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Abstract

We study the impact of the batch size nb on the
iteration time T of training two-layer neural net-
works with one-pass stochastic gradient descent
(SGD) on multi-index target functions of isotropic
covariates. We characterize the optimal batch size
minimizing the iteration time as a function of the
hardness of the target, as characterized by the in-
formation exponents. We show that performing
gradient updates with large batches nb ≲ d

ℓ/2 min-
imizes the training time without changing the to-
tal sample complexity, where ℓ is the information
exponent of the target to be learned (Ben Arous
et al., 2021) and d is the input dimension. How-
ever, larger batch sizes than nb ≫ d

ℓ/2 are detri-
mental for improving the time complexity of SGD.
We provably overcome this fundamental limita-
tion via a different training protocol, Correlation
loss SGD, which suppresses the auto-correlation
terms in the loss function. We show that one
can track the training progress by a system of
low-dimensional ordinary differential equations
(ODEs). Finally, we validate our theoretical re-
sults with numerical experiments.

1. Introduction
Descent-based algorithms, such as Stochastic Gradient De-
scent (SGD) and its variations, are the backbone of con-
temporary machine learning. Their simplicity in imple-
mentation, efficiency in operation, and notably effective
performance in practice highlight their importance. A math-
ematical understanding of SGD’s effectiveness remains a
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key focus in the field. Recent progress has been particularly
noteworthy in the realm of shallow neural networks. A se-
quence of works demonstrated that optimizing large width
two-layer neural networks can be mapped into a convex opti-
mization problem over the space of probability measures of
weights, the so-called mean-field analysis (Mei et al., 2018;
Chizat and Bach, 2018; Rotskoff and Vanden-Eijnden, 2022;
Sirignano and Spiliopoulos, 2020). Following this break-
through, a large part of the theoretical effort has shifted to
describing what class of functions can be efficiently learned
by SGD, i.e. time and computational complexities required
to learn a given class of functions. This has been, in particu-
lar, thoroughly analyzed in a series of recent works focusing
on isotropic distributions (e.g. Gaussian, spherical or in the
hypercube) and targets depending only on a few relevant di-
rections (a.k.a. multi-index models). A key result from this
literature is that the time complexity of SGD scales with the
covariates dimension according to the so-called information
exponent (Ben Arous et al., 2021) for single-index and leap
complexity (Abbe et al., 2021; 2023) for multi-index targets,
sparking increasing interest from the theoretical machine
learning community over the last few months (Damian et al.,
2022; 2024; Dandi et al., 2023; Bietti et al., 2023; Ba et al.,
2024; Moniri et al., 2023; Mousavi-Hosseini et al., 2023;
Zweig and Bruna, 2023).

Our work follows this thread, focusing instead on the effect
of batch size nb, parallelization, and sample-splitting into
the overall complexity required to learn a multi-index target.
Instead of looking at data one-by-one, as is common in
theoretical studies, we investigate the finite nb problem, and
characterize the time/complexity tradeoff when learning
with one-pass SGD. Our central goal is to paint a complete
picture of how fast generalized linear models and two-layer
neural networks adapt to the features of training data as a
function of nb, and the structure of the target function.

Our analysis sheds light on a fundamental limitation of one-
pass (or online) SGD, namely that for batch sizes larger
than the input dimension, the dynamics of the training al-
gorithm is dominated by negative feedback terms that do
not permit to reduce the time iterations needed to learn the
target. Therefore, we provide a rigorous solution to this fun-
damental limitation of SGD by considering gradient updates
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Figure 1. Time / Batch size tradeoff for weak recovery: Phase
diagram illustrating different SGD learning regimes as a function
of the batch size exponent µ = logd nb and weak recovery time
exponent θ = logd T . The analysis is dependent on the target’s
information exponent ℓ, this particular plot is valid when ℓ ≥ 3.
Not correlating region: SGD is not able to achieve weak recovery.
Self-interaction regime: SGD is not able to perform weak recov-
ery, but Correlation loss SGD overcomes this limitation. Weak
recovery region: SGD successfully achieve weak recovery. Note
that it exists an optimal choice at batch size nb = O(d

ℓ/2) that
minimizes the number of iterations needed by SGD, and another
optimal point at nb = O(dℓ−1) for Correlation Loss. The critical
line where nb = Ω(dℓ−1) is not addressed by our formal . See
details about the other two regions (Polylog Regime and One-step
regime (Dandi et al., 2023)) in Appendix D.

on the correlation loss. Our approach, drawing inspiration
from the summary statistics method employed by (Saad and
Solla, 1995a; Ben Arous et al., 2021; 2022), concentrates on
the overlaps of neurons with the target subspace and their
norms. This differs from recent studies, such as those by
(Abbe et al., 2022) and (Damian et al., 2022), which focus
on the full gradient vector.

2. Setting, Contributions, and Related Works
Consider a two-layer neural network with activation func-
tion σ and first and second layer weights given by W ∈
Rp×d and a ∈ Rp respectively:

f(z) =
1

p

p∑

j=1

ajσ(⟨z,wj⟩) . (1)

We are interested in studying the capacity of f to learn
from training data D = {(zν , yν)ν∈[N ] ∈ Rd+1}. In the
following, we work under the following setting.

Data model — As hinted in the introduction, we focus
on the case the (noisy) labels depend on the covariates only

through a projection over a k-dimensional subspace:

yν = h⋆(W ⋆zν) +
√
∆ξν , zν ∼ N (0, Id) (2)

whereW ⋆ = {w⋆
r}r∈[k] ∈ Rk×d are the target weights, h⋆ :

Rk → R is a non-linear activation function, ξν ∼ N (0, 1)
is the label noise with variance given by ∆ ≥ 0. We focus
on the case where k = O(1) and d is large, i.e. the label
only depends on a few directions of a high-dimensional
ambient space. The target function f⋆(z) = h⋆(W ⋆z) is
often refereed in the literature as a multi-index model.

Note that the setting above where we assume a generative
model for the data and study the capacity of a model to learn
is also known as teacher-student model in the literature. We
adopt this terminology and refer to f⋆ and f as the teacher
and the student functions, respectively. Similarly, we refer
to W ⋆ and W as the teacher and student weights.

Hardness of the learning task — Characterizing what
class of targets are efficiently learned by two-layer networks
is arguably one of the key question in theoretical machine
learning. The pivotal work of (Ben Arous et al., 2021) prov-
ably describes that for k = 1, the hardness of the learning
task is encoded by a single number, the information expo-
nent ℓ. More precisely, given the activation h⋆ in (2), ℓ is the
lowest degree of the Hermite polynomials {Hej}j∈N appear-
ing in the Hermite expansion of h⋆. This notion generalizes
direction-wise for multi-index models (k > 1), where ℓ is
known as leap complexity (Abbe et al., 2023).

Definition 2.1 (Information Exponent (Ben Arous et al.,
2021)).

ℓ = min{j ∈ N : Eξ∼N (0,1)

[
h⋆(ξ)Hej(ξ) ̸= 0

]
} (3)

Training algorithm — Given the training data D, we con-
sider the training of (W,a) under a sample splitting scheme:
the data is partitioned D =

⋃T
t=1 Dt into T =

⌊
N/nb

⌋

disjoint batches Dt of size nb, which are used, one every
iteration, to train the network. We consider a common
assumption for the training algorithm that is to decouple
the training of the hidden weights W and the second layer
weights a. By keeping fixed the second layer weights at
initialization a = a0, the hidden layer weights W are esti-
mated using (projected) SGD:

wj,t+1 =
wj,t − γ∇wj,t

ℓt∥∥wj,t − γ∇wj,t
ℓt
∥∥ ∀t ∈ [T ], ∀j ∈ [p] (4)

where:

ℓt =
1

2nb

nb∑

ν=1

(yν − f(zν))2, ∀t ∈ [T ] (5)

is the empirical risk over a batch of data. Two comments
are in place. First, the gradient at each step is computed
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using the empirical loss given by fresh, previously, unseen
samples coming from Dt. Each gradient is thus an unbiased
estimator of the true gradient, which means that on average
this algorithm minimizes the population risk over W :

R = E(z,y)

[
1

2
(y − f(z))2

]
(6)

Second, the spherical projection allow us to focus just on the
direction learned by the network, putting aside the effect of
the change of the norm of the weights. Note that in equation
(4) we have kept the read-out layer a fixed. Eventually,
the second layer could also be trained with SGD, as the
first layer, or even with the Moore-Penrose pseudo-inverse
solution; In this paper, however, we consider it fixed and
focus on the feature learning step, i.e., the recovery of the
low-dimensional space spanned by W ⋆.

High-dimensional regime — We focus in the high-
dimensional regime where d→ ∞. Of particular interest is
the case where the batch size nb scales with the dimension
d. Indeed, in modern machine learning, and in particular in
the realm of distributed and federated learning, scenarios
with large batches, a single pass, and few iterations often
becomes the norm (Goyal et al., 2017; Li et al., 2020) (as
for instance when training large language models), further
underlining the relevance of this scenario. More precisely,
we assume a scaling of the relevant parameters, i.e., learning
rate and the batch size, with d, as follows:

γ = γ0d
−δ and nb = n0d

µ. (7)

with µ ≥ 0 and δ could possibly be any real value. The
exponents (δ, µ) characterize the Time / Complexity tradeoff
illustrated in the phase diagram (Fig. 1). More precisely, the
figure shows the time complexity T = T0d

θ as a function of
the batch size exponent µ. The time exponent (θ) is linked
to the learning rate one (δ) and the information exponent (ℓ),
and determining this relation is the main object of analysis
of the following sections.

Weak recovery of the target — The central object of
our analysis is to characterize the time iterations needed
for the SGD dynamics defined in eq. (5) to learn the low-
dimensional features W ⋆. More precisely, we are interested
in studying the number of steps to achieve order one correla-
tion with the target weights W ⋆. We refer to this condition
as weak recovery of the target subspace, formalized in the
following definition.

Definition 2.2 (Weak recovery). The target subspace V ⋆ is
defined as the span of the rows of the target weights W ⋆:

V ⋆ = span(w⋆
1 , . . . ,w

⋆
k) (8)

We define the following weak recovery stopping time for a
parameter η ∈ (0, 1) independent from d:

t+η = min{t ≥ 0 : ∥WW ⋆⊤∥F≥ η} (9)

Our key objective is to characterize the largest affordable
batch size nb to achieve weak recovery of the relevant target
subspace V ⋆ while minimizing the training time iterations
T . Indeed, the updates of one-pass SGD in eq. (5) con-
sist of sums of independent terms that can be parallelized
efficiently with decentralized learning protocols.

Our main contributions in this paper are the following:

• We study how the batch size influences the number of
steps required to learn a target function, for different
information exponents of the problem. We introduce
a schematic phase diagram describing the different
learning regimes, see Fig. 1.

• We show that performing gradient updates with large
batch sizes can reduce the training time without chang-
ing the total sample complexity to weakly recover the
teacher subspace only up to nb ≲ Ψ(ℓ) samples per
steps, with d the data dimension and ℓ the information
exponent of the target. Beyond this limit, larger batch
sizes are detrimental for one-pass SGD.

• We characterize that it is possible to improve over this
fundamental limitation of one-pass SGD by using gra-
dient updates on the correlation loss, namely Corre-
lation loss SGD. We provably show that the number
of steps needed to weakly correlate with the target
with this new training protocol can then be pushed
down to T = polylog(d) when using batch sizes
nb = O(dℓ−1), with ℓ the information exponent. Addi-
tionally, we provide sharp prescription on how to scale
the learning rate with batch size and input dimension,
in order to achieve the best time-memory tradeoff.

• We show that the asymptotic training dynamics is de-
scribed by a system of Ordinary Differential Equations
(ODEs) that can be solved exactly. We leverage on the
ODE description to characterize the different learning
phases of two-layer networks when intialized with non-
vanishing initial correlation with the target direction to
be learned (warm starts). We also discuss finite d cor-
rections to the asymptotic dimension-free description.

• Finally, we validate and illustrate our theoretical results
with numerical experiments.

