, s

′
i) with (ŝi, ŝ

′
i) and i ∈ Us ∩ Uŝ. In
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Figure 3: Illustration of counterfactual data augmentation. The global causal graph does not allow for factorization (a).
Our local causal graph (b) is pruned by causal action influence. Object-object interactions are assumed to be rare/not
existing (gray dashed). We swap elements that are not under control (i.e. in set U) by samples from the data, thus creating
counterfactual samples. We omit the exogenous variables from the global graph for compactness.

Algorithm 1: CAIAC
input Dataset D

Compute uncontrollable set Us, ∀s ∈ D (Eq. 2).
Sample (s, a, s′) ∼ D and set (s̃, s̃′)← (s, s′)
for si ∈ Us

Sample (ŝ, â, ŝ′) ∼ D
if ŝi ∈ Uŝ then (s̃i, s̃

′
i)← (ŝi, ŝ

′
i)

yield (s, a, s′) and (s̃, a, s̃′)

this way, we observe the result of the counterfactual query
P (S′ | do(S = s̃, A = a)) without using the mechanism
fS′ if it remains unchanged in the new LCM. However, even
when only swapping the entity transitions for Us ∩ Uŝ, the
LCM resulting from the intervention do(S = s̃) may still
contain a different mechanism fS′ than the source LCM of
s, meaning that the transition (s̃, ã, s̃′) becomes invalid. An
additional check of causal influence would entice an out-
of-distribution query to the CAI measure, which is learned
from transitions and therefore error-prone. In practice we
do not perform this check and accept creating a small frac-
tion of potentially infeasible transitions. The pseudocode
of our method, which we call Causal Influence Aware
Counterfactual Data Augmentation (CAIAC), is given in
Algorithm 1.

5. Related work
Data Augmentation Data augmentation is a fundamental
technique for achieving improved sample-efficiency and
generalization to new environments, especially in high-
dimensional settings. In deep learning systems designed
for computer vision, data augmentation can be found as
early as in LeCun et al. (1998) and Krizhevsky et al. (2012),
who leverage simple geometric transformations, such as
random flips and crops. Naturally, a plethora of augmenta-
tion techniques (Berthelot et al., 2019; Sohn et al., 2020)
have been proposed over time. To improve generalization in

RL, domain randomization (Tobin et al., 2017; Pinto et al.,
2017) is often used to transfer policies from simulation to
the real world by utilizing diverse simulated experiences.
Cobbe et al. (2019); Lee et al. (2019) showed that simple
augmentation techniques, such as cutout and random con-
volution, can be useful to improve generalization in RL
from images. Similarly to us, (Laskin et al., 2020) use data
augmentation for RL without any auxiliary loss. Crucially,
most data augmentations techniques in the literature require
human knowledge to augment the data according to domain-
specific invariances (e.g., through cropping, rotation, or
color jittering), and mostly target the learning from image
settings. Nevertheless, heuristics for data augmentation can
be formally justified through a causal invariance assumption
with respect to certain perturbation on the inputs.

Offline learning, distributional shift and causal confu-
sion Offline RL and imitation learning methods rely on
the availability of informative demonstrations (Lange et al.,
2012; Li et al., 2023; Urpí et al., 2023; Lynch et al., 2019;
Vlastelica et al., 2021b). However, in low-data regimes or
task-agnostic demonstrations settings, these methods often
suffer from distributional shift. This shift occurs when the
agent induces a state-action distribution which deviates from
the original data (Ross et al., 2011). Several offline learning
methods have been proposed for fighting distributional shift,
such as by minimizing deviation from the behavior policy
(Fujimoto et al., 2019; Kumar et al., 2019; Kostrikov et al.,
2021; Urpí et al., 2021) or minimizing risk (Vlastelica et al.,
2021a). In imitation learning, several works focus on solv-
ing the causal confusion problem (De Haan et al., 2019),
where a policy exploits nuisance correlates in the states for
predicting expert actions (Wen et al., 2020; Seo et al., 2024).

Causal Reinforcement Learning Detecting causal influ-
ence involves causal discovery, which can be pictured as
finding the existence of arrows in a causal graph (Pearl,
2009). While it remains an unsolved task in its broadest
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sense, there are assumptions that permit discovery in some
settings (Peters et al., 2012; Spirtes et al., 2001).

Once the existence of an arrow can be detected, its impact
needs to be established, for which several measures, such
as transfer entropy or information flow, have been proposed
(Schreiber, 2000; Lizier, 2012; Ay & Polani, 2008). In our
case, we use conditional mutual information (Cover, 1999)
as a measure of causal action influence, as proposed by
Seitzer et al. (2021).

The intersection of RL and causality has recently been stud-
ied to improve interpretability, sample efficiency, and to
learn better representations (Buesing et al., 2018; Barein-
boim et al., 2015; Lu et al., 2018; Rezende et al., 2020).

Lyle et al. (2021) dealt with the problem of causal
hypothesis-testing in the online setting via an exploration
algorithm, Ding et al. (2023) utilize a model-based counter-
factual approach (Pitis et al., 2022) for solving a robust MDP
and Zhang et al. (2020) investigate how to obtain a reduced
causal graph using a block structure. While Wang et al.
(2022) also leverage influence to learn the causal structure,
they use it for state abstraction to improve model gener-
alization. Similarly to us, (Lu et al., 2020; Ding et al.,
2022), also provide the agent with counterfactuals, but by
learning and querying a model for the state transition. In
particular, our work is related to that of Pitis et al. (2020),
which proposes the Local Causal Model framework to gen-
erate counterfactual data, and underpins our work. However,
Pitis et al. (2020) aim at estimating the entire local causal
graph, which is a challenging problem. In practice, they
rely on a heuristic method based on the attention weights
of a transformer world model, which does not scale well
to high-dimensional environments. In contrast, our method
does not require learning the entire local causal graph, as it
assumes that the interactions between entities (except the
agent) are sparse enough to be neglected. This also implies
that the agent is the only entity that can influence the rest
of the entities through its actions. Therefore, this setting is
related to the concept of contingency awareness from psy-
chology (Watson, 1966), which was interestingly already
considered in deep reinforcement learning methods for Atari
(Song et al., 2020; Choi et al., 2018).

