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Abstract
We consider the problem of localizing change
points in high-dimensional linear regression. We
propose an Approximate Message Passing (AMP)
algorithm for estimating both the signals and the
change point locations. Assuming Gaussian co-
variates, we give an exact asymptotic characteri-
zation of its estimation performance in the limit
where the number of samples grows proportion-
ally to the signal dimension. Our algorithm can
be tailored to exploit any prior information on
the signal, noise, and change points. It also en-
ables uncertainty quantification in the form of an
efficiently computable approximate posterior dis-
tribution, whose asymptotic form we characterize
exactly. We validate our theory via numerical
experiments, and demonstrate the favorable per-
formance of our estimators on both synthetic data
and images.

1. Introduction
Heterogeneity is a common feature of large, high-
dimensional datasets. When the data are ordered by time, a
simple form of heterogeneity is a change in the data generat-
ing mechanism at certain unknown instants of time. If these
‘change points’ were known, or estimated accurately, the
dataset could be partitioned into homogeneous subsets, each
amenable to analysis via standard statistical techniques (Fry-
zlewicz, 2014). Models with change points have been stud-
ied in a variety of statistical contexts, such as the detection of
changes in: signal means (Wang & Samworth, 2018; Wang
et al., 2020; Liu et al., 2021; Li et al., 2023a); covariance
structures (Cho & Fryzlewicz, 2015; Wang et al., 2021b);
graphs (Londschien et al., 2023; Bhattacharjee et al., 2020;
Fan & Guan, 2018); dynamic networks (Wang et al., 2021a);
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and functionals (Madrid Padilla et al., 2022). Change point
models have found application in a range of fields including
genomics (Braun et al., 2000), neuroscience (Aston & Kirch,
2012), and economics (Andreou & Ghysels, 2002).

In this paper, we consider high-dimensional linear regres-
sion with change points. We are given a sequence of data
(yi,Xi) ∈ R× Rp, for i ∈ [n], from the model

yi = (Xi)
⊤β(i) + εi, i = 1, . . . , n. (1)

Here, β(i) ∈ Rp is the unknown regression vector for the
ith sample, Xi ∈ Rp is the (known) covariate vector, and
εi is additive noise. We denote the unknown change points,
i.e., the sample indices where the regression vector changes,
by η1, . . . , ηL∗−1. Specifically, we have

1 = η0 < η1 < · · · < ηL∗ = n,

with β(i) ̸= β(i−1) if and only if i ∈ {ηℓ}L
∗−1

ℓ=1 . We note
that L∗ is the number of distinct signals in the sequence
{β(i)}ni=1, and (L∗−1) is the number of change points. The
number of change points is not known, but an upper bound
L on the value of L∗ is available. The goal is to estimate the
change point locations as well as the L∗ signals. We would
also like to quantify the uncertainty in these estimates, e.g.,
via confidence sets or a posterior distribution.

Linear regression with change points in the high-
dimensional regime (where the dimension p is comparable
to, or exceeds, the number of samples n) has been studied
in a number of recent works, e.g. (Lee et al., 2016; Leonardi
& Bühlmann, 2016; Kaul et al., 2019; Rinaldo et al., 2021;
Xu et al., 2022; Li et al., 2023b; Bai & Safikhani, 2023).
Most of these papers consider the setting where the signals
are sparse (the number of non-zero entries in β(i) ∈ Rp
is o(p)), and analyze procedures that combine the LASSO
estimator (or a variant) with a partitioning technique, e.g.,
dynamic programming. The recent work of Gao & Wang
(2022) assumes sparsity on the difference between signals
across a change point, and Cho et al. (2024) consider general
non-sparse signals. Although existing procedures for high-
dimensional change point regression incorporate sparsity-
based constraints, they cannot be easily adapted to take ad-
vantage of other kinds of signal priors. Moreover, they are
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not well-equipped to exploit prior information on the change
point locations. Bayesian approaches to change point de-
tection have been studied in several works, e.g. (Fearnhead,
2006; Lungu et al., 2022), however they mainly focus on
(low-dimensional) time-series.

Main Contributions We propose an Approximate Mes-
sage Passing (AMP) algorithm for estimating the signals
{β(i)}ni=1 and the change point locations {ηℓ}L

∗−1
ℓ=1 . Under

the assumption that the covariates are i.i.d. Gaussian, we
give an exact characterization of the performance of the
algorithm in the limit as both the signal dimension p and
the number of samples n grow, with n/p converging to a
constant δ (Theorem 3.1). The AMP algorithm is iterative,
and defined via a pair of ‘denoising’ functions for each it-
eration. We show how these functions can be tailored to
take advantage of any prior information on the signals and
the change points (Proposition 3.2). We then show how
the change points can be estimated using the iterates of the
AMP algorithm, and how the uncertainty can be quantified
via an approximate posterior distribution (Section 3.3). Our
theory enables asymptotic guarantees on the accuracy of
the change point estimator and on the posterior distribution
(Propositions 3.3, 3.4). In Section 4, we present experiments
on both synthetic data and images, demonstrating the supe-
rior performance of AMP compared to other state-of-the-art
algorithms for linear regression with change points.