The code to reproduce representative figures are available in
the Github repository https://github.com/IdePHICS/batch-
size-time-complexity-tradeoffs. We refer to App. E for de-
tails on the numerical implementations while the rigorous
proofs of the main results are detailed in App. A.
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Other related works — The dynamics of Stochastic Gra-
dient Descent (SGD) in two-layer neural networks, par-
ticularly when trained on synthetic Gaussian data, have
been a topic of interest since the seminal works in the mid-
1990s (Saad and Solla, 1995a;b; Biehl and Schwarze, 1995;
Riegler and Biehl, 1995). This area has experienced a resur-
gence in recent years (Tan and Vershynin, 2023; Goldt et al.,
2019; Veiga et al., 2022; Arnaboldi et al., 2023a;b; Berthier
et al., 2023; Ben Arous et al., 2021; Paquette et al., 2022;
Collins-Woodfin et al., 2023; Martin et al., 2024).

Many theoretical efforts highlighted the class of functions
that are efficiently learned by two layer neural networks. In
the context of single-index targets, (Ben Arous et al., 2021)
introduces the notion of information exponent to quantify
the hardness of the learning task. Similarly, for multi-index
models, (Abbe et al., 2022; 2023), building on their earlier
work (Abbe et al., 2021), demonstrated how the leap com-
plexity of target functions dictates the amount of training
samples needed from two-layer networks in the mean-field
limit to learn the target. Note that (Abbe et al., 2023) also
considered the case of nb ≲ O(d). A large number of
theoretical studies devoted to the understanding of the fea-
ture learning regime in two-layer networks often assume an
asymptotically vanishing initialization for the second layer
weights a0 in eq. (1), see e.g. (Abbe et al., 2022; Berthier
et al., 2023; Abbe et al., 2023). Although this assumption is
amenable for theoretical characterizations, our analysis prov-
ably shows that a careful reasoning on the second layer mag-
nitude is needed to offer a complete portrait of the learning
dynamics of SGD. More precisely, we describe a sharp diver-
gence when the batch size nb ≫ d

ℓ/2 between the dynamics
of SGD when optimizing the MSE loss (vanilla SGD), in
contrast to the correlation loss ℓ̃ = 1

nb

∑
ν∈[nb]

1−yνf(zν)
(Correlation loss SGD). The latter training protocol is in-
deed equivalent to consider an asymptotically vanishing
second layer weights a0 at initialization in the optimization
routine, e.g. see (Damian et al., 2024).

Closer to us, the analysis of the first gradient descent step
with large nb has been discussed in detail in recent papers
(Ba et al., 2022; Damian et al., 2022; Dandi et al., 2023).
(Ba et al., 2022) showed that a single large learning rate gra-
dient step allows to beat kernel methods when the number
of training samples is proportional to the input dimension .
While their results are limited to single-index target and to
a single gradient step, (Damian et al., 2022) further showed
that with n = ω(d2) samples, two-layer nets can learn
multi-index target function with zero first Hermite coeffi-
cient (ℓ=2). (Dandi et al., 2023) extended their conditions
on the sample complexity to general ℓ ≥ 1, showed this
complexity is optimal for single-step learning, and extended
the results to higher information exponents. Although moti-
vated from different objectives, (Sclocchi and Wyart, 2024)
heuristically sketch a phase diagram for the performance of

SGD on realistic datasets as a function of the algorithm’s
relevant parameters, i.e. batch size and learning rate.

A common assumption in theoretical studies is to consider
sample-splitting schemes for the training protocol. At each
iteration, the optimization algorithm is ran using a fresh
batch of observations of the model, drawn independently
of past iterations; this routine has been used extensively in
the analysis of iterative algorithms (see e.g. (Chandrasekher
et al., 2021; Jain et al., 2013; Hardt and Wootters, 2014; Jain
and Netrapalli, 2015; Kwon et al., 2019)).

3. Time / Complexity Tradeoffs
In this section, we characterize the intertwined dependence
between the batch size and the hardness of the learning
task in determining the number of one-pass SGD iterations
needed to achieve weak recovery of the teacher subspace as
in Definition 2.2. We offer a detailed picture of the tradeoffs
to consider in order to minimize the training iteration time
T , compactly illustrated in the phase diagram in Fig. 1.

Network initialization — We consider random initializa-
tion for the hidden layer weights of the network (1), while
the second layer weights are kept fixed:

wj,0 ∼ Unif(Sd−1), aj,0 = 1 j ∈ [p]. (10)

We will refer to this situation as cold start, since the initial
network correlation with the target directions is vanishing
when d→ +∞.

Generalized Linear Models — The seminal work of
(Ben Arous et al., 2021) studies the weak recovery prob-
lem for Generalized Linear Models (GLMs), i.e. p = 1,
when learning single-index targets (k = 1). Starting from
randomly initialized networks as defined in (1), the time iter-
ations needed for one-pass SGD (with one sample per batch)
to achieve weak recovery of the target direction respects:

I(ℓ) =





O(dℓ−1) if ℓ > 2

O(d log d) if ℓ = 2

O(d) if ℓ = 1

(11)

where ℓ is the information exponent of the target f⋆.
As far as weak recovery of the target subspace is concerned,
the characterization of multi-index targets follows the same
lines of thought just replacing the information exponent by
the leap index of the target, e.g. see Definition 3 of (Dandi
et al., 2023) or Definition 1 of (Abbe et al., 2023). Simi-
larly to the information exponent definition, the leap index
is the lowest rank of the tensors appearing in the Hermite
expansion of the target f⋆. Therefore, we choose to study
in the following the training dynamics for the p = k = 1
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scenario for general batch sizes nb. This assumption is use-
ful to provide rigorous guarantees as it largely reduces the
complexity of the projected SGD dynamics. However, we
argue (supported by numerical simulations in Appendix E.1)
that the same phenomenology will hold for larger values of
p and k.

3.1. Weak recovery with one-pass SGD

Consider the gradient descent dynamics defined on the hid-
den layer weights by eq. (4). We focus on the description of
the time evolution of the correlation between the network’s
hidden layer weight and the target direction:

mt = ⟨wt,w⋆⟩ (12)

Our first main result is to characterize the time to achieve
weak recovery of the target directionw⋆ as a function of the
batch size and the information exponent of the target. We
make very weak assumptions on the activation and labeling
functions, namely only assuming a sub-polynomial growth:

Assumption 3.1 (Polynomial growth). The activation func-
tion σ is differentiable everywhere, except maybe at a finite
set of points. Both σ′ and f⋆ are sub-polynomial, i.e. there
exists a k > 0 and a constant C such that for any x ∈ R

|σ′(x)| ≤ C(1 + x)k and |f⋆(x)| ≤ C(1 + x)k (13)

Assumption 3.2 (Well-posedness). Let (ck)k≥0 and
(c⋆k)k≥0 be the Hermite coefficients of σ and h⋆, respec-
tively. Then cℓ ̸= 0, and if ℓ is even, then cℓc⋆ℓ > 0.

Assumption 3.3 (Initialization). There exists a κ > 0 such
that m0 > κ/

√
d. Further, if ℓ is odd, then m0 is such that

cℓc
⋆
ℓm0 > 0

Assumption 2 ensures that the optimization problem is
achievable for gradient flow on the population loss R. In-
deed, one can show that when m ≈ 0,

R = 2(1− cℓc
⋆
ℓm

ℓ) + o(mℓ);

as a result, if ℓ is even and cℓc⋆ℓ < 0, then m = 0 is a local
maximum of R and weak recovery is impossible. When
ℓ is odd, the point m = 0 is always a strict saddle, so
Assumption 3.3 that we start on the correct side of the saddle.
Under the initialization scheme described by Equation 10,
the first condition is satisfied with arbitrarily high probability
upon decreasing κ, while the second is a 1/2-probability
event.

We are now in the position to formally state the result:

Theorem 3.4 (Projected SGD weak recovery). Consider
the projected SGD algorithm with square loss (Eqs. (4),

(5)), and suppose that Assumptions 3.1-3.3 hold. There exist
absolute constants cγ , Cγ such that if

γ ≤ cγ min
(
1, nbd

−( ℓ
2∨1) log(d)−Cγ

)
,

then for large enough d we have with probability 1 −
ce−c log(n)

2

t+η ≤ Cγ−1d(
ℓ
2−1)∨0 log(d). (14)

3.2. Illustration of Theorem 3.4

The phase diagram in Fig. 1 exemplifies Theorem 3.4. We
identify three learning phases: SGD learning, Correlation
Loss SGD learning, and SGD impossible. These regions
are explored by varying the batch size and learning rate ex-
ponents δ, µ. Our theory characterizes the optimal learning
rate to achieve the lowest possible time iterations of SGD to
weakly recover the target directionw⋆ when the batch size
respects nb = o(dℓ−1):

δ⋆(µ) =

{
ℓ
2 − µ if µ < ℓ/2

0 otherwise
(15)

Weak recovery region — In the region nb ≲ d
ℓ/2 there

is a net benefit in using larger batch sizes in the SGD op-
timization. This section shows a similar phenomenology
to (Ben Arous et al., 2021): if we optimally choose the
learning rate exponent δ⋆(µ), the number of time iterations
needed to weakly recover the teacher directionw⋆ is simply
T (nb) = I(ℓ)/nb, rescaling straightforwardly the time com-
plexity of the nb = 1 case in eq. (11). By considering higher
values for the learning rate (δ < δ⋆(µ)) SGD is not able to
weakly recover the signal as the dynamics is dominated by
terms contracting the network / target correlation to zero,
defining the SGD impossible region. Vice versa, if one takes
into account lower learning rates (δ > δ⋆(µ)), it is certainly
possible to weakly-recover the target, but at a higher time
complexity cost.

Self-interaction regime — Conversely, the region dℓ/2 ≪
nb ≲ dmax(ℓ−1,1) does not adhere to the same straightfor-
ward paradigm. Indeed, standard SGD is not able to achieve
weak recovery of the teacher direction using T (nb)= I(ℓ)/nb

time iterations, but a simple modification of it - that we call
Correlation Loss SGD - is able to. The number of steps
needed to weakly recover the target with this new training
protocol can then be pushed down to T = polylog(d) when
using batch sizes nb = O(dmax(ℓ−1,1)). We refer to the
next section for a detailed analysis of this regime.

One step regime — Recent works have discussed the
role of one large learning rate gradient descent step (gi-
ant step) when training of two-layer networks (Ba et al.,
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SGD SGD Correlation loss SGD One step
with nb ≲ dℓ/2 with dℓ/2 << nb ≲ dmax(ℓ−1,1) with nb = o

(
dmax(ℓ−1,1)

)
with nb=O(dℓ)

ℓ=1 T = O(d/nb), N=O(d) T =O(1), N=O(d) T =O(d/nb), N=O(d) T =1, N=O(d)

ℓ=2 T =O(d log d/nb), N=O(d log d) T =O(log d), N=O(d log d) T =O(d log d/nb), N=O(d log d) T =1, N=O(d2)

ℓ > 2 T =O(dℓ−1/nb), N=O(dℓ−1) T = O(dℓ/2−1), N=O(nbd
ℓ/2−1) T =O(dℓ−1/nb), N=O(dℓ−1) T =1, N=O(dℓ)

Table 1. Time / Complexity tradeoffs: Number of iterations T and the total number of samples N needed to achieve weak recovery of
the target for different training protocols in high dimensions. Left: One-pass SGD of batch size nb = d

ℓ/2, in this regime the optimal
time complexity is obtained rescaling by nb the result of (Ben Arous et al., 2021) for nb = 1, i.e. by choosing the optimal learning
rate γ = O(nbd

−ℓ/2). Center-left: One-pass SGD with batch size d
ℓ/2 << nb ≲ dmax(ℓ−1,1), for hard problems (ℓ > 2) the sample

complexity is significantly increased with respect to the nb = 1 case up to N = O(nbd
ℓ/2−1). The learning rate cannot be increased

proportionally to nb in this region, fixed to be γ = O(1). Center-Right: Correlation loss SGD with nb = o(dmax(ℓ−1,1)), this training
protocol overcomes the limitation of SGD when nb >> d

ℓ/2 and ℓ > 2; the total sample complexity is N = O(dℓ−1). The learning rate is
fixed again to be proportional to the batch size γ = O(nbd

−ℓ/2). Right: The target is weakly recovered with one GD step of nb = O(dℓ)
batch. The learning rate is chosen as γ = O(d

(ℓ − 1)/2) for the One Step routine (Dandi et al., 2023).