6. Experiments
We evaluate CAIAC in two goal-conditioned settings: of-
fline RL and offline self-supervised skill learning. In par-
ticular, we are interested in evaluating whether CAIAC
(i) leads to better robustness to extreme distributional shifts,
(ii) enlarges the support of the joint distribution over the
state space in low data regimes, and (iii) works as an inde-
pendent module combinable with arbitrary learning-based
control algorithms.

The set of benchmarks revolves around the issue of spurious
correlations in the state space in manipulation domains, and
is built upon the Franka-Kitchen (Gupta et al., 2019) and
the Fetch (Plappert et al., 2018) platforms. The training data
for each task includes spurious correlations that can usually
appear during the data collection process, and could distract
the policy from learning important features of the state.

Baselines We compare CAIAC with CODA (Pitis et al.,
2020), a counterfactual data augmentation method, which
uses the attention weights of a transformer model to estimate
the local causal structure. Given two transitions that share
local causal structures, it swaps the connected components
to form new transitions. Additionally, we compare with
an ablated version of CODA, CODA-ACTION, which only
estimates the influences of the action using the transformer
weights and thus is a ‘heuristic’-sibling of our method. For
the RL experiments, we also compare it with RSC (Ding
et al., 2023), a framework for robust reinforcement learning
that constructs new samples by perturbing the value of the
states using an heuristic and learns a structural causal model
to predict the next state given the perturbed state. As an
ablation, we include a baseline without data augmentation
(NO-AUGM). For completeness, we provide comparisons
with model-based approaches in B.2.

Given our method and some of the baselines performances
depend on an appropriate choice of the parameter θ to get a
classification of influence, we provide a thorough analysis
on how this parameter was chosen in Appendix A.5.

6.1. Tasks with Spurious Correlations

Our initial experiments investigate whether CAIAC can
increase the generalization capabilities of algorithms when
learning from demonstrations that include spurious correla-
tion. Specifically we test whether the trained algorithms are
robust to extreme state distributional shifts at test time.

6.1.1. GOAL CONDITIONED OFFLINE SELF-SUPERVISED
SKILL LEARNING

We apply our method to the challenging Franka-Kitchen
environment from Gupta et al. (2019). We make use of
the data provided in the D4RL benchmark (Fu et al., 2020),
which consists of a series of teleoperated sequences in which
a 7-DoF robot arm manipulates different parts of the envi-
ronment (e.g., it opens microwave, switches on the stove).
Crucially, all demonstrations are limited to a few manipula-
tion sequences (for example, first opening the microwave,
turning on a burner, and finally the light). Thus, the support
of the joint distribution over entities in the environment is
reduced to only a few combinations. To illustrate this with
an example, the light is only on when the microwave is
open. At test time we evaluate the trained agent in unseen
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Figure 4: Motivating Franka-Kitchen example. The experi-
mental setup (left) and success rates for in-distribution and
out-of-distribution tasks (right). Metrics are averaged over
10 seeds and 10 episodes per task, with 95% simple boot-
strap confidence intervals.

configurations, breaking the spurious correlations that exist
in the training data. We hypothesize that CAIAC will create
valid counterfactual data such that the downstream learn-
ing algorithms would be able to generalize to unseen state
configurations. As a downstream learning algorithm we
use LMP (Lynch et al., 2019), an offline goal-conditioned
self-supervised learning algorithm, which learns to map
similar behaviors (or state-action trajectories) into a latent
space from which goal-conditioned plans can be sampled.
Formally, LMP is a sequence-to-sequence VAE (Sohn et al.,
2015; Bowman et al., 2015) autoencoding random expe-
riences extracted from the dataset through a latent space.
In our case, we use experiences of fixed window length κ.
Given the inherent temporal abstraction of the algorithm,
we generate counterfactuals of fixed length κ > 1 by com-
puting the uncontrollable set for the entire window as the
intersection over all time slices, as in ((I)). For specific
details on the learning algorithm and the Franka-Kitchen
environment, we refer to A.1.1 and A.2.1 respectively.

Franka-Kitchen: A Motivating Experiment Our first
experiment is designed to verify claim (i), i.e., that CA-
IAC enables generalization to unseen configurations over
entities. First, we showcase this in a simple and controlled
environment. Thus, we create a reduced modified dataset
from the original D4RL dataset (Fu et al., 2020), that con-
tains only demonstrations for the microwave task (MW) and
the kettle (K) task. During demonstrations for the (MW)
task, we initialize the cabinet to be always open, whereas
for demonstrations for the (K) task, it remains closed. The
rest of the objects are set to the default initial configuration
(see A.2.1). At inference time, we initialize the environment
with its default initial configuration (crucially, the cabinet
is closed), and we evaluate both tasks ((K) and (MW)), as
shown in Fig. 4(left). Hence, while the (K) task was demon-
strated for the current configuration (in-distribution, ID), the
agent is effectively evaluated on an out-of-distribtion (OOD)

configuration for the (MW) task.

We evaluate success rate on both tasks with CAIAC and all
baselines, as shown in Fig. 4(right). All methods are able
to solve the (K) task, as expected, since it is in-distribution
(ID). However, we observe fundamentally different results
for the OOD (MW) task. In principle, CAIAC can detect
that the sliding cabinet is never under control of the agent,
and will be able to create the relevant counterfactuals
to prevent the policy from picking up on the spurious
correlation in the data. Indeed, the performance of CAIAC
in the OOD task (MW) is not affected, and it is the same
as for the ID task. On the other hand, the performance of
CODA and CODA-ACTION is drastically impaired in the
OOD setting. Despite the simplicity of the setting, the input
dimensionality of the problem is high, and the transformer
attention weights are not able to recover the correct
causal graph. By picking up on spurious correlations,
the attention weights of the transformer estimate low
influence from the action to all entities (even the agent),
and hence CODA-ACTION creates dynamically-unfeasible
counterfactuals which affect performance. Since the ratio
of observed-counterfactuals data is 1:1 we hypothesize that
there is enough in-distribution data to not affect the (K) task
for CODA-ACTION. The local graph induced by CODA has
at least as many edges as the one of CODA-ACTION, and
hence the probability for creating unfeasible counterfactuals
is lower. We hypothesize, that despite not learning correct
causal influence, it might still provide some samples which
benefit the learning algorithm and allow for an average
OOD success rate of 0.2. We refer the reader to Appendix
A.3 for further analysis on the impact of the ratio of
observed:counterfactual data for this experiment. Finally,
as expected, NO AUGM. fails to solve the OOD (MW) task.