Although our results do not explicitly need assumptions
on the separation between adjacent change points, they are
most interesting when the separation is of order n, i.e.,
∆ := minℓ∈[L](ηℓ − ηℓ−1) = O(n). This separation is
natural in our regime, where the number of samples n is
proportional to p and the number of degrees of freedom in
the signals also grows linearly in p. Existing results on high-
dimensional change point regression usually assume signals
that are s-sparse, and demonstrate change point estimators
that are consistent when ∆ = ω

(
s log p/κ2

)
, where κ is a

constant determined by the separation between the signals
(Rinaldo et al., 2021; Wang et al., 2021c; Li et al., 2023b). In
contrast, we do not assume signal sparsity that is sublinear
in n, so the change point estimation error will not tend to
zero unless n/p → ∞. We therefore quantify the AMP
performance via precise asymptotics for the estimation error
and the approximate posterior distribution.

Approximate Message Passing AMP, a family of it-
erative algorithms first proposed for linear regression
(Kabashima, 2003; Donoho et al., 2009; Krzakala et al.,
2012), has been applied to a variety of high-dimensional es-
timation problems including estimation in generalized linear
models (Rangan, 2011; Schniter & Rangan, 2014; Maillard
et al., 2020; Mondelli & Venkataramanan, 2021) and low-
rank matrix estimation (Fletcher & Rangan, 2018; Lesieur

et al., 2017; Montanari & Venkataramanan, 2021; Barbier
et al., 2020). An attractive feature of AMP algorithms is
that under suitable model assumptions, their performance
in the high-dimensional limit can be characterized by a suc-
cinct deterministic recursion called state evolution. The
state evolution characterization has been used to show that
AMP achieves Bayes-optimal performance for some mod-
els (Deshpande & Montanari, 2014; Donoho et al., 2013;
Barbier et al., 2019).

An important feature of our AMP algorithm, in contrast
to the above works, is the use of non-separable denoising
functions. (We say a function g : Rm×L → Rm×L is
separable if it acts row-wise identically on the input ma-
trix.) Even with simplifying assumptions on the signal and
noise distributions, non-separable AMP denoisers are re-
quired to handle the temporal dependence caused by the
change points, and allow for precise uncertainty quantifi-
cation around possible change point locations. Our main
state evolution result (Theorem 3.1) leverages recent results
by Berthier et al. (2019) and Gerbelot & Berthier (2023)
for AMP with non-separable denoisers. Non-separable de-
noisers for AMP have been been studied for linear and
generalized linear models, to exploit the dependence within
the signal (Som & Schniter, 2012; Metzler et al., 2016;
Ma et al., 2019) or between the covariates (Zhang et al.,
2023). Here non-separable denoisers are required to exploit
the dependence in the observations, caused by the change
points.

Although we assume i.i.d. Gaussian covariates, based on
recent AMP universality results (Wang et al., 2022), we
expect the results apply to a broad class of i.i.d. designs.
An interesting direction for future work is to generalize
our results to rotationally invariant designs, a much broader
class for which AMP-like algorithms have been proposed
for regression without change points (Ma & Ping, 2017;
Rangan et al., 2019; Takeuchi, 2020; Pandit et al., 2020).

2. Preliminaries
Notation We let [n] = {1, 2, . . . , n}. We use boldface
notation for matrices and vectors. For vectors x,y ∈ Rn,
we write x ≤ y if xi ≤ yi for all i ∈ [n], and let [x,y] :=
{v ∈ Rn : xi ≤ vi ≤ yi ∀i ∈ [n]}. For a matrix A ∈
Rm×L and i ∈ [m], j ∈ [L], we letA[i,:] andA[:,j] denote
its ith row and jth column respectively. Similarly, for a
vector ψ ∈ [L]n, we let A[:,ψ] ∈ Rm denote the vector
whose i-th entry isAi,ψi .

For two sequences (in n) of random variables Xn, Yn, we

write Xn
P≃ Yn when their difference converges in probabil-

ity to 0, i.e., limn→∞ P(|Xn − Yn| > ϵ) = 0 for any ϵ > 0.
Denote the covariance matrix of random vector Z ∈ Rq
as Cov(Z) ∈ Rq×q. We refer to all random elements, in-
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cluding vectors and matrices, as random variables. When
referring to probability densities, we include probability
mass functions, with integrals interpreted as sums when the
distribution is discrete.