2022; Damian et al., 2022; Dandi et al., 2023). More pre-
cisely, (Dandi et al., 2023) sharply characterizes the sec-
tion nb = Ω(dℓ) where it is possible to learn the teacher
direction in just one step by setting the learning rate to
δgiant−step(µ) =

1−ℓ
2 .

3.3. The self-interaction regime

Surprisingly, when the learning rate becomes extensive (γ =
ω(1)), the usual SGD algorithm struggles to achieve weak
recovery. This can be explained by writing the gradient
update as

wt + γgt = (1− γ⟨gt,wt⟩)wt + g⊥t ,

where gt, g⊥t are the gradient at time t and its component
orthogonal to wt, respectively. As a result, projected gradi-
ent descent can be seen as a version of spherical SGD with
a random weight decay γ⟨gt,wt⟩. When γ = ω(1), this
weight decay also becomes of order ω(1), which leads to
very unpredictable behavior of the process (wt)t≥0.

In this section, we study a modified version for the training
protocol, in which the self-interaction term ⟨gt,wt⟩ is much
smaller; we will refer to this new algorithm as Correlation
loss SGD (see e.g. (Damian et al., 2024)), as it effectively
amounts to gradient updates on the correlation loss:

ℓ̃ =
1

nb

∑

ν∈[nb]

1− yνf(zν) (16)

The above-described protocol is equivalent to consider a
vanishing initialization scale for the second layer weights
a0 of the network 1. Such assumptions are often considered
in different theoretical efforts (see e.g. (Abbe et al., 2022;
Berthier et al., 2023; Abbe et al., 2023)). However, Fig. 1
illustrates that a careful analysis of the initialization scale
a0 is needed to paint an exhaustive description of the SGD

dynamics. Indeed, considering Correlation loss SGD allows
to overcome the limitations highlighted by Theorem 3.4 for
projected SGD. In particular, Correlation loss SGD is able
to access the yellow region depicted in Fig. 1 where the time
complexity can be reduced again to T̃ (nb) = I(ℓ)/nb using
the optimal learning rate δ̃⋆(µ) = ℓ/2 − µ even for µ > ℓ/2.
This is precisely stated in the following theorem.

Theorem 3.5 (Correlation Loss SGD weak recovery). Con-
sider the projected SGD algorithm with correlation loss
(eqs. (4), (16)), and suppose that Assumptions 3.1-3.3 hold.
There exists absolute constants cγ , Cγ such that if

γ ≤ cγ log(d)
−Cγ min

(
nbd

−( ℓ
2∨1),

√
nb
d

)

Then if d is large enough, we have with probability 1 −
ce−c log(n)

2

t+η ≤ Cmax
(
1, γ−1d(

ℓ
2−1)∨0 log(d)

)
. (17)

The derivation of Theorems 3.4 and 3.5 generalizes
(Ben Arous et al., 2021) which studies the nb = 1 case.
Informally, the result is obtained by analyzing the stabil-
ity of the equation for the correlation mt, along with the
requirement on the step-size for the suppression of the ef-
fects of the noise across time. However, there is a major
difficulty introduced by the large stepsize regime: when the
gradient updates become larger, the Taylor-inspired bounds
used in (Ben Arous et al., 2021) become vacuous. We work
around this problem by showing that in this regime, there
is a one-step improvement which jumps directly to mean-
ingful correlation with the target vector. All details can be
found in App. A. We provide in Table 1 a representative
summary of the results in Thms (3.4. 3.5) characterizing
the time/complexity tradeoffs to achieve weak recovery of
general single index target f⋆.
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The theoretical predictions of Thm. 3.5 are evaluated in
Fig. 2. The plot compares the student-teacher weight cor-
relation (mt = ⟨wt,w⋆⟩) achieved by vanilla projected
SGD and Correlation Loss SGD as a function of time. The
teacher activation h⋆ is fixed to be the third Hermite polyno-
mial (ℓ = 3), and the batch size varies, effectively changing
the region of the phase diagram considered. In agreement
with Theorem 3.5, the figure shows that Correlation Loss
SGD is always able to achieve faster weak recovery with
respect to SGD. Furthermore, the batch size that can be used
with Correlation Loss SGD in combination with the optimal
learning rate δ̃⋆(µ) = ℓ/2 − µ is larger, as presented in the
phase diagram of Figure 1.
Remark 3.6. Theorem 3.5 does not claim superiority of
Correlation Loss SGD with respect to plain SGD when
trying to fully learn the target, but only for achieving weak-
correlation faster (Definition 2.2). As Figure 2 shows, Cor-
relation Loss SGD escapes the initial dynamical plateau
faster, but is then limited by a loss function not designed
properly to reach the global minimum. In Appendix E we
investigate the possibility to combine both the algorithms
sketched in Fig. 2, namely escaping the initialization plateau
with Correlation loss SGD and then learn the function with
SGD; we refer to this protocol as Adaptive SGD. Moreover,
as Fig. 1 and Table 1 illustrate, the benefits of using Correla-
tion loss SGD are limited to settings in which ℓ > 2. Indeed,
the Self-interaction regime (depicted in yellow in Fig. 1) is
not present for ℓ ≤ 2.

4. Exact Asymptotic Description
We now characterize the exact asymptotic description of the
dynamics of two-layer networks trained with SGD. In Fig. 3
we sketch a representative phase diagram as a function of
the relevant parameter of the algorithm, i.e. the learning rate
and the batch size. The plot identifies different regions of
parameters defining the network’s learning efficiency.

Sufficient statistics — Our study, like many other efforts
(Ben Arous et al., 2022; Saad and Solla, 1995a), is based on
the concentration of the neurons’ overlaps with the target
subspace and their norms. This approach only requires the
knowledge for every optimization step t ∈ [T ] of the above
defined overlaps, often referred to as sufficient statistics. Let
the pre-activations be defined as:

λt =Wtz and λ⋆ =W ⋆z (18)

Thanks to the Gaussian nature of the data, the pre-activations
at any time step t are jointly Gaussian vectors (λt,λ⋆) ∼
N (0p+k,Ωt) with covariance Ωt ∈ R(p+k)×(p+k):

Ωt :=

(
Qt Mt

M⊤
t P

)
=

(
WtWt

⊤ WtW
⋆⊤

W ⋆W⊤
t W ⋆W ⋆⊤

)
(19)

We refer to Mt, Qt as the order parameters.

4.1. Closed form equations

We are now in the position to state our proposition that
provides a set of deterministic ODEs to describe one-pass
SGD in high-dimensions. This portrayal depends ultimately
only on the values of the values of the learning rate and the
batch size, as quantified by the exponents (δ, µ).
Proposition 4.1. Consider Ω̄(t) the solution of the system
of ordinary differential equations

dMjr

dτ
=Ψjr(Ω)−

Mjr

2
Φjj(Ω)

dQjl
dτ

=Φjl(Ω)−
Qjl
2

(
Φjj(Ω) + Φll(Ω)

) (20)

where we introduced:

Ψjr(Ω) =1{δ≥0
⋂

2δ+µ≥1}
γ0
p
ajψjr

Φjl(Ω) =1{δ≥0
⋂

2δ+µ≥1}
γ0
p

(
atjϕ

GF
jl + atlϕ

GF
lj

)

+ 1{δ+µ≥1
⋂

2δ+µ≤1}
γ20
p2n0

atja
t
lϕ

HD
jl

(21)

and auxiliary integrals bearing expectations over N (0,Ω):

ψjr =E
[
σ′(λj)λ

⋆
rE
]

ϕGF
jl =E

[
σ′(λj)λlE

]

ϕHD
jl =E

[
σ′(λj)σ

′(λl)E2
]

E =g⋆(λ
⋆)− 1

p

p∑

j=1

ajσ(λ)

Then, there exists a constant C independent from the input
data dimension, such that the discrete stochastic process
for the covariance {Ωt}t∈N in eq. (19) induced by projected
SGD dynamics is approximated by the deterministic covari-
ance matrix Ω̄(t) with precision:

E
∥∥Ωt − Ω̄(t∆τ)

∥∥ ≤ eCt
√
∆τ (22)

with ∆τ = dmax(−δ,−2δ+1−µ).

We refer to Appendix B for the informal derivation of the
above result.

In Fig. 3 (left) we summarize the results of Prop. 4.1 in a
compact phase diagram. The following dynamical regimes
appear:

• Population Flow: The dynamics of the sufficient statis-
tics described by a deterministic set of ODEs (20) is
equivalent to population gradient flow.

• Noise learning: The dynamic is dominated by high-
dimensional noise, and consequently the algorithm
does not learn the target; the behavior is reflected in
the ODEs.

7



Online Learning and Information Exponents: On The Importance of Batch size, and Time / Complexity Tradeoffs

103 104

T

0.0

0.2

0.4

0.6

0.8

1.0

m
t

=
〈w

t
,w

?
〉

SGD Learning (µ = 1)

101 102 103

T

Optimal Point (µ = `
2
)

Proj. Corr. d=512

Proj. Plain d=512

Proj. Corr. d=1024

Proj. Plain d=1024

100 101 102

T

Corr. SGD Learning (µ = 3`−2
4

)

Figure 2. Correlation Loss SGD weak recovery: Comparison between the performance of plain SGD and the Correlation Loss SGD, in
different regions of the phase diagram, and for different sizes d. The plot shows the test error as a function of the optimization steps. Both
the teacher and the student activation functions are fixed to σ = h⋆ = He3, so the information exponent is ℓ = 3. In all the three plots
we vary the value of µ, while δ = µ − ℓ/2. Theorem 3.5 predicts that the Correlation Loss SGD weakly recovers the target direction
while SGD fails when δ < 0, in accordance to what is shown in the plot. Note that the numbers of steps needed for the target recovery
drastically decrease when µ becomes large in accordance with Theorems 3.4,3.5.

• Saad&Solla line: The ODE description in Prop. 4.1
is equivalent to the pivotal work on 2LNNs (Saad and
Solla, 1995a). In particular, the original work cor-
responds to the point (δ, µ) = (1, 0). The learning
dynamics is blocked on a plateau characterized by the
noise variance in the labels.

• Dynamics not defined: For a broad range of values of
(δ, µ) the SGD dynamics is not effectively described
by a set of low-dimensional deterministic ODEs.

In the right panel of Figure 3 we present a numerical investi-
gation of three particular instances of the regimes presented
above. The plot shows a comparison of numerical simula-
tions versus the low-dimensional exact asymptotic charac-
terization given in eqs. (20). The values of the learning rate
and the batch size used for SGD training are varied to probe
different regions of phase diagram 3.
Remark 4.2. When the target’s leap index is ℓ > 1, the dy-
namic of SGD is dominated by a first extensive search phase
to achieve weak recovery of the teacher direction (Thm. 3.4).
Therefore, in order to probe interesting dynamical regimes
for general single index teachers, we assume non-vanishing
initial correlations of the network’s hidden layer weights
with the teacher’s ones when d→ +∞. In App. E we study
the tightness of the exponential bound eq. (22); we argue
supported by numerical illustrations that (on the practical
side) the low dimensional ODE description is valid well be-
yond the extents of Prop. 4.1, as already observed by other
works (Goldt et al., 2019; Veiga et al., 2022) in different
context.