Franka-Kitchen: All Tasks Having evaluated CAIAC
in a controlled setting, we now scale up the problem to the
entire Franka-Kitchen D4RL dataset. While in the standard
benchmark the agent is required to execute a single fixed
sequence of tasks, we train a goal-conditioned agent and
evaluate on the full range of tasks, which include the mi-
crowave, the kettle, the slider, the hinge cabinet, the light
switch and the bottom left burner tasks (Mendonca et al.,
2021). One task is sampled for each evaluation episode.
While alleviating the need for long-horizon planning, this
results in a challenging setting, as only a subset of tasks is
shown directly from the initial configuration. However, the
largest challenge in our evaluation protocol lies in the cre-
ation of unobserved state configurations at inference time.
While the provided demonstrations always start from the
same configuration (e.g., the microwave is always initial-
ized as closed), at inference time, we initialize all non-target
entities (with p = 0.5) to a random state, hence exposing
the agent to OOD states. We expect that agents trained with
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Table 1: Average success rates for Franka-Kitchen tasks
with OOD initial configurations, computed over 10 seeds
and 20 episodes per task with 90% simple bootstrap confi-
dence intervals.

Algorithm CAIAC CoDA CoDA-action No-Augm.

Kettle 0.81 ± 0.07 0.18 ± 0.05 0.16 ± 0.07 0.07 ± 0.06
Microwave 0.75 ± 0.09 0.07 ± 0.05 0.0 ± 0.03 0.01 ± 0.03

Bottom-burner 0.13 ± 0.05 0.01 ± 0.03 0.0 ± 0.02 0.01 ± 0.02
Slide cabinet 0.14 ± 0.04 0.1 ± 0.03 0.02 ± 0.02 0.07 ± 0.03
Light switch 0.01 ± 0.01 0.0 ± 0.0 0.0 ± 0.0 0.00 ± 0.0

Hinge cabinet 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

CAIAC will show improved performance to unseen envi-
ronment configurations, as those can be synthesized through
counterfactual data augmentation. The results, shown in
Table 1, are consistent with the challenging nature of this
benchmark, as the evaluated tasks involve OOD settings
in terms of states and actions. Nevertheless, we find that
CAIAC is significantly better than baselines in 6/7 tasks,
while the last task is unsolved by methods. We hypothe-
size that the low performance on some of the tasks is due
to the absence of robot state and action trajectories in the
dataset that show how to solve each of the tasks from the
initial robot joint configuration. Hence, even with perfect
counterfactual data augmentation these tasks remain chal-
lenging. We refer the reader to the Appendix A.2.1 for
further analysis. As observed in the simplified setting, meth-
ods relying on heuristic-based causal discovery (CODA and
CODA-ACTION) suffer from misestimation of causal influ-
ence, and thus from the creation of dynamically-unfeasible
training samples. See A.7 for a further analysis on the
quality of the created counterfactuals and Fig. 7 for a visual-
ization of the computed CAI scores per each entity on one of
the demonstrations for the Franka-Kitchen dataset. Finally,
without any data augmentation, the learning algorithm i.e.
NO AUGM. baseline) fails to perform the OOD tasks.

6.1.2. GOAL-CONDITIONED OFFLINE RL

Fetch-Pick&Lift with 4 cubes We additionally test CA-
IAC on Fetch-Pick&Lift, a modified version of the Fetch-
Pick&Place environment (Plappert et al., 2018) were a robot
needs to pick and lift a desired cube out of 4 arranged on
a table (Fig. 5 (left)). For this benchmark, we include spu-
rious correlations in the training data by always arranging
the cubes in a line. At test time, the cubes are randomly
positioned on the table, evaluating the agent in out of dis-
tribution states. We collect 40k trajectories using an expert
policy (50%) and random policy (50%) and train an agent
offline using TD3+BC (Fujimoto & Gu, 2021).

Results are shown in Fig. 5 (left). We observe that CAIAC
reaches a high success rate by creating relevant counterfac-
tuals that augment the support of the joint distribution over
entities and break the spurious correlations in the data. Con-
versely, the rest of the baselines exhibit subpar performance.

Once again, for CODA and CODA-ACTION, the attention
weights of the transformer fail to recover the correct causal
graph, resulting in the generation of infeasible samples. On
the other hand, the causally uniformed heuristics used to
perturb the states in RSC, might break the true cause and
effect relationships between state dimensions, leading to per-
formance drop, as reported in (Ding et al., 2023). Moreover,
there is no theoretical guarantee that the learned dynamics
model, which is regularized for improved generalization, is
inherently causal. Consequently, the generated next-state
samples may be inaccurate. Further details are given in
Appendices A.1.3 and A.2.3.

6.2. Low Data Regimes

6.2.1. GOAL-CONDITIONED OFFLINE RL

With this final experiment, our aim is to verify claim (ii), i.e.,
that CAIAC can enlarge the support of the joint distribution
in low data regimes, even when spurious correlations are not
necessarily present in the training data, and no distributional
shift is injected at test time.

Fetch-Push with 2 cubes We evaluate CAIAC in a Fetch-
Push environment (Plappert et al., 2018), where a robotic
arm has to slide two blocks to target locations. For this
experiment we collect 20k trajectories using an expert policy
(30%) and random policy (70%) and train an agent offline
using TD3 (Fujimoto et al., 2018) in two data regimes:
namely 100% and 20% of data.