Model Assumptions In model (1), we assume indepen-
dent Gaussian covariate vectors Xi

i.i.d∼ N(0, Ip/n) for
i ∈ [n]. We consider the high-dimensional regime where
n, p→ ∞ and n

p converges to a constant δ > 0. Following
the change point literature, we assume the number of change
points (L∗ − 1) is fixed and does not scale with n, p.

Pseudo-Lipschitz Functions Our results are
stated in terms of uniformly pseudo-Lipschitz func-
tions (Berthier et al., 2019). For C > 0 and
r ∈ [1,∞), let PLn,m,q(r, C) be the set of func-
tions ϕ : Rn×q → Rm×q such that ∥ϕ(x)−ϕ(x̃)∥F√

m
≤

C

(
1 +

(
∥x∥F√
n

)r−1

+
(

∥x̃∥F√
n

)r−1
)

∥x−x̃∥F√
n

for all

x, x̃ ∈ Rn×q. Note that ∪C>0PLn,m,q(r1, C) ⊆
∪C>0PLn,m,q(r2, C) for any 1 ≤ r1 ≤ r2. A function
ϕ ∈ PLn,m,q(r, C) is called pseudo-Lipschitz of order
r. A family of pseudo-Lipschitz functions is said to be
uniformly pseudo-Lipschitz if all functions of the family are
pseudo-Lipschitz with the same order r and the same con-
stant C. For functions f : Rn×m×Rn×M → R of the form
f(a, b) = c, we say f is uniformly pseudo-Lipschitz with
respect to a if the family {fn(·, b) : n ∈ N, b ∈ Rn×M}
is uniformly pseudo-Lipschitz. For x,y ∈ Rn, the mean
squared error ϕ(x,y) = ⟨x − y,x − y⟩/n and the
normalized squared correlation ϕ(x,y) = |⟨x,y⟩|/n are
examples of uniformly pseudo-Lipschitz functions.

3. AMP Algorithm and Main Results
We stack the feature vectors, observations and noise ele-
ments, respectively, to formX = [X1, . . . ,Xn]

⊤ ∈ Rn×p,
y := [y1, . . . , yn] ∈ Rn and ε := [ε1, . . . , εn]

⊤ ∈ Rn. Let
η := [η1, . . . , ηL∗ , . . . , ηL] be the vector containing the true
change points, andB := [β(η1), . . . ,β(ηL∗ ), . . . ,β(ηL)] ∈
Rp×L be the matrix containing the true signals. Since the
algorithm assumes no knowledge of L∗, other than L∗ ≤ L,
the columns L∗ + 1, . . . , L ofB can all be taken to be zero.
Similarly, ηL∗ = ηL∗+1 = · · · = ηL = n.

Recall that for i ∈ [n], each observation yi is generated from
model (1). Let Ψ ∈ [L]n be the signal configuration vector,
whose i-th entry stores the index of the signal underlying
observation yi. That is, for i ∈ [n] and ℓ ∈ [L], let Ψi = ℓ
if and only if β(i) equals the ℓth column of the signal matrix
B. We note that that there is a one-to-one correspondence
between Ψ and the change point vector η. We can then

rewrite y in a more general form:

y = (XB)[:,Ψ] + ε := q(XB,Ψ, ε) ∈ Rn, (2)

where q acts row-wise on matrix inputs. We note that the
mixed linear regression model (Yi et al., 2014; Zhang et al.,
2022; Tan & Venkataramanan, 2023) can also be written
in the form in (2), with a crucial difference. In mixed re-
gression, the components of Ψ are assumed to be drawn
independently from some distribution on [L], i.e., each yi is
independently generated from one of the L signals. In the
change point setting, the entries of Ψ are dependent, since
they change value only at entries η1, . . . , η(L∗−1).

AMP Algorithm We now describe the AMP algorithm for
estimatingB and η. In each iteration t ≥ 1, the algorithm
produces an updated estimate of the signal matrixB, which
we call Bt, and of the linearly transformed signal Θ :=
XB, which we call Θt. These estimates have distributions
that can be described by a deterministic low-dimensional
matrix recursion called state evolution. In Section 3.3, we
show how the estimate Θt can be combined with y to infer
η with precisely quantifiable error.