Non asymptotic corrections — Proposition 4.1 unveils
a surprising result for the exact asymptotic description of
two-layer networks. Indeed, the ODEs written in eq. (20)
coincide with the analogous ones for the single sample per
batch case (nb = 1), modulo trivial rescaling of the parame-
ters (Veiga et al., 2022). However, a careful consideration
of the “intra-batch correlations” in the gradient is needed
for correctly describing the low-dimensional process of the
order parameters:

nb∑

ν′=1,ν′ ̸=ν
σ′(λνj )σ

′(λν
′

l )EνEν′⟨zν , zν′⟩ (23)

The asymptotic form of this term can be exactly computed
to be (using Prop. 4.1 notations):

ϕBC
jl =E

[
σ′(λj)E (λ⋆)

⊤
]
P−1E

[
σ′(λl)Eλ⋆

]
+ (24)

E
[
σ′(λj)E(λ⊥)⊤

] (
Q⊥
)−1

E
[
σ′(λl)Eλ⊥

]
(25)

with λ⊥ = λ−MP−1λ⋆ and Q⊥ = Q−MP−1M⊤. Al-
though the contribution of the above term is asymptotically
vanishing in the ODE description (20) when d → ∞, any
theoretical description at finite d will effectively depend on
ϕBC
jl . In App. E we provide additional numerical investiga-

tion on the importance of (24) and the role of large batch
sizes for non-asymptotic corrections to the characterization
in Prop. 4.1. Moreover, we note that taking into account
the presence of large batch size is pivotal to illustrate the
time / complexity tradeoffs for weak recovery of the target
subspace, as thoroughly discussed in Section 3.
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Figure 3. Exact asymptotic description: Exact asymptotic characterization of the dynamics of two-layer networks trained with SGD as a
function of the batch size (nb) and the learning rate (γ). Left: Illustration of the different dynamical regimes in a compact phase diagram.
Population flow region: The dynamics is equivalent to population gradient flow. Noise learning region: The high-dimensional noise
terms dominate the dynamics. Saad&Solla line: The learning dynamics attains a plateau characterized by the noise variance (Saad and
Solla, 1995a). Dynamics not defined: The deterministic low-dimensional description of the eq. (20) is not valid. Right: The figure
shows a comparison of numerical simulations (dots) and theoretical prediction (continuous lines) for three instances (δ, µ) associated with
different learning regimes (identified by the corresponding colors). For both theory and simulations, the test error is plotted as a function
of SGD iterations. We consider a matching architectures problem, i.e. h⋆ = σ = erf activation, and hidden units p = 2, k = 2.

5. Conclusions
In this manuscript, we have explored the intricate relation-
ship between batch size and the efficiency of learning multi-
index targets using one-pass SGD on high-dimensional input
data. Our findings defies the conventional belief that larger
batch sizes invariably lead to better results and reveals a crit-
ical batch size threshold, beyond which the advantages of
larger batches wane in terms of computational complexity.
Applying gradient updates on the correlation loss one may,
however, navigate this limitation. Finally, we also provide
a system of low-dimensional ODE to describe the exact
asymptotic of the SGD dynamics with arbitrary batch-sizes.
Moving forward, we hope this research paves the way for
deeper inquiries into the optimization behaviors of learn-
ing algorithms, prompting further examination of deeper
networks and alternative loss functions.
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A. Proof of Theorems 3.4 and 3.5
A.1. Preliminaries

Notations and definitions We denote by polylog x any polynomial in log x with degree > 1. Since the case where
nb = O(1) is already covered by the results in (Ben Arous et al., 2021), we shall always assume that µ > 0. The Hermite
coefficients of σ and f⋆ will be denoted by (ck)k≥0 and (c⋆k)k≥0, respectively. To break the symmetry between m and −m
inherent to the problem, we assume without loss of generality that

m0 > 0 and cℓc
⋆
ℓ > 0.

Throughout this section, the update process on wt will be written as

wt+1 =
wt − γ gt

∥wt − γ gt∥
, (26)

where gt is the gradient at time t: gt = ∇wtℓt, and ℓt is the empirical loss at time t, that can be either the correlation or the
square loss. When considering the update of the process (wt)t≥0, it will be useful to distinguish between the randomness
in wt and the one introduced by the batch drawn at time t. To this end, we introduce the filtration (Ft)t≥0 adapted to the
process wt, and we shall denote by Pt (resp. Et) the probability (resp. expectation) conditioned on Ft.

Concentration in Orlicz spaces We first recall some fact about Orlicz spaces that will be useful for our concentration
bounds.

Definition A.1. For any α ∈ R, let ψα(x) = ex
α − 1. Let X be a real random variable; the Orlicz norm∥X∥ψα

is defined
as

∥X∥ψα
= inf



t > 0 : E

[
ψα

( |X|
t

)]
≤ 1



 (27)

It can be checked that∥·∥ψα
is a well-defined norm on random variables for α ≥ 1, and can be slightly modified into a norm

when α < 1; see (Ledoux and Talagrand, 1991; van der Vaart and Wellner, 1996) for more information. We say that a
random variable is sub-gaussian (resp. sub-exponential) if its ψ2 (resp. ψ1) norm is finite. The main use of this definition is
the following concentration inequality:

Lemma A.2. Let X be a random variable with finite ψα-norm for some α > 0. Then

P
[
|X − EX| > t∥X∥ψα

]
≤ 2e−t

α

. (28)

As a result, any ψα-norm bound yields exponential convergence tails. Orlicz norms are also well-behaved with respect to
products:

Lemma A.3. Let X and Y be two random variables such that∥X∥ψα
and∥Y ∥ψβ

are finite for some α, β > 0. Then

∥XY ∥ψλ
≤∥X∥ψα

∥Y ∥ψβ
,

where λ is the number satisfying 1
α + 1

β = 1
λ .

Proof. Assume without loss of generality that∥X∥ψα
= ∥Y ∥ψβ

= 1. We use the following Young inequality: for any
a, b > 0, and p, q such that 1

p +
1
q = 1,

ab ≤ ap

p
+
bq

q

Applying this inequality to p = α/λ, q = β/λ, a = Xλ, b = Y λ, we get

(XY )λ ≤ λXα

α
+
λY β

β
.

13
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Then

exp((XY )λ) ≤ exp

(
λXα

α

)
+ exp

(
λY β

β

)

≤ λ

α
exp(Xα) +

λ

β
exp(Y β),

where at the last line we used Young’s inequality again with the same p and q. The result ensues from taking expectations on
both sides, and noticing that λ/α+ λ/β = 1 by definition.

Finally, we shall use the following theorem:

Theorem A.4 (Theorem 6.2.3 in (Ledoux and Talagrand, 1991)). Let X1, . . . , Xn be n independent random variables with
zero mean and second moment EX2

i = σ2
i . Then,

∥∥∥∥∥∥

n∑

i=1

Xi

∥∥∥∥∥∥
ψα

≤ Kα log(n)
1/α




√√√√
n∑

i=1

σ2
i +max

i
∥Xi∥ψα


 (29)

A.2. Computing the gradient at time t

Throughout this section, the update process on wt will be written as

wt+1 =
wt − γ gt

∥wt − γ gt∥
, (30)

where gt is the gradient at time t: gt = ∇wt
ℓt, and ℓt is the empirical loss t, that can be either the correlation or the square

loss. A direct computation of both gradients implies the following lemma:

Lemma A.5. Define

g⋆t =
1

nb

nb∑

ν=1

f⋆(⟨w⋆, zν⟩)σ′(⟨wt, zν⟩)zν and ĝt =
1

nb

nb∑

ν=1

σ(⟨wt, zν⟩)σ′(⟨wt, zν⟩)zν , (31)

Then the gradient of the correlation loss ℓcorr is −g⋆t , while the gradient of the square loss ℓsq is ĝt − g⋆t .

Hence, the main difference between the gradients of the correlation and square loss is a so-called interaction term ĝ, that
only depends on the learned vector wt. Notice that g⋆t is an average of nb independent variables of the form

g⋆νt := f⋆(⟨w⋆, zν⟩)σ′(⟨wt, zν⟩)zν , (32)

and we define ĝνt and gνt in the same way. By Assumption 3.1 and Lemma A.3, each variable g⋆νt (resp. ĝνt , g
ν
t ) has finite

ψα-norm for some α > 0, and hence Proposition 2 of (Dandi et al., 2023) holds up to polylog(n) factors.

We can also compute the conditional expectation of the gradient gt:

Lemma A.6. For any t ≥ 0,
Et [g⋆t ] = ϕ(mt)w

⋆
t + ψcorr(mt)wt (33)

where ϕ(mt) and ψcorr are two functions with Taylor expansion

ϕ(m) =

∞∑

k=0

ck+1c
⋆
k+1m

k and ψcorr(m) =

∞∑

k=0

ck+2c
⋆
km

k. (34)

Further, we have
Et [ĝt] = csqwt with csq = Ez∼N (0,1)

[
zσ(z)σ′(z)

]
. (35)

Proof. The expectation of g⋆t is a specialization of Lemma 4 from (Dandi et al., 2023) to r = 1. By the independence
properties of Gaussians, Et

[
σ(⟨wt, z⟩)σ′(⟨wt, z⟩)⟨z,w′⟩

]
= 0 as soon as w′ is orthogonal to wt, hence the expectation

of ĝt lies along wt, and the second result follows.
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In the following, we will denote ψsq(x) = ψcorr(x)− csq. A generic ψ will be used when no specialization is necessary, so
that

Et [gt] = −ϕ(mt)w
⋆ − ψ(mt)wt. (36)

A.3. A differential inequality for mt

The structure of the proof is similar to the one of (Ben Arous et al., 2021). We define the following stopping times for ζ > 0:

t+ζ = min{t ≥ 0 : mt ≥ ζ}, t−ζ = min{t ≥ 0 : mt ≤ ζ}, (37)

and the following γ-dependent time:
t̃+γ,ζ = min{t ≥ 0 : γmℓ−1

t ≥ ζ} (38)

Our first goal is to show the following high-probability inequality:

Proposition A.7. Define
tmax =

nb
Cmaxd log(d)Cmax γ2

, (39)

for some sufficiently large Cmax > 0. Then, for a sufficiently small choice of cγ:

1. If we are using the square loss, and γ ≤ cγ(nbd
−ℓ/2 ∧ 1), there exists c, η > 0 such that

P


mt ≥

3

4
m0 + cγ

t−1∑

s=0

mℓ−1
s ∀t ≤ t+η ∧ tmax


 ≥ 1− ce−c log(n)

2

. (40)

2. If we are using the correlation loss, and γ ≤ cγnbd
−ℓ/2, there exist c, ε > 0 such that

P


mt ≥

3

4
m0 + cγ

t−1∑

s=0

mℓ−1
s ∀t ≤ t+η ∧ t̃+γ,ε ∧ tmax


 ≥ 1− ce−c log(n)

2

. (41)

The rest of this section is devoted to show Proposition A.7. We define the following “good” event at time t:

Et :=
{
|⟨gt,wt⟩| ≤

1

2γ

}

A (almost) deterministic update inequality We first expand the projection step to obtain a difference inequality for the
process mt. We write

gt = ⟨gt,wt⟩wt + g⊥t , (42)

where g⊥t is orthogonal to wt. Similarly to Equation 36, we can compute the expectation of g⊥t :

Et [gt] = −ϕ(mt)(w
⋆
t −mtwt) (43)

Lemma A.8. For any t ≥ 0, there exists a (random) constant ct such that the following inequality holds:

mt+1 ≥ mt − γct⟨w⋆, g⊥t ⟩ −
γ2c2tmt

∥∥g⊥t
∥∥2

2
− 1

2
γ3c3t |⟨w⋆, g⊥⟩|

∥∥∥g⊥t
∥∥∥
2

. (44)

Further, under the event Et, we have 1/2 ≤ ct ≤ 2.

Proof. We use the decomposition of eq. (42) and write

wt − γgt = (1− γ⟨gt,wt⟩)wt + γg⊥t

As a result, if we define

ct :=
1

1− γ⟨gt,wt⟩
,

15
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we have

wt+1 =
wt − γctg

⊥
t∥∥wt − γctg⊥t
∥∥

since the update equation (26) is invariant w.r.t scaling. Taking the scalar product of the above with w⋆, we have

mt+1 =
mt − γct⟨w⋆, g⊥t ⟩∥∥wt − γctg⊥t

∥∥ . (45)

Expanding the norm in the denominator, and using that∥wt∥ = 1 and ⟨wt, g⊥t ⟩ = 0:

∥wt − γ gt∥ =

√
1 + γ2c2t

∥∥g⊥t
∥∥2

By the convexity inequality (1 + x)−1/2 ≥ 1− x/2, valid for all x ≥ 0, Equation (45) becomes

mt+1 ≥
(
mt − γct⟨w⋆, g⊥t ⟩

)(
1− γ2c2t

2

∥∥∥g⊥t
∥∥∥
2
)
.

The lemma ensues upon expanding and rearranging the terms.

The expansion in Lemma A.8 can be decomposed in two terms: the term linear in γ is a noisy drift term, that will drive the
dynamics, and that we will decompose as a sum of a deterministic process and a martingale. All other terms in γ2 or γ3 are
corrections that we bound with high probability.