More details are given in Appendices A.1.2, A.2.2 and A.5.
We compare success rates between baselines and CAIAC
among different data regimes in Fig. 5 (right).

In the high data regime, CAIAC and NO AUGM. baseline
perform similarly given that there is enough coverage of the
state space in the original dataset. In contrast, in the low data
regime CAIAC performs significantly better. Given that the
samples in the data, cover sufficient support of the marginal
distribution of each entity, CAIAC can substantially in-
crease the support of the joint distribution over entities,
leading to higher performance. Transformer-based methods
CODA and CODA-ACTION, and RSC create detrimental
counterfactuals in all data regimes leading to decreased per-
formance. To showcase the previous claims, the estimated
influence scores for all the methods are visualized in A.4.
We note that, while previous work (Pitis et al., 2020) has
shown good online performance of CODA in this environ-
ment, it resorted to a handcrafted heuristic to decide about
influence.

7. Discussion
While extracting complex behaviors from pre-collected
datasets is a promising direction for robotics, data scarcity
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Figure 5: Success rates for Fetch-Pick&Lift with 4 objects (left) and Fetch-Push with 2 cubes (right). Metrics are averaged
over 30 seeds and 50 episodes with 95% simple bootstrap confidence intervals.

remains a principal issue in high-dimensional, multi-object
settings, due to a combinatorial explosion of possible state
configurations which cannot be covered densely by demon-
strations. Hence, current learning methods often pick up
on spurious correlations and struggle to generalize to un-
seen configurations. In this paper, we propose CAIAC as
a method for counterfactual data augmentation without the
need for additional environment interaction or counterfac-
tual model rollouts, which can be used with any learning
algorithm. By adding an inductive bias on the causal struc-
ture of the graph, we circumvent the problem of full causal
discovery and reduce it to the computation of an explicit
measure of the agent’s causal action influence over objects.
Empirically, we show that CAIAC leads to enhanced per-
formance and generalization to unseen configurations, sug-
gesting that further advances in addressing both partial and
full causal discovery problems can be substantially benefi-
cial for robot learning. While our current approach deems
action influence to be more important than object-object
interaction, in future work, we aim to explore alternative
forms of independence to make our approach applicable to
a wider range of tasks. Finally, we would like to further
investigate rebalancing the data distribution to counteract
data imbalances in the dataset.

Reproducibility Statement In order to ensure repro-
ducibility of our results, we make our codebase publicly
available at https://sites.google.com/view/
caiac, and provide detailed instructions for training and
evaluating the proposed method. Furthermore, we describe
algorithms and implementation details in Appendix A. Fi-
nally, as our experiments rely on offline datasets, we publish
them at the same link.
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A. Appendix
A.1. Implementation of downstream learning algorithms

In this section, we report implementation details concerning the learning algorithms. For a fine-grained description of all
hyperparameters, we refer to our codebase at https://sites.google.com/view/caiac.

A.1.1. GOAL-CONDITIONED OFFLINE SELF-SUPERVISED SKILL LEARNING

For the goal-conditioned self-supervised learning experiments we used LMP (Lynch et al., 2019), a goal-conditioned
self-supervised method. It consists of a stochastic sequence encoder, or learned posterior, which maps a sequence τ to
a distribution in latent plan space q(z|τ), a stochastic encoder or learned goal-conditioned prior p(z|s, g) and a decoder
or plan and goal conditioned policy: π(a|z, s, g). The self-supervised goals g are relabeled from achieved goals in the
trajectory.For counterfactual samples, trajectories are augmented before goal sampling. The main difference with the original
implementation is that the latent goal representation is only added to the prior, but not the decoder. Additionally, we also
implemented KL balancing in the loss term between the learned prior and the posterior: we minimize the KL-loss faster
with respect to the prior than the posterior. Given that the KL-loss is bidirectional, in the beginning of training, we want to
avoid regularizing the plans generated by the posterior towards a poorly trained prior. Hence, we use different learning rates,
α = 0.8 for the prior and 1−α for the posterior, similar to Hafner et al. (2020). These two modifications were also suggested
in (Rosete-Beas et al., 2022). Additionally, our decoder was open-loop (instead of close loop): given a sampled latent plan z
it decodes the whole trajectory of length skill length= N , i.e. our decoder is π(â|z), where â = at, ..., at+N is the
sequence of decoded actions, instead of π(a|z, s, g). This modification was needed due to the skewness of the dataset. Since
the demonstrations were provided from an expert agent, given most of the states, the distribution over actions is unimodal:
when the robot is close to the microwave, the only sequence of actions in the dataset is the one that opens the microwave.
Hence, a close-loop decoder would learn to ignore the latent plan, and only rely on the state. To solve this issue, we make
the decoder open-loop.

A.1.2. GOAL-CONDITIONED OFFLINE RL: TD3

We implement the TD3 algorithm (Fujimoto et al., 2018) with HER (Andrychowicz et al., 2017). Unless specified differently,
the hyperparameters used were the ones from the original TD3 implementation. We use HER (Andrychowicz et al., 2017) to
relabel the goals for real data, with a future relabeling strategy with p = 0.5, where the time points were sampled from a
geometric distribution with pgeom = 0.2. For the counterfactual data we relabel the goals with p = 0.5 random sampling
from the achieved goals in the buffer of counterfactual samples. In the experiments, we realized that the relabeling strategy
had an impact on the performance of the downstream agent. To disentangle the impact of the relabeling strategy from the
impact of the counterfactual data generation and to ensure a fair comparison, we also relabeled the same percentage of goals
(i.e. p = 0.25) with random strategy for the No Augm. baseline. We train each method for 1.2M gradient steps, although
all methods reach convergence after 600k gradient steps. For all baselines, the percentage of counterfactuals in each batch is
set to 0.5.