Starting with an initializer B0 ∈ Rp×L and defining
R̂−1 := 0n×L, for t ≥ 0 the algorithm computes:

Θt =XB̂t − R̂t−1(F t)⊤ , R̂t = gt
(
Θt,y

)
,

Bt+1 =X⊤R̂t − B̂t(Ct)⊤ , B̂t = f t
(
Bt
)
,

(3)

where the denoising functions gt : Rn×L × Rn → Rn×L
and f t : Rp×L → Rp×L are used to define the matrices F t,
Ct as follows:

Ct =
1

n

n∑
i=1

∂ig
t
i

(
Θt,y

)
, F t =

1

n

p∑
j=1

djf tj (B
t).

Here ∂igti (Θ,y) is the L× L Jacobian of gti w.r.t. the ith
row of Θ. Similarly, djf tj (B

t) is the L × L Jacobian of
f tj with respect to the j-th row of its argument. The time
complexity of each iteration in (3) is O(npL+ rn), where
rn is the time complexity of computing f t, gt.

Crucially, the denoising functions gt and f t are not re-
stricted to being separable. (Recall that a separable function
acts row-wise identically on its input, i.e., g : Rm×L →
Rm×L is separable if for allU ∈ Rm×L and i ̸= j, we have
[g(U)]i = gi(Ui) = gj(Ui).) Hence, in general, we have

gt(Θ,y) =

g
t
1(Θ,y)

...
gtn(Θ,y)

 , f t(B) =

f
t
1(B)

...
f tn(B)

 .
Our non-separable approach is required to handle the tempo-
ral dependence created by the change points. For example,
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if there was one change point uniformly in distributed in
[n], then gt(Θ,y) should take into account that yi is more
likely to have come from the the first signal for i close to 1,
and from the second signal for i close to n. This is in con-
trast to existing AMP algorithms for mixed regression (Tan
& Venkataramanan, 2023), where under standard model
assumptions, it suffices to consider separable denoisers.

In Appendix G, we review the AMP algorithm and state
evolution for the generalized linear model without change
points, i.e., the model in (2) without the vector Ψ. This is
useful background for the state evolution characterization
described below for the change point setting.

State Evolution The memory terms −R̂t−1(F t)⊤ and
−B̂t(Ct)⊤ in our AMP algorithm (3) debias the iterates
Θt and Bt+1, and enable a succinct distributional char-
acterization. In the high-dimensional limit as n, p → ∞
(with n/p→ δ), the empirical distributions of Θt andBt+1

are quantified through the random variables V t
Θ and V t+1

B

respectively, where

V t
Θ := Zρ−1νtΘ +Gt

Θ ∈ Rn×L, (4)

V t+1
B := Bνt+1

B +Gt+1
B ∈ Rp×L. (5)

The matrices ρ,νtΘ,ν
t+1
B ∈ RL×L are deterministic and

defined below. The random matrices Z,Gt
Θ, andGt+1

B are
independent ofX , and have i.i.d. rows following a Gaussian
distribution. Namely, for i ∈ [n] we have Zi

i.i.d∼ N(0,ρ).
For i ∈ [n], j ∈ [p] and s, r ≥ 0, (Gt

Θ)i
i.i.d∼ N(0,κt,tΘ )

with Cov((Gr
Θ)i, (G

s
Θ)i) = κr,sΘ . Similarly, (Gt

B)j
i.i.d∼

N(0,κt,tB ) with Cov((Gr
B)j , (G

s
B)j) = κr,sB . The L × L

deterministic matrices νtΘ,κ
r,s
Θ ,νtB, and κr,sB are defined

below via the state evolution recursion.

Given the initializerB0 for our algorithm (3), we initialize
state evolution by setting ν0

Θ := 0, and

ρ :=
1

δ
lim
p→∞

1

p
B⊤B, κ0,0

Θ :=
1

δ
lim
p→∞

1

p
f0(B0)⊤f0(B0).

(6)

Let g̃ti(Z,V
t
Θ,Ψ, ε) := gti(V

t
Θ, q(Z,Ψ, ε)) and let ∂1ig̃ti

be the partial derivative (Jacobian) w.r.t. the ith row of the
first argument. Then, the state evolution matrices are defined

recursively as follows:

νt+1
B := lim

n→∞

1

n
E

[
n∑
i=1

∂1ig̃
t
i(Z,V

t
Θ,Ψ, ε)

]
, (7)

κs+1,t+1
B := lim

n→∞

1

n
E
[
gs (V s

Θ, q(Z,Ψ, ε))
⊤

gt
(
V t
Θ, q(Z,Ψ, ε)

)]
, (8)

νt+1
Θ :=

1

δ
lim
p→∞

1

p
E
[
B⊤f t+1(V t+1

B )
]
, (9)

κs+1,t+1
Θ :=

1

δ
lim
p→∞

1

p
E
[(
fs+1(V s+1

B )−Bρ−1νs+1
Θ

)⊤
(
f t+1(V t+1

B )−Bρ−1νt+1
Θ

)]
. (10)

The expectations above are taken with respect to
Z,V t

Θ,V
s
Θ,V

t+1
B and V s+1

B , and depend on gt, f t, B,
ε, and Ψ. The limits in (7)–(10) exist under suitable reg-
ularity conditions on ft, gt, and on the limiting empirical
distributions onB, ε; see Appendix B. The dependence on
B, ε can also be removed under these conditions – this is
discussed in the next subsection.