The linear term We first control the term linear in γ. We can write

⟨w⋆, g⊥t ⟩ = ⟨w⋆,Et
[
g⊥t
]
⟩+ Zt, (46)

where (Zt)t≥0 is by definition a martingale difference sequence for the filtration (Ft)t≥0. The expectation term is
straightforward to compute using (43):

⟨w⋆,Et
[
g⊥t
]
⟩ = −(1−m2

t )ϕ(mt). (47)

The contribution of the terms Zt is bounded by the following lemma:

Lemma A.9. There exists constants c, C > 0 such that with probability 1− ce−c log(n)
2

,

sup
1≤t≤T

t∑

s=1

Zs ≤
C log(d)C

√
T√

nb
(48)

Proof. The martingale increment Zt is an average of nb independent terms Zνt , that satisfy∥Zνt ∥ψα
≤ C for some α,C > 0

by Assumption 3.1. As a result, if we define

Bα = sup
t≥0

∥Zt∥ψα
,

Theorem A.4 implies that

Bα =
polylog(d)√

nb
.

We now apply Theorem F.1 in (Li and Jordan, 2021) with z = log(d)
2(α+2)

α

√
TBα, which yields the exact bound needed.
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Bounding the corrections Our next step is to handle the higher-order corrections. We show the following lemma:

Lemma A.10. Let T ≥ 0, and η < 1. There exists a constant C > 0 such that for any t ≤ T

P



∥∥∥g⊥t

∥∥∥
2

≤ C

(
ϕ(mt)

2(1−mt)
2 +

d log(d)C

nb

)
∀t ≤ t+η ∧ T


 ≥ 1− cTe−c log(d)

2

(49)

Proof. Fix some t ∈ [T ]. We can write

g⊥t = a(w⋆ −mw) +
1

n

n∑

ν=1

f⋆(⟨w⋆, zν⟩)σ′(⟨wt, zν⟩)zν⊥

where each zν⊥ is orthogonal to both w and w⋆. From Lemmas 9 and 11 in (Dandi et al., 2023), with probability
1− ce−c log(d)

2

,
1

n

n∑

ν=1

f⋆(⟨w⋆, zν⟩)σ′(⟨wt, zν⟩)zν⊥ ≤ C
d log(d)C

nb
.

Now, we have
⟨g⊥t ,w⋆

t ⟩2 = a2(1−m2
t )

2 and
∥∥a(w⋆ −mw)

∥∥2 = a2(1−m2
t ),

hence ∥∥∥g⊥t
∥∥∥
2

≤ 1

1−m2
t

⟨g⊥t ,w⋆
t ⟩2 + C

d log(d)C

nb
.

It remains to notice that

⟨g⊥t ,w⋆
t ⟩2 = (⟨w⋆,Et

[
g⊥t
]
⟩+ Zt)

2 ≤ 2(⟨w⋆,Et
[
g⊥t
]
⟩2 + Z2

t ) ≤ ϕ(mt)(1−m2
t )

2 +O

(
d

nb

)
.

Putting it all together We now combine all the previous bounds into a unique proposition.

Proposition A.11. Let T ≥ 0. There exists constants c, C > 0 such that

P


mt ≥ m0 +

t−1∑

s=0

Φdrift(ms)− CΦnoise(ms)− CK(T ) ∀t ≤ T
∣∣ ⋂

t≤T
Et


 ≥ 1− Te−c log(n)

2

(50)

where Φdrift and Φnoise are given by

Φdrift(m) = γ(1−m2)ϕ(m), (51)

Φnoise(m) = γ2m(1−m2)ϕ(m)2 + γ2m
d log(d)C

nb
+ γ3(1−m2)3/2ϕ(m)3, (52)

K(T ) =
γ log(d)C

√
T√

nb
+ γ3T

d log(d)C

nb
. (53)

Proof. By summing the inequality of Lemma A.8 for 0 ≤ s ≤ t− 1, we get

mt+1 ≥ m0 −
t−1∑

s=0

γcs⟨w⋆, g⊥s ⟩ −
γ2c2sms

∥∥g⊥s
∥∥2

2
− 1

2
γ3c3s

∥∥∥g⊥s
∥∥∥
3

. (54)

The linear term is handled using the martingale decomposition (46) combined with the expectation computation of (47)
and the bound of Lemma A.9 on the martingale contribution. The terms in γ2 and γ3 follow from Lemma A.10, as well as
Lemma A.9 with T = 1, which implies that

|⟨w⋆, g⊥t ⟩ ≤ C log(n)C

for some C > 0. Finally, under the events Es for s ≤ t, we can replace every occurence of cs by either 1/2 or 2 depending
on the sign of the corresponding term.
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Proof of Proposition A.7 The expressions of Lemma A.6 imply the following expansions near 0:

ϕ(m) = cℓc
⋆
ℓm

ℓ−1 +O(mℓ) ψcorr(m) = O(mℓ) ψsq(m) = −csq +O(mℓ) (55)

As a result, there exists an η > 0 and constants C, c > 0 such that for any m ≤ η,

cmℓ−1 ≤ ϕ(m) ≤ Cmℓ−1 |ψcorr(m)| ≤ Cmℓ |ψsq(m)| ≤ C.

We first lower bound the drift inequality of Proposition A.11. Whenever mt ≥ η, we have

Φdrift(mt) ≥ p(γmℓ−1
t )− Cγ2

d

nb
,

where p(x) = x− C(x2 + x3). Define ε > 0 such that p(x) > x/2 on [0, ε], so when t ≤ t+η ∧ t̃+γ,ε

Φdrift(mt) ≥ cγmℓ−1
t − Cγ2

d

nb
m.

When γ ≤ cγnbd
−ℓ/2 log(d)−Cγ ,

γ
d log(d)C

nb
m ≤ cγ(

√
d)ℓ−2 ≤ cmℓ−1

2

when t ≤ t−
κ/2

√
d
, Cγ ≥ C and cγ ≤ c/2(κ/2)ℓ−2.

Having shown Φdrift(mt) ≥ cmℓ−1
t , it remains to handle the constant terms in Proposition A.11. We can compute directly

K(tmax), which yields

K(tmax) =
log(d)C−Cmax/2

Cmax

√
d

+ Cγ log(d)C−Cmax
d

nb
≤ log(d)C−Cmax/2

Cmax

√
d

+
Ccγ

log(d)Cmax
d−

ℓ
2 ≤ m0

4
,

by choosing cγ small enough and Cmax large enough.

Finally, we need to show that the events Et occur with high probability. This is covered by the following lemma:

Lemma A.12. Let T ≥ 0. The following bounds hold:

• for the square loss, if γ ≤ cγ for small enough cγ ,

P
(
Et holds for all t ≤ t+η ∧ T

)
≥ 1− Te−c log(d)

2

;

• for the correlation loss, for small enough ε,

P
(
Et holds for all t ≤ t+η ∧ t̃+γ,ε ∧ T

)
≥ 1− Te−c log(d)

2

.

Proof. We begin with the case of the square loss. From the expression of the gradient expectation in (36), and the estimates
(55),

Et
[
⟨wt, gt⟩

]
= ψsq(mt)− ϕ(mt)mt = O(1),

whenever t ≤ t+η . Lemma A.2 applied to ⟨wt, gt⟩ implies that with probability 1− ce−c log(n)
2

|⟨wt, gt⟩| ≤ |Et
[
⟨wt, gt⟩

]
|+ C log(d)C√

nb
= O(1)

whenever µ > 0. As a result, if γ ≤ cγ for cγ small enough, Et holds. The proof for the correlation loss proceeds identically,
noting this time that

Et
[
⟨wt, gt⟩

]
= ψcorr(mt)− ϕ(mt)mt = O(1)

whenever t ≤ t+η ∧ t̃+γ,ε.
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A.4. From the linear regime to one-step recovery

We now prove Theorems 3.4 and 3.5. We focus on the case of the correlation loss; the square loss is identical apart from the
additional γ ≤ cγ requirement of Proposition A.7.

We first assume that nb = O(dℓ−1) and

γ ≤ cγ log(d)
−Cγ min

(
nbd

−( ℓ
2∨1),

)
(56)

for constants cγ , Cγ to be chosen later. In particular, the condition γ < cγnbd
−ℓ/2 of Proposition A.7 is satisfied.

The linear regime The first part of the proof proceeds as in (Ben Arous et al., 2021). Define the function

tℓ(d) =





1 if ℓ = 1

log(d) if ℓ = 2

d
ℓ
2−1 if ℓ > 2

, (57)

and tconv = max(1, γ−1tℓ(d)). Proposition A.7 as well as Section 5 from (Ben Arous et al., 2021) implies the following
lemma:

Lemma A.13. There exists a constant C > 0 such that if tmax ≥ Ctconv, then with probability at least 1− ce−c log(n)
2

,

t̃γ,ε ∧ t+η ≤ Ctconv. (58)

We therefore only need to check the condition tmax ≥ Ctconv. Plugging the expression for γ and tmax, we get

γtmax

tℓ(d)
≥ nb
γCmax log(d)Cmax+1γd1+(ℓ/2−1)∨0

≥ 1

cγCmax
log(d)Cγ−Cmax−1

tmax ≥ nb
Cmax log(d)Cmaxdγ2

≥ 1

cγCmax
log(d)2Cγ−Cmax−1

Whenever nb = O(dℓ−1), by decreasing cγ and increasing Cγ , for large enough d and any constant C we have

γtmax

tℓ(d)
≤ C and tmax ≥ C,

as requested in Lemma A.13.

Whenever γηℓ−1 ≤ ε, we have t̃γ,ε ≥ t+η and hence the proof of Theorem 3.5 is complete. It thus remains to treat the
converse case. Note that the latter only happens in the correlation loss case, since we can always choose cγ such that
cγη

ℓ−1 ≤ ε; the dynamics of square loss SGD are therefore only in the linearized regime.

One-step recovery above t̃γ,ε We now treat the case where γηℓ−1 ≥ ε. For simplicity, let t = t̃γ,ε, then Lemmas A.10
and A.9 imply that with probability 1− ce−c log(n)

2

∥gt∥2 ≤ C

(
(|ϕ(mt)|+ |ψcorr(mt)|)2 +

d

nb

)
≤ C

(
m2ℓ−2
t +

d

nb

)

⟨gt,w⋆⟩ = ϕ(mt) +mtψ
corr(mt) +O

(
polylog(d)√

nb

)
≥ cmℓ−1

t +O

(
polylog(d)√

nb

)

By definition of t, we have 1 ≤ ε−1γmℓ−1
t , and whenever γ ≤ cγ

√
nb/d one has

γ√
nb

≤ cγd
−1/2 and γ2

d

nb
≤ c2γ .
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Therefore, for large enough d,

mt + γ⟨gt,w⋆⟩ ≥ γ⟨gt,w⋆⟩ ≥ cγmℓ−1
t

∥wt + γgt∥ ≤ 1 + γ∥gt∥ ≤ 1 + Cγ

(
mℓ−1
t +

d

nb

)
≤ (C + ε−1 + c2γε

−1)γmℓ−1
t

But by taking the scalar product of Equation (4) with w⋆,

mt+1 =
mt + γ⟨gt,w⋆⟩
∥wt + γgt∥

≥ c

C + ε−1 + c2γε
−1

=: η′.

Theorem 3.5 ensues by redefining η = min(η, η′).

B. Informal derivation of Proposition 4.1
In this appendix we provide an informal derivation of the low-dimensional deterministic expressions describing the dynamics
of the sufficient statistics (Prop. 4.1). While the formal rigorous characterization should in principle follow directly from
(Veiga et al., 2022), it requires a significant amount of work for full mathematical rigor.

Let D be the set of labeled data {zν , yν}ν∈[n], with label generated by:

yν = f⋆(W ⋆zν) +
√
∆ξν , (59)

where W ⋆ ∈ Rk×d where we assume k = O(1). We are implying that yν depends on zν ∼ N (0, Id) just throught a
low-dimensional representation (linear latent variable). ξν ∼ N (0, 1) is the artificial noise.

We can track the overlap matrix using standard manipulation. We introduce the local fields as:

λν :=Wzν ∈ Rp, λ⋆ν :=W ⋆zν ∈ Rk ∀ν ∈ [n] (60)

We fit these data using a two-layer neural network. Let the first layer weights be W ∈ Rp×d, the second layer weights
a ∈ Rp; the full expression of the network is given by

f(z) =
1

p

p∑

j=1

ajσ(w
⊤
j z),

where wj are the rows of W and σ is the activation function.