A.1.3. GOAL-CONDITIONED OFFLINE RL: TD3+BC

We implement the TD3+BC algorithm (Fujimoto & Gu, 2021) with HER (Andrychowicz et al., 2017) where a weighted
behavior cloning loss is added to the policy update. After tuning, we used αBC = 2.5 (αBC → 1 recovers Behavior Cloning,
while αBC → 0 recovers RL). Unless specified differently, the rest of hyperparameters used were the ones from the original
TD3 implementation. We use HER (Andrychowicz et al., 2017) to relabel the goals for real data, with a future relabeling
strategy with p = 0.5, where the time points were sampled from a geometric distribution with pgeom = 0.2 and

For the counterfactual data we relabel the goals with p = 1 with future strategy after augmenting the samples. For the
No Augm. we also relabeled goals with random strategy with p = 0.25. We train each method for 120k gradient steps,
although all methods reach convergence after 90k gradient steps. For all baselines, the percentage of counterfactuals in each
batch is set to 0.9 unless specified.
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A.2. Experimental details

A.2.1. FRANKA-KITCHEN

We use the kitchen environment from the D4RL benchmark (Fu et al., 2020) which was originally published by Gupta
et al. (2019). The D4RL dataset contains different dataset versions: kitchen-complete, kitchen-partial,
kitchen-mixed, which contain 3690, 136950 and 136950 samples respectively, making up to approximately 14
demonstrations for kitchen-complete and 400 demonstrations for each kitchen-partial and kitchen-mixed.
The simulation starts with all of the joint position actuators of the Franka robot set to zero. The doors of the microwave
and cabinets are closed, the burners turned off, and the light switch also off. The kettle will be placed in the bottom left
burner. The observation are 51-dimensional, containing the joint positions of the robot (9 dim), the positions of the all
the kitchen items (21 dim) and the goal positions of all the items (21 dim). The length of the episode is 280 steps, but
the episode will finish earlier if the task is completed. The task is only considered solved when all the objects are within
a norm threshold of 0.3 with respect to the goal configuration. While in the standard benchmark the agent is required to
execute a single fixed sequence of tasks, we train a goal-conditioned agent, and evaluate on one task per each evaluation
episode. For the Franka-Kitchen motivating example (see 6.1.1) we query for either the kettle or the microwave task, in the
Franka-Kitchen: All tasks (see 6.1.1) we query for the full range of tasks, which include the microwave, the kettle, the slider,
the hinge cabinet, the light switch and the bottom left burner tasks. While alleviating the need for long-horizon planning,
this results in a challenging setting, as only a subset of tasks is shown directly from the initial configuration. Specifically out
of the 1200 demonstrations in the dataset, containing different task sequences, only 3 objects are shown to be manipulated
from the initial robot configuration: 60% of the trajectories solve the microwave task first, 30% show the kettle task first and
10% show the bottom burner first. This aligns with the relative performance achieved for those tasks. For the 3 remaining
tasks, namely the slide cabinet, the light and the hinge cabinet, there is no demonstration shown directly from the initial
configuration and hence the low performance.

Franka-Kitchen: Motivating Experiment For the first experiment (see Subsection 6.1.1), we modify the dataset version
kitchen-mixed to only contain ∼ 50 demonstrations of length ∼ 40 timesteps for each (mw) and (k) task. During
demonstrations for the (mw) task, we initialize the cabinet to be always open, whereas for demonstrations for the (k) task,
it remains closed. The rest of the objects are set to the default initial configuration. The goal configuration for all the objects
was set to their initial configuration (as defined above), except for the microwave or the kettle, which were set to the default
goal configuration when querying for the (mw) and (k) tasks respectively.

Franka-Kitchen: All Tasks For the second experiment (see Subsection 6.1.1) we merge the 3 provided datasets
kitchen-complete, kitchen-partial, kitchen-mixed. For this experiment, each object (except the one
related to the task at hand to ensure non-trivial completion), was randomly initialized with p = 0.5, otherwise it was
initialized to the default initial configuration (as defined above). We then modify the desired goal to match the initial
configuration for all non-target entities.

A.2.2. FETCH-PUSH WITH 2 CUBES

Expert data for the experiment in Subsection 6.2.1 includes 6000 episodes collected by an agent trained online using TD3
and HER up to approximately 95% success rate. We additionally collect 14000 episodes with a random agent, which make
up for the random dataset. This sums up to a total of 20000 episodes (each of length 100 timesteps), with 30% expert data
and 70% random data. Initial positions and goal positions of the cubes are sampled randomly on the table, whereas the
robot is initialized in the center of the table with some additional initial random noise . The rewards are sparse, giving a
reward of −1 for all timesteps, except a reward of 0 when the position of each of the 2 blocks are within a 2−norm threshold
of 0.05. The observation space is 34-dimensional, containing the position and velocity of the end effector (6dim), of the
gripper (4dim) and the object pose, linear and rotational velocities of the objects (12dim each). In contrast to the original
Fetch-Push-v1 (Plappert et al., 2018) environment and similarly to Pitis et al. (2020) we do not include parts of the state
space accounting for relative position or velocities of the object with respect to the gripper, which would entangle the two.
The goal is 6-dimensional encoding the position for each of the objects. The action space is 4-dimensional encoding for the
end-effector position and griper state. At test time, we count the episode as successful upon reaching the goal configuration
(i.e., observing a non-negative reward).
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Figure 6: Performance of CAIAC on motivating Franka-Kitchen example when controlling the percentage of counterfactual
samples in each batch. Metrics are averaged over 10 seeds and 10 episodes per task, with 95% simple bootstrap confidence
intervals.