3.1. State Evolution Characterization of AMP Iterates

Recall that the matrices (6)–(10) are used to define the ran-
dom variables (V t

Θ,V
t+1
B ) in (4),(5). Through these quan-

tities, we now give a precise characterization of the AMP
iterates (Θt, Bt+1) in the high-dimensional limit. Theo-
rem 3.1 below shows that any real-valued pseudo-Lipschitz
function of (Θt, Bt+1) converges in probability to its ex-
pectation under the limiting random variables (V t

Θ,V
t+1
B ).

In addition to the model assumptions in Section 2, we make
the following assumptions:

(A1) The following limits exist and are finite almost
surely: limp→∞ ∥B0∥F /

√
p, limp→∞ ∥B⊤B∥F /p,

and limn→∞ ∥ε∥2/
√
n.

(A2) For each t ≥ 0, let g̃t : (u, z) 7→ gt(u, q(z,Ψ, ε)),
where (u, z) ∈ Rn×L × Rn×L. For each i ∈ [n], j ∈
[p], the following functions are uniformly pseudo-
Lipschitz: f t, g̃t, djf tj , ∂1ig̃

t
i .

(A3) For s, t ≥ 0, the limits in (6)–(10) exist and are finite.

Assumptions (A1)−(A3) are natural extensions of classical
AMP results which assume separable signals and denoising
functions. They are similar to those required by existing
works on non-separable AMP (Berthier et al., 2019; Gerbe-
lot & Berthier, 2023), and generalize these to the model (2),
with a matrix signalB and an auxiliary vector Ψ ∈ [L]n.

Theorem 3.1. Consider the AMP in (3) for the Change
Point Regression model in (2), with the model assumptions
in Section 2 as well as (A1) − (A3). Then for t ≥ 0
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and any sequence of uniformly pseudo-Lipschitz functions
φn : Rn×(L(t+1)+2) → R and φp : Rp×(L(t+2)) → R,

φn(Θ
0, . . . ,Θt,y,Ψ)

P≃ EV 0
Θ,...,V

t
Θ,Z

{φn(V 0
Θ, . . . ,V

t
Θ, q(Z,Ψ, ε),Ψ)},

(11)

φp(B
1, . . . ,Bt+1,B)

P≃ EV 1
B ,...,V

t+1
B

{φp(V 1
B, . . . ,V

t+1
B ,B)}, (12)

as n, p → ∞ with n/p → δ, where the random variables
Z,V t

Θ and V t+1
B are defined in (4), (5).

The proof of the theorem is given in Appendix A. It involves
reducing the AMP in (3) to a variant of the symmetric AMP
iteration analyzed in (Gerbelot & Berthier, 2023, Lemma
14). We use a generalized version of their iteration which
allows for the auxiliary quantities Ψ, q(Z,Ψ, ε) to be in-
cluded. Theorem 3.1 implies that any pseudo-Lipschitz
function φn of (Θt,y) will converge in probability to a
quantity involving an expectation over (V t

Θ,Z). An analo-
gous statement holds for (Bt+1,B).

Useful Choices of φn,φp Using Theorem 3.1, we can
evaluate performance metrics such as the mean squared
error between the signal matrix B and the estimate B̂t =
f t(Bt). Taking φp(Bt,B) = ∥f t(Bt)−B∥2F /p leads to

∥f t(Bt) − B∥2F /p
P≃ E[∥f t(V t

B) − B∥2F /p], where the
RHS can be precisely computed under suitable assumptions.
In Section 3.3, we will choose φn to capture metrics of
interest for estimating change points.

Special Cases Theorem 3.1 recovers two known special
cases of (separable) AMP results, with complete conver-
gence replaced by convergence in probability: linear re-
gression when L = 1 (Feng et al., 2022), and mixed linear
regression where L > 1 and the empirical distributions of
the rows ofB,Ψ, ε converge weakly to laws of well-defined
random variables (Tan & Venkataramanan, 2023).