Since zν is Gaussian and independent from (W,W ⋆), the pre-activations are jointly Gaussian vectors (λν ,λ⋆ν) ∼
N (0p+k,Ω) with covariance:

Ω :=

(
Q M
M⊤ P

)
=

(
WW⊤ WW ⋆⊤

W ⋆W⊤ W ⋆W ⋆T

)
∈ R(p+k)×(p+k) (61)

These is the low-dimensional matrix (its dimensions stay finite even when d → +∞) that contains all the information
needed for the dynamics.

We are going to train the network with layer-wise SGD without replacement, using at each time step t a fresh new batch of
size nb:

ℓt =
1

2nb

nb∑

ν=1

(yνt − f(zνt ))
2

A stated in the main text, we are interested in the representation learning phase. The gradient of the first layer weights

∇wj ℓt = − 1

pnb

nb∑

ν=1

ajσ
′(λνj,t)Eνt zνt ∀j ∈ [p]
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where we defined for convenience the displacement vector

Eνt := yνt − f(zνt ). (62)

Initially, we focus on plain SGD, without normalizing the weights at every step. Let us take now one gradient step with
learning rate γ:

wj,t+1 = wj,t − γ∇wj ℓt (63)

By combining the gradient update equation with the definitions of the matrices (W,W ∗) we obtain the following dynamics:

Mjr,t+1 −Mjr,t =
γ

pnb
aj

nb∑

ν=1

σ′(λνj,t)λ
⋆
rEνt

Qjl,t+1 −Qjl,t =
γ

pnb

nb∑

ν=1

(
ajσ

′(λνj,t)λ
ν
l,t + alσ

′(λνl,t)λ
ν
j,t

)
Eνt

+
γ2

p2n2b
ajal

nb∑

ν=1

nb∑

ν′=1

σ′(λνj,t)σ
′(λν

′

l,t)Eνt Eν
′

t z
ν⊤
t zν

′

t

(64)

These equations introduce a discrete stochastic process {Ωt}t∈N that describes the dynamics in alow-dimensional way. We
also introduce the population loss as

Rt =
1

2
EΩt

[
E2
]
, (65)

since it is the quantity telling us the performace of our trained network.

Handling the intra-batch correlations Up to now, we have followed the same derivation as the original Saad&Solla
equations (Saad and Solla, 1995a), apart from the effective learning rate scaling. Using larger batches introduces some extra
correlations terms that have to be taken into account. Let’s split the second term of equation (64) for Q in 2:

nb∑

ν=1

nb∑

ν′=1

σ′(λνj,t)σ
′(λν

′

l,t)Eνt Eν
′

t z
ν⊤
t zν

′

t =

nb∑

ν=1

σ′(λνj,t)σ
′(λνl,t)Eνt 2zν⊤t zν +

nb∑

ν=1

nb∑

ν′=1,ν′ ̸=ν
σ′(λνj,t)σ

′(λν
′

l,t)Eνt Eν
′

t z
ν⊤
t zν

′

t

The first term is the standard gradient noise term that appears in Sadd&Solla equations, while the second emerge from
the large-batch, and has to be treated with new considerations. Let’s introduce now the component of the student vectors
orthogonal to the teacher space

W⊥
t :=Wt −MtP

−1W ⋆ and consequently Q⊥
t :=

(
W⊥
t

)⊤
W⊥
t = Qt −MtP

−1M⊤
t .

We can also define the local fields of this subspace, with the interesting property of being independent with the teacher ones

λ⊥ :=W⊥
t z λ⊥ ∼ N (0, Q⊥

t ) Cov[λ⋆,λ⊥] = 0

It is possible to choose a set vβ,t ∈
(
Span (W⊥

t ) ∪ Span (W ⋆)
)⊥

of orthonormal vectors, such that{
w⋆
r ,w

⊥
j,t,vβ,t

}
r∈[k],j∈[p],β∈[d−p−k]

is a basis of Rd. Using the properties of the basis, we can write the identity matrix Id
as

Id = (W ⋆)⊤P−1W ⋆ + (W⊥
t )⊤(Q⊥

t )
−1W⊥

t +

d−k−p∑

β=1

vβ,tv
⊤
β,t

We insert the identity matrix z⊤z with z⊤Idz. By recalling that λ∗ =W ∗z,λ⊥ =W⊥
t z, we arrive to:

nb∑

ν=1

nb∑

ν′=1,ν′ ̸=ν
σ′(λνj,t)σ

′(λν
′

l,t)Eνt Eν
′

t


(λν⋆)

⊤
P−1λν

′⋆ +
(
λ⊥ν
t

)⊤
(Q⊥

t )
−1λ⊥ν′

t +

d−k−p∑

β=1

⟨vβ,t, zν⟩⟨vβ,t, zν
′

t ⟩


 (66)
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Now, exploiting the relation:
λ⊥
t = λt −MtP

−1λ⋆,

and noting that the indeces ν and ν′ are independent, all the sum we need to compute are just

nb∑

ν=1

σ′(λνj,t)λ
⋆
rEνt

nb∑

ν=1

σ′(λνj,t)λ
ν
l,t and

nb∑

ν=1

d−k−p∑

β=1

⟨vβ,t, zνt ⟩

High dimensional limit In our analysis we consider the high-dimensional limit d→ +∞ with the batch size going to
infinite as well, with the scaling nb = n0d

µ. Note that when µ = 0 the intra-batch correlation disappear and we fall back to
standard Saad&Solla setting, given that the learning rate γ = γ0d

−δ is small enough. Indeed, we can informally say that all
the sums above converge to their expected value

1

nb

nb∑

ν=1

σ′(λνj,t)λ
⋆
rEνt →EΩt

[
σ′(λj)λ

⋆
rE
]
= ψjr,t (67)

1

nb

nb∑

ν=1

σ′(λνj,t)λ
ν
l,t →EΩt

[
σ′(λj)λlE

]
= ϕGF

jl,t (68)

1

nb

nb∑

ν=1

σ′(λνj,t)σ
′(λνl,t)Eνt 2zν⊤t zν →dEΩt

[
σ′(λj)σ

′(λl)E2
]
= dϕGF

jl,t (69)

nb∑

ν=1

d−k−p∑

β=1

⟨vβ,t, zνt ⟩ →0 (70)

Moreover, using λ⊥ = λ−MP−1λ⋆ we have

EΩt

[
σ′(λj)Eλ⊥

]
= ϕGF

j,t −MtP
−1ψj,t

Plugging back in (64), we finally obtain

Mjr,t+1 −Mjr,t ≈
γ

p
ajEΩt

[
σ′(λj)λ

⋆
rE
]

(71)

Qjl,t+1 −Qjl,t ≈
γ

p
EΩt

[(
ajσ

′(λj)λl + alσ
′(λνl,t)λj

)
E
]

(72)

+
γ2d

p2nb
ajalEΩt

[
σ′(λj)σ

′(λl)E2
]

(73)

+ 1{µ̸=0}
γ2

p2
ajal

(
EΩt

[
σ′(λj)E (λ⋆)

⊤
]
P−1EΩt

[
σ′(λl)Eλ⋆

])
(74)

+ 1{µ̸=0}
γ2

p2
ajal

(
EΩt

[
σ′(λj)E(λ⊥)⊤

] (
Q⊥
t

)−1

EΩt

[
σ′(λl)Eλ⊥

])
. (75)

where the indicator function 1{µ̸=0} indicates that the last term is only present if the batch is large. If we want to make
explicit all the dependencies in d (γ = γ0d

−δ, nb = n0d
µ):

Mjr,t+1 −Mjr,t ≈d−δ
γ0
p
ajψjr,t = Ψjr,t

Qjl,t+1 −Qjl,t ≈d−δ
γ0
p

(
ajϕ

GF
jl,t + aτl ϕ

GF
lj,t

)

+ d−2δ+1−µ γ20
p2n0

ajalϕ
HD
jr

+ d−2δ γ
2
0

p2
ajalϕ

GF
j P

−1(ϕGF
l )⊤

+ d−2δ γ
2
0

p2
ajal

(
ϕGF
j,t −MtP

−1ψj,t

)
(Qt −MtM

⊤
t )−1

(
ϕGF
l −MtP

−1ψl

)⊤
= Φjl,t

(76)
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These equations are the starting point for all our considerations, both when investigating weakly correlation and when
characterizing the exact dynamics.

Indeed, when we have a cold start we have to take into account that ψjr,t, ϕGF
jl,t, ϕ

HD
jl can also go to 0 when d → +∞. A

careful analysis for the leading terms of these equations around initializations will also give us infromation on the behaviour
of the system, and ultimately it will allow to have rules on how to scale δ and µ to have the best performance. An example
for these analysis for generalized linear model is provided in Appendix B.

On the other hand, when can also assume ψjr,t, ϕGF
jl,t, ϕ

HD
jl = Od(1) for all the dynamics1 and use the equations for an

asymptotic description. Clearly, depending on the values of δ and µ, not all terms are present in the limiting equations. A
detailed discussion about this is provided in Section 4.

Spherical projection When we consider the spherical gradient descent, i.e., the modification of eq. (63)

wj,t+1 =
wj,t − γ∇wj

ℓt

||wj,t − γ∇wj ℓt||
, (77)

the overlap dynamics for the spherical large batch SGD can be then approximated as

Mjr,t+1 −Mjr,t ≈Ψjr,t(Ω)−
Mjr,t

2
Φjj,t(Ω)

Qjl,t+1 −Qjl,t ≈Φjl,t(Ω)−
1

2
Qjl,t

(
Φjj,t(Ω) + Φll,t(Ω)

) (78)

This derivation follows from a Taylor expansion of the denominator needed to project the update equations on the sphere.
As final note, this aproximation only holds when γ is vanishing when d → +∞: that’s why we need γ = od(1) in
Propposition 4.1. When γ is too large, all the other orders of Taylor expansion play a role, and we can’t have a simple
expression for the exact evoluton, even near initialization. Neverthless, the first order expansion is a lower bound of the true
dynamic that can provided guarantee of learning in some cases:

Mjr,t+1 −Mjr,t ≥Ψjr,t(Ω)−
Mjr,t

2
Φjj,t(Ω)

Qjl,t+1 −Qjl,t ≥Φjl,t(Ω)−
1

2
Qjl,t

(
Φjj,t(Ω) + Φll,t(Ω)

) (79)

C. Special case: committee machine with matching architecture
We consider a separable teacher, more precisely it is a committee machine with k hidden units, i.e.,

f∗(z) =
1

k

k∑

r=1

a∗rσ(λ
⋆
r)

where we additionally consider a matched architecture in which the student and teacher share the same activation function σ.

As we discussed in Section B, the activation and the target appear just in the expected values of Equations (67),(68) and (69),

1This happens if ℓ ≤ 1 or when we provide an informed initialization.
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that can be further simplified for matching architectures

ψjr,t = EΩt

[
σ′(λj)λ

⋆
rE
]
=

1

k

k∑

t=1

a∗tEΩt

[
σ′(λj)λ

∗
rσ(λ

∗
t )
]
− 1

p

p∑

s=1

asEΩt

[
σ′(λj)λ

∗
rσ(λs)

]
(80)

ϕGF
jl,t = EΩt

[
σ′(λj)λlE

]
=

1

k

k∑

t=1

a∗tEΩt

[
σ′(λj)λlσ(λ

∗
t )
]
− 1

p

p∑

s=1

asEΩt

[
σ′(λj)λlσ(λs)

]
(81)

ϕHD
jl,t = EΩt

[
σ′(λj)σ

′(λl)E2
]
=

1

k2

k∑

r,t=1

a∗ra
∗
tEΩt

[
σ′ (λj

)
σ′ (λl)σ (λ

∗
r)σ (λ

∗
t )
]

(82)

+
1

p2

p∑

s,u=1

asauEΩt

[
σ′ (λj

)
σ′ (λl)σ (λs)σ (λu)

]
(83)

− 2

pk

p∑

s=1

k∑

r=1

a∗rasEΩt

[
σ′ (λj

)
σ′ (λl)σ (λ

∗
r)σ (λs)

]
(84)

+∆EΩt

[
σ′ (λj

)
σ′ (λl)

]
(85)

In addition, we can also express the population risk as

Rt =
1

2
EΩt

[
E2
]
=

∆

2
+

1

p2

p∑

s,u

asauEΩt

[
σ(λs)σ(λu)

]
+

1

k2

k∑

r,t

a⋆ra
⋆
tEΩt

[
σ(λ⋆r)σ(λ

⋆
t )
]
− 2

pk

p,k∑

s,r=1

asa
⋆
rEΩt

[
σ(λs)σ(λ

⋆
r)
]
.