A.2.3. FETCH-PICK&LIFT WITH 4 CUBES

Expert data for the experiment in Subsection 6.1.2 includes 20000 episodes collected by an agent trained online using TD3
and HER up to approximately 95% success rate. We additionally collect 20000 episodes with a random agent, which make
up for the random dataset. This sums up to a total of 40000 episodes (each of length 50 timesteps), with same percentage of
expert and random data. During data collection, we initialise all the 4 cubes aligned (i.e. all having the same x-axis position).
In each episode, we initialise this value from a categorical distribution with 5 options. During testing, the initialization
process is the same, but it is done independently for each entity. As a result, the cubes are no longer aligned. The robot is
initialized in the center of the table with some additional initial random noise . The rewards are sparse, giving a reward
of −1 for all timesteps, except a reward of 0 when the position of each all the cubes are within a 2−norm threshold of
0.05. The observation space is 58-dimensional, containing the position and velocity of the end effector (6-dimensional),
of the gripper (4-dimensional) and the object pose, linear and rotational velocities of the objects (12 dimensions each). In
contrast to the original Fetch-Push-v1 (Plappert et al., 2018) environment and similarly to Pitis et al. (2020) we do
not include parts of the state space accounting for relative position or velocities of the object with respect to the gripper,
which would entangle the two. The goal is 12-dimensional encoding the position for each of the objects. The action space is
4-dimensional encoding for the end-effector position and griper state. At test time, we count the episode as successful upon
reaching the goal configuration (i.e., observing a non-negative reward).

A.3. Ablation: Ratio of observed-to-counterfactual Data

In this section, we study the effect of the ratio of observed-to-counterfactual data generated with CAIAC, by evaluating
downstream performance on the Franka-Kitchen motivating example, as presented in 6.1.1. Empirical results for this
ablation are shown in Fig. 6. As expected, we observe that the ratio of counterfactuals does not have any significant impact
on the success rate on the (k) task. This is because the task is evaluated in distribution, and hence the downstream learning
algorithm does not require observing counterfactual experience (but still does not suffer from it). For the OOD (mw) task
we see that increasing the number of counterfactuals up to a 0.9 ratio has a positive effect in performance, leading the
agent to generalize better to the OOD distribution. However, when the ratio is increased up to 1, we only use synthesized
counterfactual data. We observe a decrease in performance with high variance among training seeds. This hard ablation
shows the need for real data during training to avoid induced selection bias, as also observed in (Pitis et al., 2020). With a
ratio 0.0, we recover the performance of the No Augm. baseline.

A.4. Details on Influence Detection Evaluation

To detect causal action influence we use CAI, as described in 4.1.

Cj(s) := I(S′
j ;A | S = s) = Ea∼π

[
DKL

(
PS′

j |s,a
∣∣∣∣ PS′

j |s
)]
. (3)

This requires learning the transition model PS′
j |s,a.

In the case of robotic manipulation environments physical contact is not needed for causal action influence as long as the
agent can change the object pose, even if indirectly, in a single simulation step.
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World model training For the Franka-Kitchen experiments all models were trained to predict the full state of the environment.
For increased performance in the Fetch-Push task, all models were trained to predict the next position of the end effector of
the agent gripper and of the objects (3 dimensions each). For CAIAC the transition model PS′

j |s,a is modeled as a Gaussian
neural network (predicting mean and variance) that is fitted to the training data D using negative log likelihood. We used a
simple multi-layer perceptron (MLP) with two separate output layers for mean and variance. To constrain the variance to
positive range, the variance output of the MLP is processed by a softplus function (given by log(1 + exp(x))), and a small
positive constant of 10−8 was added to prevent instabilities near zero. We also clip the variance to a maximum value of 200.
For weight initialization, orthogonal initialization is used. For the Franka-Kitchen we use larger MLPS, with 3 layers for the
simplified and 4 layers for the full experiment, each with 256 units and a learning rate of 8e−4.

For CODA and CODA-action we use a self-implementation of the transformer model. We use a model with 3 layers and 4
attention heads for the Fetch-Push task and 5 layers and 4 heads for all the Franka-Kitchen tasks, with an embedding space
and output space of 128 dimensions each. We also used a learning rate of 8e−4.

All models were trained for 100k gradient steps, and tested to reach low MSE error for the predictions in the validation
set (train-validation split of 0.9-0.1). We trained all models using the Adam optimizer (Kingma & Ba, 2014), with default
hyperparameters.

In general, the models were trained using the same data as for the downstream task for all experiments. However, for the
Franka-Kitchen task, we add some additional collected data on the environment when acting with random actions. The
reason is that, in order to compute CAI, we query the model on randomly sampled actions from the action space. Due to
the expert nature of the kitchen dataset comes from an informed agent, the original dataset might lack random samples
and hence we would query the model OOD when computing CAI. For both experiments in the Franka-Kitchen simplified
experiment we added 1x the original dataset of random data. Further experiments on the impact of the amount of random
data could be beneficial. This was not needed for the Fetch-Push task since the dataset already contains random action. We
note that this additional data is also provided for training all transformer-based baselines.

CAI scores In practice, we compute the CAI scores using the estimator:

Cj(s) =
1

K

K∑
i=1

[DKL

(
p(s′j | s, a(i)||

1

K

K∑
k=1

p(s′j | s, a(k)
)
] (4)

with a ∼ π, where π(A) := U(A) (i.e. a uniform distribution over the action space) and with K = 64 actions. We refer the
reader to (Seitzer et al., 2021) for more details. In Fig. 7 we show the computed CAI scores over a demonstration in the
Franka-Kitchen and in Fig. 8 ( left) over an episode for the Fetch-Push task. Given the scores we need a threshold θ to get
a classification of control (see Equation 2). For Fetch-Push we set θ = 0.05, for Fetch-Pick&Lift we set θ = 2.0 and for
Franka-Kitchen θ = 0.2 . See section A.5 for a thorough analysis on the impact of the influence threshold θ and how the
parameter was chosen for each of the methods.