Dependence of State Evolution onB, ε, Ψ The depen-
dence of the state evolution parameters in (7)-(10) onB, ε
can be removed under reasonable assumptions. A standard
assumption in the AMP literature (Feng et al., 2022) is:

(S0) As n, p→ ∞, the empirical distributions of {Bj}j∈[p]

and {εi}i∈[n] converge weakly to laws PB̄ and Pε̄,
respectively, with bounded second moments.

In Appendix B, we give conditions on ft, gt, which together
with (S0), allow the state evolution equations to be simpli-
fied and written in terms of B̄ ∼ PB̄ and ε̄ ∼ Pε̄ instead
of (B, ε). We believe that the dependence of the state evo-
lution on the signal configuration vector Ψ is fundamental.

Since the entries of Ψ change value only at a finite number
of change points, the state evolution parameters will depend
on the limiting fractional values of these change points;
see (S1) in Appendix B. This is also consistent with recent
change point regression literature, where the limiting distri-
bution of the change point estimators in (Xu et al., 2022) is
shown to be a function of the data generating mechanism.

3.2. Choosing the Denoising Functions f t, gt

The performance of the AMP algorithm (3) is determined
by the functions {f t+1, gt}t≥0. We now describe how
these functions can be chosen based on the state evolu-
tion recursion to maximize estimation performance. Using
(V t

Θ,V
t+1
B ) defined in (4)–(5), we define the matrices

Z̃t := V t
Θ(ρ−1νtΘ)−1 = Z +Gt

Θ(ρ−1νtΘ)−1, (13)

B̃t+1 := V t+1
B (νt+1

B )−1 = B +Gt+1
B (νt+1

B )−1, (14)

where for i ∈ [n], j ∈ [p] we haveZi
i.i.d∼ N(0,ρ),Gt

Θ,i
i.i.d∼

N(0,κt,tΘ ), andGt
B,j

i.i.d∼ N(0,κt,tB ). (If the inverse doesn’t
exist we post-multiply by the pseudo-inverse). A natural
objective is to minimize the trace of the covariance of the
“noise” matrices in (13) and (14), given by

Tr

(
1

n

n∑
i=1

Cov
(
Z̃ti −Zi

))
= Tr

((
(νtΘ)−1ρ

)⊤
κt,tΘ (νtΘ)−1ρ

)
, (15)

Tr

(
1

p

p∑
j=1

Cov
(
B̃t+1
i −Bi

))

= Tr
(
[(νt+1

B )−1]⊤κt+1,t+1
B (νt+1

B )−1
)
, (16)

where we recall from (7)–(10) that νtΘ,κ
t,t
Θ are defined by

f t, and νt+1
Θ ,κt+1,t+1

Θ are defined by gt.

For t ≥ 1, we would like to iteratively choose the denoisers
f t, gt to minimize the quantities on the RHS of (15) and
(16). However, as discussed above νtΘ,κ

t,t
Θ ,ν

t+1
Θ ,κt+1,t+1

Θ

depend on the unknown Ψ, so any denoiser construction
based quantities cannot be executed in practice.

Ensemble State Evolution To remove the dependence on
Ψ in the state evolution equations, we can postulate random-
ness over this variable and take expectations accordingly.
Indeed, assume that (S0) holds, and postulate a prior distri-
bution πΨ̄ over [L]n. For example, πΨ̄ may be the uniform
distribution over all the signal configuration vectors with
two change points that are at least n/10 apart. We empha-
size that our theoretical results do not assume that the true
Ψ is drawn according to πΨ̄. Rather, the prior πΨ̄ allows
us to encode any knowledge we may have about the change
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point locations, and use it to define efficient AMP denoisers
f t, gt. This is done via the following ensemble state evolu-
tion recursion, defined in terms of the independent random
variables Ψ̄∼ PΨ̄, B̄ ∼ PB̄ , and ε̄∼ Pε̄.

Starting with initialization ν̄0
Θ := 0, κ̄0,0

Θ :=
limp→∞

1
δpf

0(B0)⊤f0(B0), for t ≥ 0 define:

ν̄t+1
B := lim

n→∞

1

n

n∑
i=1

E
[
∂1g̃

t
i(Z1, (V̄

t
Θ)1, Ψ̄i, ε̄)

]
(17)

κ̄t+1,t+1
B := lim

n→∞

1

n

n∑
i=1

E
[
gti
(
(V̄ t

Θ)1, q(Z1, Ψ̄i, ε̄)
)

gti
(
(V̄ t

Θ)1, q(Z1, Ψ̄i, ε̄)
)⊤]

, (18)

ν̄t+1
Θ :=

1

δ
lim
p→∞

1

p

p∑
j=1

E
[
B̄f t+1

j (V̄ t+1
B )⊤

]
, (19)