(86)
We introduce auxiliary functions to simplify the mathematical notations:

I2(ωαα, ωαβ , ωββ) = E
[
σ(λα)σ(λβ)

]
(87)

I3(ωαα, ωαβ , ωαγ , ωββ , ωβγ , ωγγ) = E
[
σ′(λα)λβσ(γ)

]
(88)

I4(ωαα, ωαβ , ωαγ , ωαδ, ωββ , ωβγ , ωβδ, ωγγ , ωγδ, ωδδ) = E
[
σ′(λα)σ

′(λβ)σ(λα)σ(λβ)
]

(89)

Inoise
2 (ωαα, ωαβ , ωββ) = E

[
σ′(λα)σ

′(λβ)
]
. (90)

where we introduced the correlation ωαβ = E[λαλβ ], where (α, β) are indices running on either the teacher or the student
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components. Dropping the time index for clarity, we finally obtain:

ψjr =
1

k

k∑

t=1

a∗t I3(Qjj ,Mjr,Mjt, Prr, Prt, Ptt)−
1

p

p∑

s=1

asI3(Qjj ,Mjr, Qjs, Prr,Msr, Qss) (91)

ϕGF
jl =

1

k

k∑

t=1

a∗t I3(Qjj , Qjl,Mjt, Qll,Mlt, Ptt)−
1

p

p∑

s=1

asI3(Qjj , Qjl, Qjs, Qll, Qls, Qss) (92)

ϕHD
jr =

1

k2

k∑

r,t=1

a∗ra
∗
t I4(Qjj , Qjl,Mjr,Mjt, Qll,Mlr,Mlt, Prr, Prt, Ptt) (93)

+
1

p2

p∑

s,u=1

asauI4(Qjj , Qjl, Qjs, Qju, Qll, Qls, Qlu, Qss, Qsu, Quu) (94)

− 2

pk

p∑

s=1

k∑

r=1

a∗rasI4(Qjj , Qjl, Qjs,Mjr, Qll, Qls,Mlr, Qss,Msr, Prr) (95)

+∆Inoise
2 (Qjj , Qjl, Qll) (96)

R =
∆

2
+

1

p2

p∑

s,u

asauI2(Qss, Qsu, Quu) +
1

k2

k∑

r,t

a⋆ra
⋆
t I2(Prr, Prt, Ptt) (97)

− 2

pk

p,k∑

s,r=1

asa
⋆
rI2(Qss,Msr, Prr) (98)

When analizing a matching architecture setting, we just need to specify I2, I3, I4 and Inoise
2 . In the following sections we

provide the explicit expersion for all the case used in numerical simulation inside this paper.

C.1. Analytic case σ = erf
(
·/
√
2
)

The expressions can be found in the appendix of (Veiga et al., 2022).

C.2. Analytic case σ = He2

We report here the auxiliary functions:

I2(ωαα, ωαβ , ωββ) = E
[
(λ2α − 1)(λ2β − 1)

]
= ωααωββ + 2ω2

αβ − ωαα − ωββ + 1 (99)

I3(ωαα, ωαβ , ωαγ , ωββ , ωβγ , ωγγ) = 2E
[
λαλβ(λ

2
γ − 1)

]
= 2ωαβωγγ + 4ωαγωβγ − 2ωαβ (100)

I4(ωαα, ωαβ , ωαγ , ωαδ, ωββ , ωβγ , ωβδ, ωγγ , ωγδ, ωδδ) = 4E
[
λαλβ(λ

2
γ − 1)(λ2δ − 1)

]
(101)

Inoise
2 (ωαβ) = 4E

[
λαλβ

]
= 4ωαβ (102)

We now work on the different terms:

4E
[
λαλβ (λγ)

2
(
λδ
)2]

=4ωαβωγγωδδ + 8ωαβω
2
γδ + 8ωαγωβγωδδ+ (103)

16ωαγωβδωγδ + 16ωαδωβγωγδ + 8ωαδωβδωγγ (104)

4E[λαλβλ2γ ] = 4ωαβωγγ + 8ωαγωβγ (105)

4E[λαλβλ2δ ] = 4ωαβωδδ + 8ωαδωβδ (106)
4E[λαλβ ] = 4ωαβ (107)
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And then we arrive to:

I4 = 4ωαβωγγωδδ + 8ωαβω
2
γδ + 8ωαγωβγωδδ (108)

16ωαγωβδωγδ + 16ωαδωβγωγδ + 8ωαδωβδωγγ (109)
− 4ωαβωγγ − 8ωαγωβγ − 4ωαβωδδ − 8ωαδωβδ + 4ωαβ (110)

C.3. Analytic case σ = He3

We report the auxiliary function for this case below.

Inoise
2 (ωαα, ωαβ , ωββ) :=E

[
(3λ2α − 3)(3λ2β − 3)

]

=9− 9ωαα + 18ω2
αβ − 9ωββ + 9ωααωββ

I2(ωαα, ωαβ , ωββ) :=E
[
(λ3α − 3λα)(λ

3
β − 3λβ)

]

=9ωαβ − 9ωααωαβ + 6ω3
αβ − 9ωαβωββ + 9ωααωαβωββ

I3(ωαα, ωαβ , ωαγ , ωββ , ωβγ , ωγγ) :=E
[
(3λ2α − 3)λβ(λ

3
γ − 3λγ)

]

=− 18ωαβωαγ + 9ωβγ − 9ωααωβγ + 18ω2
αγωβγ+

18ωαβωαγωγγ − 9ωβγωγγ + 9ωααωβγωγγ

(111)

I4(· · · ) :=E
[
(3λ2α − 3)(3λ2β − 3)(λ3γ − 3λγ)(λ

3
δ − 3λδ)

]

=− 162ωαγωαδ + 162ωαγωαδωββ + 324ωαβωαδωβγ − 324ωαγωαδω
2
βγ + 324ωαβωαγωβδ − 162ωβγωβδ+

162ωααωβγωβδ − 324ω2
αγωβγωβδ − 324ω2

αδωβγωβδ − 324ωαγωαδω
2
βδ + 162ωαγωαδωγγ − 162ωαγωαδωββωγγ−

324ωαβωαδωβγωγγ − 324ωαβωαγωβδωγγ + 162ωβγωβδωγγ − 162ωααωβγωβδωγγ + 324ω2
αδωβγωβδωγγ+

324ωαγωαδω
2
βδωγγ + 81ωγδ − 81ωααωγδ + 162ω2

αβωγδ + 162ω2
αγωγδ + 162ω2

αδωγδ − 81ωββωγδ + 81ωααωββωγδ−
162ω2

αγωββωγδ − 162ω2
αδωββωγδ − 648ωαβωαγωβγωγδ + 162ω2

βγωγδ − 162ωααω
2
βγωγδ + 324ω2

αδω
2
βγωγδ−

648ωαβωαδωβδωγδ + 1296ωαγωαδωβγωβδωγδ + 162ω2
βδωγδ − 162ωααω

2
βδωγδ + 324ω2

αγω
2
βδωγδ−

81ωγγωγδ + 81ωααωγγωγδ − 162ω2
αβωγγωγδ − 162ω2

αδωγγωγδ + 81ωββωγγωγδ − 81ωααωββωγγωγδ+

162ω2
αδωββωγγωγδ + 648ωαβωαδωβδωγγωγδ − 162ω2

βδωγγωγδ + 162ωααω
2
βδωγγωγδ−

324ωαγωαδω
2
γδ + 324ωαγωαδωββω

2
γδ + 648ωαβωαδωβγω

2
γδ + 648ωαβωαγωβδω

2
γδ − 324ωβγωβδω

2
γδ+

324ωααωβγωβδω
2
γδ + 54ω3

γδ − 54ωααω
3
γδ + 108ω2

αβω
3
γδ − 54ωββω

3
γδ + 54ωααωββω

3
γδ+

162ωαγωαδωδδ − 162ωαγωαδωββωδδ − 324ωαβωαδωβγωδδ + 324ωαγωαδω
2
βγωδδ−

324ωαβωαγωβδωδδ + 162ωβγωβδωδδ − 162ωααωβγωβδωδδ + 324ω2
αγωβγωβδωδδ−

162ωαγωαδωγγωδδ + 162ωαγωαδωββωγγωδδ + 324ωαβωαδωβγωγγωδδ+

324ωαβωαγωβδωγγωδδ − 162ωβγωβδωγγωδδ + 162ωααωβγωβδωγγωδδ − 81ωγδωδδ+

81ωααωγδωδδ − 162ω2
αβωγδωδδ − 162ω2

αγωγδωδδ + 81ωββωγδωδδ − 81ωααωββωγδωδδ+

162ω2
αγωββωγδωδδ + 648ωαβωαγωβγωγδωδδ − 162ω2

βγωγδωδδ + 162ωααω
2
βγωγδωδδ+

81ωγγωγδωδδ − 81ωααωγγωγδωδδ + 162ω2
αβωγγωγδωδδ − 81ωββωγγωγδωδδ+

81ωααωββωγγωγδωδδ
(112)

D. Weak recovery with Generalized Linear Models
In this section, we restrict our analysis to matching architectures with p = k = 1, i.e. Generalized Linear Models (GLMs).
Moreover, we consider as activation function the Hermite polynomials σ = Heℓ, so that we can have control on the
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information exponent of the problem. Finally, the training algorithm is projected SGD, given by Equation (5). We will also
assume that a = a⋆ = 1 throughout all the dynamics.

Let us start by noticing that the set of sufficient statistics reduces to just one single parameter m = ⟨w,w⋆⟩. Retracing
backward all the steps of the Sections C and B up to (79), we can obtain the lower bound for the update of m. As examples
the explicit equation for σ = He2 is

mt+1 −mt ≥γ0d−δ
[
4mt − 4m3

t − d−δγ01{µ̸=0}
(
8mt − 8m3

t

)
+

+ d−δ+1−µ γ0
n0

(
24mt − 24m3

t + 2m2
t∆
)]

,

while for σ = He3 is

mt+1 −mt ≥γ0d−δ
[
18m2

t − 18m4
t − d−δγ01{µ ̸=0}

(
162mt + 324m4

t − 162m5
t

)
+

+ d−δ+1−µ γ0
n0

(
−1728mt − 648m3

t + 3348m4
t − 972m5

t − 9∆m3
t

)]
.

In general, for an Hermite polynomial activation Heℓ, the equation of the evolution of m around m = 0 is given by

mt+1 −mt ≥ d−δβℓm
ℓ−1 − d−δ

(
d−δ+1−µαℓ + d−δ1{µ̸=0}ϕℓ

)
m (113)

where we fixed γ0 = n0 = 1 for simplicity; αℓ, βℓ, ϕℓ are constants. For computing the full equations for any generic ℓ,
with the constants values, we refer to the Mathematica notebook published in the repository of this work.

At initialization, m0 = 1/
√
d. The crucial observation is that a sufficient condition to escape initialization is to

have equation (113) being expansive, namely ∆m > 0 for m close to zero. This can be true if and only if(
d−δ+1−µαℓ + d−δ1{µ̸=0}ϕℓ

)
m is negligible when compared to βℓmℓ−1, so that the equation for m is lower-bounded by

∆m

∆t
≥ βℓm

ℓ−1 + h.o.t with ∆t = d−δ (114)

Assuming that γ = od(1), the bound becomes tight and we can also derive some sharp characterization of the escaping time.
By simple arguments on differential equations, we can claim that the order of magnitude of steps needed to escape the initial
mediocrity is given by

T =





Od
(

1
∆t

)
ℓ = 1

Od

(
logm0

∆t

)
ℓ = 2

Od

(
1

mℓ−2
0 ∆t

)
ℓ ≥ 3

,

remembering that m0 = 1/
√
d and ∆t = d−δ , these lead to

logd T ∼





max(δ, 0) ℓ = 1

log log d+ δ ℓ = 2

δ − 1 + ℓ/2 ℓ ≥ 3

. (115)

It’s clear that to escape as fast as possible, we want δ to be the smallest possible, or in other words, having the learning
rate as large as possible. Obviously, δ is constrained by the values that make equation (114) true (or equivalently by the
assumptions of the formal proof in Appendix A). The phase diagram of the allowed value of δ and µ is summarized in
Figure 4: the green region is where the equations for m is expansive, the red and the yellow region is where the equations in
attractive, so there is no escaping, the purple region is where we can’t do expansion because the learning rate is too large and
the process diverge. Figure 1 in the main text shows the same result in terms of T and nb, when ℓ ≥ 3.
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Figure 4. Phase diagram for the learning rate: The plot identifies different learning behaviors of standard SGD and Correlation Loss
SGD for different values of learning rate and batch size when considering randomly initialized networks, i.e. m0 = O(1/

√
d).