Transformer scores To compute causal influence, baselines use the attention weights of a Transformer, where the score is
computed as follows. Letting Ai denote the attention matrix of the i’th of N layers, the total attention matrix is computed
as

∏N
i=1 Ai. For CoDA the score is computed by checking the corresponding row i and column j for the check si → s′j ,

whereas for CoDA-action we restrict ourselves to the row corresponding to the input position of the action component,
and the output position of the object component. Our implementation follows Pitis et al. (2020), to which we refer for more
details. In Fig. 8 (right) and Fig. 9, we show respectively the computed CoDA-action and CoDA scores over an episode
for the Fetch-Push task. Given the scores we need a threshold θ to get a classification of control. For Fetch-Push we set
θ = 0.2 for CODA and CODA-action, for Fetch-Pick&Lift we set θ = 0.2 for CODA-action and θ = 0.15 for CODA.
For Franka-Kitchen we set θ = 0.3 for all methods. See section A.5 for a thorough analysis on the impact of the influence
threshold θ and how the parameter was chosen for each of the methods.

A.5. Analysis on Influence Threshold

To get a classification of control, we optimize the value for the threshold θ for all methods. We train 10 different world
models for each method and we run a grid search over the parameter θ. We run 3 seeds for each of the 10 models and we
picked the value for θ that optimizes the downstream task average performance among the 10 models and the 3 seeds. In
Figure Fig. 10 we plot the ROC curves for correct action influence detection for both CAIAC and CoDA for the Fetch-Push
task. In such an environment, one can specify a heuristic of influence using domain knowledge, namely the agent does not
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(light) and finally the hinge cabinet (hinge).
We selected a threshold of θ = 0.3.
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Figure 8: Top left: Computed CAI scores per object on one of the expert
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ence of the agent’s actions over objects changes over time. First pushing
object 1, then object 2 and object 1 again. In green we show the optimized
threshold θ = 0.05 for this task. Bottom left and right: We show distance
from the robot end-effector to each of the objects as a domain knowledge
heuristic for action influence. In green we show the heuristic distance of
7cm that we use as a threshold to consider the agent can influence the
object within the next timestep. Top right: Computed CoDA-action scores
on the same episode as above. In green we show the optimized threshold
θ = 0.2 for this task.
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Figure 9: Computed CoDA scores on the same episode as in Fig. 8. We show snapshots of the attention weights of the
transformer every 5 time steps as computed by the CoDA algorithm. The element i, j in the matrix shows the attention (or
influence) si → s′j . We see how the transformer completely fails on discovering the full causal graph, being even unable to
recover influence along the diagonal, i.e., that an entity state at time t influences the entity state at time t+1.
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shaded). We show measures true and false positive rates (TPR and FPR) while sweeping the influence threshold θ. In black
we show the corresponding TPR and FPR for the optimal θ for both methods. See also Figs. 11, 12.
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Figure 11: ROC curves for all the 10 trained world using CAIAC. In black we show the corresponding true positive and
false positive rate for the optimal threshold θ = 0.05.

have influence on the object if 7cm apart. An accurate model generates an Area Under the Curve (AUC) close to 1, while a
random model stays along the diagonal. In Fig. 10 we can observe that the attention weights of the transformer world model
are not accurate for detecting influence. Additionally, there is a high variability on the different trained transformers (see
also Fig. 12) , making it hard to optimize for the threshold θ for this type of model architecture. In contrast, we see that
ROC curves for CAI have an AUC ≈ 0.9 and hence it is an accurate measure for predicting influence in the Fetch-Push
environment. Additionally, given its low variance across training seeds (see also Fig. 11), same thresholds reach the same
TPR/FPR across models, making it easy to optimize for θ.

A.6. Computational Demands

CAIAC relies on computing the CAI measure for data augmentation. In turn, CAI can be evaluated for all entities at once,
through k forward passes for the k counterfactual actions, which are performed in a batch-wise fashion. k is a constant
factor, and does not scale with the number of entities. Methods relying on a transformer world model, like CoDA and
CoDA-action only need one forward pass (which internally has quadratic cost in the number of entities due to cross attention).
However, CoDA also needs to compute the connected components from the adjacency matrix, which has a quadratic cost.
For relatively few entities, as is common in the robotic manipulation environments, the computational overhead is relatively
small. Table 2 reports an evaluation for the high data regime in the Fetch-Push environment, in which each method was
timed while computing influence on all 2M datapoints. The algorithms were benchmarked on a 12-core Intel i7 CPU. We
note that counterfactuals could be generated in parallel to the learning algorithm and hence not significantly impact runtime
of the algorithm. Furthermore, in our offline setting, counterfactuals can be fully precomputed.
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Figure 12: ROC curves for all the 10 trained world using CoDA-action. In black we show the corresponding true positive
and false positive rate for the optimal threshold θ = 0.2.

A.7. Analysis on the Quality of Created Counterfactuals

We provide an analysis on the created counterfactuals using CAIAC and several baselines, which investigates whether each
method (i) creates feasible samples (i.e. in accordance to the true transition kernel of the environment) and (ii) increases the
support of the joint state space distribution in the training data.

Feasibility The procedure estimating whether the augmentation procedure is valid is as follows. A set of N trajec-
tories (st, at, . . . , at+τ−1, st+τ ) sampled from the Franka-Kitchen dataset is considered. Counterfactuals trajectories
(s̃t, at, . . . , at+τ−1, s̃t+τ ) are created for each original trajectory using each method. We then leverage access to the environ-
ment’s simulator, reset it to the initial counterfactual state s̃t, and act on the environment by apply actions at, . . . , at+τ−1.
If the counterfactual is valid, the resulting state of the simulation sSIM

t+τ should coincide with the counterfactual s̃t+τ . To
account for non-determinism in the simulator, each action sequence is simulated K = 50 times, which results in a set
of K final states S ′ = {s̄kt+τ}Kk=1. A multivariate Gaussian distribution is then fit to the samples from S ′ via Maximum
Likelihood Estimation.

This allows the computation of the likelihood of the final counterfactual state s̃t+τ under the Gaussian distribution for each
method, and for each of the N initial trajectories. Fig. 2 presents the density of log-likelihoods for each of the methods,
approximated with a Gaussian KDE. We observe that CAIAC’s augmented data have high likelihood under the distribution
of final states returned by the simulator, and hence are mostly valid. In contrast, while some counterfactual trajectories
generated by other methods are also viable, most of their samples are associated to low log-likelihoods, which suggests a
violation of the environment’s dynamics.