κ̄t+1,t+1
Θ :=

1

δ
lim
p→∞

1

p

p∑
j=1

E
[(
f t+1
j (V̄ t+1

B )− (ν̄t+1
Θ )⊤ρ−1B̄

)
(
f t+1
j (V̄ t+1

B )− (ν̄t+1
Θ )⊤ρ−1B̄

)⊤]
, (20)

where

V̄ t
Θ := Zρ−1ν̄tΘ + Ḡt

Θ ∈ Rn×L, (21)

V̄ t+1
B := (ν̄t+1

B )⊤B̄ + (Ḡt+1
B )1 ∈ RL, (22)

and for i ∈ [n], j ∈ [p] we have that Zi
i.i.d∼ N(0,ρ),

Ḡt
Θ,i

i.i.d∼ N(0, κ̄t,tΘ ) and Ḡt
B,j

i.i.d∼ N(0, κ̄t,tB ).

When πΨ̄ is a unit mass on the true configuration Ψ, (17)–
(20) reduce to the simplified state evolution in Appendix
B. The limits in (17)–(20) exist under suitable regularity
conditions on f t, gt, such as those in Appendix B.

We now propose a construction of f t, gt based on minimiz-
ing the following alternative objectives to (15)–(16):

Tr
((

(ν̄tΘ)−1ρ
)⊤
κ̄t,tΘ (ν̄tΘ)−1ρ

)
, (23)

Tr
(
[(ν̄t+1

B )−1]⊤κ̄t+1,t+1
B (ν̄t+1

B )−1
)
, (24)

where the deterministic matrices ν̄tΘ, κ̄t,tΘ , ν̄t+1
B ,

κ̄t+1,t+1
B ∈ RL×L are defined in (17)–(20).

Proposition 3.2. Assume the limits in (17)–(20) exist. Then,
for t ≥ 1:

1. Given ν̄tB , κ̄t,tB , the quantity (23) is minimized when

f tj (U) = f∗tj (U) := E[B̄|V̄ t
B = Uj ], (25)

for U ∈ Rp×L, j ∈ [p].

2. Given ν̄tΘ, κ̄
t,t
Θ , the quantity (24) is minimized when

gti(V ,u) = g∗ti (V ,u) :=
[
Cov

(
Z1|V̄ t

Θ,1

)]−1 ·(
E[Z1|(V̄ t

Θ)1 = Vi, q(Z1, Ψ̄i, ε̄) = ui]

−E[Z1|V̄ t
Θ,1 = V1]

)
, (26)

for V ∈ Rn×L,u ∈ Rn, i ∈ [n].

The proof of Proposition 3.2, given in Appendix C.1, is
similar to the derivation of the optimal denoisers for mixed
regression in (Tan & Venkataramanan, 2023), with a few key
differences in the derivation of g∗t, which is not separable
in the change point setting. With a product distribution on
πΨ̄, we recover mixed regression and (25)–(26) reduce to
the optimal denoisers in (Tan & Venkataramanan, 2023).

The denoiser f∗t is separable and can be easily computed
for sufficiently regular distributions PB̄ such as discrete,
Gaussian, or Bernoulli-Gaussian distributions. In Appendix
C.2, we show how g∗t can also be efficiently computed for
Gaussian ε̄ . As detailed in Appendix F, f∗t and g∗t can be
computed in O(nL3) time, yielding a total computational
complexity of O(npL3) for AMP with these denoisers.

3.3. Change Point Estimation and Inference

We now show how the AMP algorithm can be used for esti-
mation and inference of the change points {η1, . . . , ηL∗−1}.
We first define some notation. Let X ⊂ [L]n be the set
of all piece-wise constant vectors with respect to i ∈ [n]
with at most (L− 1) jumps. This set includes all possible
instances of the signal configuration vector Ψ. Let the func-
tion U : η 7→ Ψ denote the one-to-one mapping between
change point vectors η and signal configuration vectors Ψ.
For a vector η̂, we let |η̂| denote its dimension (number of
elements).

Change Point Estimation Theorem 3.1 states that
(Θt,y) converges in a specific sense to the random vari-
ables (V t

Θ, q(Z,Ψ, ε)) = (Zρ−1νtΘ + Gt
Θ,Z[:,Ψ] + ε),

whose distribution crucially captures information about Ψ.
Hence, it is natural to consider estimators for η of the form
η̂(Θt,y), one example being an estimator that searches for
a signal configuration vector ψ ∈ X such that Θt indexed
along ψ has the largest correlation with the observed vector
y. That is,