D.1. Correlations loss SGD

When using Correlation Loss SGD, Equation (113) rewrite as

∆m

∆t
≥ βℓm

ℓ−1 − d−δ+1−µαℓm

effectively removing a constraint on the possible values of δ. The modified version of SGD can use smaller values of δ for
escaping the initial condition, reaching regions in the phase diagram that are not allowed for SGD: this is colored in yellow
in Figures 4 and 1. Of course, if the learning rate becomes too large, all the theory does not work anymore (purple region in
the diagram). In Figure 1 we show that the number of steps needed to weakly recover can be pushed down to be smaller than
any power scaling with d (black and blue line on the x-axis). The picture becomes clearer if we look at the same diagram
in terms of (µ, δ): Correlation Loss SGD can be used with learning very large learning rates (1 − ℓ/2 > δ > −(ℓ− 1)/2)
such that the escaping times is T = O(polylog(d)), as proved in Theorem 3.5. We believe that the true number of steps is
actually T = O(log(d)), but we could not find any formal proof; in Section E.4, we were able to show that for ℓ = 2 we
have T = O(log(d)), relying the result on numerical integration of our asymptotic theory. Lastly, if the learning rate is of
order γ = O(d−δ) = O(d

ℓ − 1/2) we recover the result of (Dandi et al., 2023): the target can be weakly recovered in just one
step, when the batch size is nb > O(dℓ).

D.2. Simple example: retrieving (Ben Arous et al., 2021)

In this section, we want to show how to find the same result presented in (Ben Arous et al., 2021) starting from our formalism.
There, online one-pass SGD is considered, meaning nb = 1 =⇒ µ = 0 in our context. Moreover, a vanishing learning rate
is assumed, which implies δ > 0, and all the bounds for the evolutions of m are tight. The condition for expansiveness of
equation (113) becomes

mℓ−1
0 >> d−δ+1m0 =⇒ (ℓ− 1) logdm0 ≥ −δ + 1 + logdm0 =⇒ δ ≥ 1 + (2− ℓ) logdm0

Plugging in m0 = 1/
√
d we finally get δ ≥ ℓ/2, where the equality is the best possible value of the learning rate in order to

make the escaping faster. Note that for ℓ = 1 we are also bounded from Lemma A.13, so δ ≥ 1. Combining with (115),
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Figure 5. learning single-index teacher with a wide student, when information exponent is ℓ = 3: f⋆(x) = He3(w⋆ · x), f(x) =
1/4

∑4
i=1 He3(wi · x). Our theory extends to this case, showing that when µ > ℓ/2 only correlation loss can weakly recover the target.

(d = 256, γ = γ0 · pnbd
−ℓ//2)

finally gives us the the minimal number of steps needed

T ∼





d ℓ = 1

d log d ℓ = 2

dℓ−1 ℓ ≥ 3

. (116)

This result matches (Ben Arous et al., 2021).

D.3. Extension to p > 1

The extension to general two-layer network student functions (p > 1), while keeping always the target fixed to be a
single-index one, can be readily done by performing an analysis similar to the above. The considerations on the weak
recovery trade-offs done in the previous sections are not changed upon re-scaling the learning rate with the hidden layer
size p = O(1), i.e. γ2LNN/p = γGLM. Therefore, the scaling laws detailed in the phase diagram (Fig. 1) are not modified,
and only prefactors, i.e. quantity not scaling with the input dimension, change with respect to the p = 1 case. We illustrate
this phenomenon numerically in Fig. 5. We leave the detailed theoretical analysis of the p > 1 case for future work, with
particular attention to the limit p→ ∞ which we believe is an interesting avenue of future research.

E. Additional numerical investigation
In this appendix, we provide additional details on the numerical implementations presented in the main text, along with
further explorations. The code to reproduce representative figures is available in https://github.com/IdePHICS/batch-size-
time-complexity-tradeoffs.

E.1. Cold start for multi-index models

The theoretical considerations for weak recovery under cold starts presented in Theorems 3.4&3.5 are proven rigorously
just for one-hidden neuron network learning single-index targets (p = k = 1); this section aims to provide arguments to
generalize this to the multi-index case.

Note that for single-index models the initial saddle is the only critical point where the algorithm can get stuck during the
dynamics, while this is not true in general for multi-index settings. Indeed, after having weakly recovered a subspace of the
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Figure 6. Multi-index large-batch benefits: Comparison between the performance of plain SGD learning multi-index model, for different
values of µ. The target is h⋆(z1, z2, z3) = tanh (z1z2z3), while the student is a wide 2-layer network f(x) = 1

p

∑p
i=1 tanh(wi · x)

(hence ℓ = 3, p = 30, k = 3, d = 512). Using a larger batch speeds up the weak-correlation time even when the target is multi-index,
and it is learned with a non-matching architecture.

span of the target weights, the learning dynamics can encounter another saddle of the loss function; this behavior is known
as saddle-to-saddle dynamics (Jacot et al., 2021). In this manuscript, we focus on escaping from the saddle at initialization,
leaving further explorations of the dynamics to future work. We follow (Abbe et al., 2023; Dandi et al., 2023) where the
authors generalize the concept of Information Exponent (defined in. (2.1)) to the multi-index setting (See Definition 1 of
(Abbe et al., 2023) and Definition 3 of (Dandi et al., 2023)), let us call this quantity the Leap Index of the target. We
expect that, as long as the dynamics around the saddle at initialization is analyzed, one can substitute the Information
Exponent (ℓ) of the teacher in the single-index phase diagram in Fig. 1 with the Leap Index of the target. We explore the
Time / Complexity tradeoffs in Figure 6 for a fixed teacher function with Leap Index equal to 3: we observe a relevant
decrease in the iterations needed to weakly recover the target subspace as the batch size is increased.

E.2. Behavior of Spherical SGD

In many theoretical work (Ben Arous et al., 2021; Abbe et al., 2023), the algorithm used during training uses the spherical
gradient instead of the simple one. The update rule used instead of Equation (63) is

wj,t+1 =
wj,t − γ

(
Id −wj,tw⊤

j,t

)
∇wj,t

ℓt
∥∥∥∥wj,t − γ

(
Id −wj,tw⊤

j,t

)
∇wj,tℓt

∥∥∥∥
∀t ∈ [T ], ∀j ∈ [p] (117)

In practice, only the gradient component orthogonal to the weights is taken into account. This algorithm is particularly
convenient for theoretical analysis because it is easier to find a lower bound for the evolution of mt, since it is always true
that ∥∥∥∥wj,t − γ

(
Id −wj,tw⊤

j,t

)
∇wj,t

ℓt

∥∥∥∥ ≥ 1,

while its analogous for Projected SGD does not hold.

In this section, we want to show that Spherical SGD is behaving like Correlation Loss SGD when γ is not vanishing, namely
that is possible to escape mediocrity when the batch size is sufficiently large. For small batch size, Projected SGD and
Spherical SGD coincide, while when γ < 0 their behaviors are drastically different, and only the latter is able to escape
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Figure 7. Correlation Loss SGD weak recovery: Comparison between the performance of plain SGD, the Correlation Loss SGD and
Spherical SGD, in different regions of the phase diagram, and for different sizes d. The plot shows the test error as a function of the
optimization steps. Both the teacher and the student activation functions are fixed to σ = h⋆ = He3, so the information exponent is ℓ = 3.
In all the three plots we vary the value of µ, while δ = µ− ℓ/2. Spherical SGD learns even in regions forbidden for plain SGD, as the
Correlation Loss does. Note that the Spherical Correlation Loss is equivalent to the Projected Correlation Loss in all the regimes.

mediocrity taking advantage of the large learning rate; a gap between the two is already noticeable at the Optimal Point,
where they both escape but the spherical is slightly faster. Finally, note that is is possible to introduce a Correlation Loss
Spherical SGD, by changing the loss in the same way as the usual Correlation Loss SGD. There is no practical difference
between the two algorithms when working with correlation loss.

E.3. Adaptive SGD: combining Correlation Loss SGD with plain SGD

Despite these benefits, the correlation loss is not a good choice to fully learn the target. In this subsection, we explore the
idea of combining the two algorithms to escape fast with correlation loss, and then reach the global minimum with the MSE
loss. We will call the combination of these two algorithms Adaptive SGD.

We are going to test in the simplest case possible: GLM with He3 as activation function (we remark that there is no benefit
in using Correlation Loss SGD over plain SGD when ℓ ≤ 2). If we run the algorithm for multi-index models, it would help
to escape the initial saddle, but the algorithm may get stuck in another critical point that is not the global minimum. The
study on how to escape fast from a critical point other than the initial one goes beyond the scope of this paper. Our Adaptive
SGD procedures works as follows:

1. Make a Correlation Loss SGD step;

2. If the Loss is smaller than 60% of the initial loss, jump to Step 3, otherwise go back to Step 1;

3. Reduce the learning rate of a factor 0.995 and do a Standard SGD step;

4. If converged stop, otherwise go back to Step 3.

The learning rate is progressively reduced because the plain SGD requires a lower learning rate compared to the one used by
correlation loss to escape fast. Certainly, one can design a much more powerful algorithm than the one we present, but the
goal here is just to show that the combination of the two is beneficial, and not to find the possible one. Figure 8 shows how
the Adaptive SGD Algorithm is the best one when fully learning the target.

E.4. Polylog regime example

We showed in Section 3 that it is possible to push down the number of steps needed to weakly recover the target until it
is growing less than any power law. In order to achieve this, we need to run Correlation Loss SGD with nb > dℓ−1 and
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protocol consists of first using correlation loss SGD to achieve weak recovery, and then switch to adaptive SGD for learning the target.
(ℓ = 3, µ = 1.85, δ = µ− ℓ

2
,∆ = 10−6).

γ > O(d1−ℓ/2), as pictured by Figure 4. Proposition 4.1 shows that our theory for cold start, based on expansion of the
process (76), is not valid, among other conditions, when δ < 0. Therefore, the only case where we can simultaneously
observe the polylog regime and have an exact asymptotic description for the full dynamics is when ℓ = 2, γ = O(1) and
nb = O(d). Let’s stick for simplicity with a GLM whose activation is He2. Note that the total sample complexity is always
N = nbT = O(d log d).

Figure 9 shows a numerical test of our theory in this particular case. We see that as d grows, also the time needed to escape
initial conditions grows. In the right part of the Figure we show that the exact dependence is T = O(log d), that is indeed a
polylog law.

E.5. Large-batch corrections to asymptotic dynamics

Although disappearing when taking the limit, the terms of evolution process (76) coming from intra-batch correlation are
useful for providing a better description at large but finite d. Effectively, they are behaving as a first correction to the
asymptotic limit.

In this section, we aim to provide numerical arguments about the importance of intra-batch correlations at finite d. We stick
with the GLM setting, with erf as activation function. Note that since the information exponent of this target is 1, there
is no mediocrity at initialization, we can set m = w⊤w⋆ = 0 without falling in the cold start regime. Figure 10 shows
simulations for different values of d (dots), accompanied by the full process dynamic that includes the intra-batch correlation
terms (dashed lines); the asymptotic solution of the differential equations (20) is the continuous black line. To enlighten the
process even more, we also shows the difference between the asymptotic solution, at the actual finite d one on the right part
of the figure. We see that the full process solution always match with the actual project SGD simulation; most importantly,
when d grows the simulations are getting closer and closer to the asymptotic solution, confirming that the large batch plays
no effect in high-dimension.
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Figure 9. Phase retrieval with large batch size: Numerical integration of the process (76), for f = f⋆ = He2, γ = O(1) and nb = O(d).
The escaping time dependence on the number of time steps is a T = O(log d): we claim this to be valid for all the polylog regime.
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