Increased support Fig. 2 (right) shows 1000 randomly selected samples from the Franka-Kitchen dataset, as well as
one counterfactual (created using CAIAC) for each. The visualization employs t-SNE for a 2D representation of the high-
dimensional state space. We observe how the augmented samples cover a larger space than the observed data, suggesting
that the support of the joint training distribution over entities is improved. We also provide numerical evidence by comparing
the support of the empirical distributions. For each sample augmented with all methods, we first bin each of the object states
into 2 categories. We then compute the support of the resulting categorical distribution with 2N possible categories, where
N is the number of objects. Table 3 reports ratios between the estimated support and the theoretical maximum.

Table 2: Computational demands for computing counterfactuals for the different algorithms. Runtime was benchmarked on
a 12-core Intel i7 CPU.

CAIAC CoDA CoDA-action

Runtime (min) ∼13 ∼10 ∼1
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In 3 we show how CAIAC increases the support of the original state space distribution by almost a factor of 2 . However,
we can see that rest of the baselines also increase it significantly. Importantly, this numbers do not inform on whether these
counterfactuals are actually valid, i.e. follow the true transition kernel of the environment, which was already investigated in
the above Feasibility paragraph.

B. Implementation Details for Baselines
In the following we provide implementation details for RSC and additional model-based baselines. Details regarding
CAIAC and CoDA and CoDA-action baselines were already provided in the respective sections above.

B.1. RSC (Ding et al., 2023)

Due to lack of public code available by the time of the submission, we resort to reimplementing RSC (Ding et al., 2023). The
implementation follows the guidelines described in the original paper, with a few differences. In the original method, the
dynamics model leverages a learned causal graph as a gating mechanism to achieve better generalization to perturbed state
and action pairs; training is regularized to encourage sparsity in this graph. In our case, we instead leverage a transformer
dynamics model, in which sparsity is granted by the softmax in its attention mechanism. Additionally, while the dynamics
model in RSC is trained to predict both rewards and next states, in our case predicting the next state is sufficient, as the
ground truth reward can be computed with the relabeling function available in goal-conditioned settings.

A final difference that ensures a fair comparison is in the perturbation phase. The original description of RSC is not
object-centric, and thus only perturbs a single dimension of the state space. In our experiments, we ensure that RSC also
leverages the known decomposition of the state space in objects, and thus augment the state of a single object in a consistent
manner.

Finally, a naive maximization of the heuristic (Equation 7 in Ding et al. (2023))over the entire dataset D and K objects
would require evaluating K|D|2 distances. Due to compute constraints, we optimize it by subsampling 1000 candidate
solutions, which we found to still approximate the maximum reasonably well.

B.2. Model based baselines

We present a performance comparison between CAIAC and an MBPO-style causal-unaware model-based approach, which
we call MBPO for simplicity.

MBPO leverages a dynamical model trained from data to generate on-policy imagined N-step transition rollouts. Despite the
ease of data generation, these methods often suffer from bias of model-generated data, which leads to approximation errors
that compound with increasing the horizon (N).

In our spurious correlation experiments, we would argue that it is hard for the model to accurately autoregressively predict
long horizons trajectories, that would lead the agent to OOD states useful to solve the task at hand. Additionally, if that
would be the case, then a causal-agnostic model would be queried OOD suffering leading to poor generalization. Work on
the direction for task independent state abstraction tackles this issue (Wang et al., 2022).

We show the results for the reinforcement learning experiments (namely FetchPush and Fetch-Pick&Lift) in Fig. 13.

For the spurious correlation environment Fig. 13 (left), we indeed confirm our hypothesis, were MBPO is unable to create
samples that break the spurious correlation in the data, and hence leads to poor performance compared to CAIAC.

However, in the low data regime environments Fig. 13 (right), we observe how MBPO thrives and outperforms CAIAC. We
hypothesize that in this environment, the trained model is accurate enough even in low data regimes, and hence can generate
useful trajectory rollouts that increase the amount of data substantially. Since spurious correlations are not present in the

Table 3: Support of the empirical joint state space distribution using different augmentation methods (results computed over
1000 augmented samples).Values represent ratios between the estimated support and the theoretical maximum.

CAIAC CoDA CoDA-action No Augm.

Support 0.52 0.48 0.42 0.3
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data, the model doesn’t need to be queried OOD to create meaningful samples.

We finally decide to leverage the strengths of both approaches and propose CAIAC+MBPO. With this approach, we train
a dynamics model both on the original AND CAIAC’s augmented data. Notably, the model is trained on perturbed yet
dynamically feasible samples, potentially leading it to better generalization capabilities in OOD states. Finally, we we train
our agent with MBPO using both the augmented CAIAC and the original samples.

We observe that in low data regimes Fig. 13 (right), CAIAC+MBPO leads to a boost in performance compared to CAIAC
alone. However, it still underperforms with respect to MBPO. We hypothesize that this is due to some fraction of unfeasible
augmented samples used to train the model, leading to compounding errors when generating the rollout transitions with
MBPO. This would also support the results for the Fetch-Pick&Lift environment Fig. 13(left), where despite outperforming
MBPO significantly, CAIAC+MBPO doesn’t achieve same performance as CAIAC alone.

In terms of implementation details, all the methods share the same hyperparameters, except for the horizon length (N) and
the ratio of augmented samples (R) which we tuned individually. We used N = 5 for CAIAC+MBPO and N = 10 for MBPO
and R = 0.5 for the FetchPush environment, while for FetchPick&Lift we crucially reduce R to 0.1 for all methods and use
N = 5.

We believe that combining CAIAC with model-based approaches is a very promising direction, and we leave extensive
exploration of such an approach for future work.
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Figure 13: Success rates for CAIAC and model-based approaches in Fetch-Pick&Lift with 4 objects (left) and Fetch-Push
with 2 cubes (right). Metrics are averaged over 30 seeds and 50 episodes with 95% simple bootstrap confidence intervals.
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