Ψ̂(Θt,y) = argmax
ψ∈X

n∑
i=1

(Θt)i,ψi
· yi , (27)

and η̂(Θt,y) = U−1(Ψ̂(Θt,y)). A common metric for
evaluating the accuracy of change point estimators is the
Hausdorff distance (Wang & Samworth, 2018; Xu et al.,
2022; Li et al., 2023b). The Hausdorff distance between
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two non-empty subsets X,Y of R is

dH(X,Y ) = max

{
sup
x∈X

d(x, Y ), sup
y∈Y

d(X, y)

}
,

where d(x, Y ) := miny∈Y ∥x − y∥2. The Hausdorff dis-
tance is a metric, and can be viewed as the largest of all
distances from a point in X to its closest point in Y and
vice versa. We interpret the Hausdorff distance between η
and an estimate η̂ as the Hausdorff distance between the
sets formed by their elements. The following theorem states
that any well-behaved estimator η̂ produced using the AMP
iterate Θt admits a precise asymptotic characterization in
terms of Hausdorff distance and size.
Proposition 3.3. Consider the AMP in (3). Suppose the
model assumptions in Section 2 as well as (A1) − (A3)
are satisfied. Let η̂(Θt,y) be an estimator such that
U(η̂(Θt,y)) is uniformly pseudo-Lipschitz. Then:

dH(η, η̂(Θt,y))

n

P≃ EV t
Θ,Z

dH(η, η̂(V t
Θ, q(Z, U(η), ε)))

n
(28)

Moreover, if the nth component ofU(η̂(Θt,y)) is uniformly
pseudo-Lipschitz, then:

|(L∗ − 1)− |η̂(Θt,y)|| P≃
EV t

Θ,Z

∣∣(L∗ − 1)− |η̂(V t
Θ, q(Z, U(η), ε))|

∣∣. (29)

The proof is given in Appendix D.1. The proof of (28)
involves showing that dH(η, η̂(Θt,y))/n is uniformly
pseudo-Lipschitz. For each η, Proposition 3.3 precisely
characterizes the asymptotic Hausdorff distance and size
errors for a large class of estimators η̂(Θt,y).

Uncertainty Quantification The random variable V̄ t
Θ =

Zρ−1ν̄tΘ + Ḡt
Θ in (21), combined with an observation

of the form q(Z,Ψ, ε̄) = Z[:,Ψ] + ε̄, yields a recipe for
constructing a posterior distribution over Ψ. Using the prior
πΨ̄, the posterior is:

pΨ|V̄ t
Θ,q(Z,Ψ,ε̄)

(ψ|V ,u) = πΨ̄(ψ)L(V ,u|ψ)∑
ψ̃ πΨ̄(ψ̃)L(V ,u|ψ̃)

,

(30)

where V ∈ Rn×L, u ∈ Rn, and L represents the likelihood
of (V̄ t

Θ, q(Z,ψ, ε̄)) given ψ ∈ X . Under the assumption

that ε̄i
i.i.d∼ N(0, σ2) for some σ > 0, the likelihood can be

computed in closed form using the Gaussian likelihood L1

in (92), with L(V ,u|ψ) =
∏n
i=1 L1(Vi, ui|ψi).

Since Theorem 3.1 states that (Θt,y) converges in a spe-
cific sense to (V t

Θ, q(Z,Ψ, ε)), we can obtain an approxi-
mate posterior density over Ψ by plugging in (Θt,y) for
(V ,u) in (30). Our theory then allows us to characterize the
asymptotic form of this approximate posterior distribution.

Proposition 3.4. Suppose the model assumptions in Section
2 as well as (A1) − (A3) are satisfied. Assume that the
posterior density p(ψ|Θt,y) := pΨ|V̄ t

Θ,q(Z,Ψ,ε̄)
(ψ|Θt,y)

in (30) is uniformly pseudo-Lipschitz with respect to Θt,y,
for each ψ ∈ X . Then, for ψ ∈ X , we have that:

p(ψ|Θt,y)
P≃ EV t

Θ,Z

[
p(ψ|V t

Θ, q(Z,Ψ, ε))
]
. (31)

The proof, given in Appendix D.2, is a direct application
of Theorem 3.1. The state evolution predictions on the
RHS of (28) and (31) can be computed under reasonable
assumptions, as outlined in Appendix B.

4. Experiments
In this section, we demonstrate the estimation and inference
capabilities of the AMP algorithm in a range of settings. Af-
ter running AMP, the signal configuration is estimated using
the approximate Maximum a Posteriori (MAP) estimate:

Ψ̂ = argmax
ψ∈X

pΨ|V̄ t
Θ,q(Z,Ψ,ε̄)

(ψ|Θt,y).

and η̂(Θt,y) = U−1(Ψ̂(Θt,y)). A Python implementa-
tion of our algorithm and code to run the experiments is
available at (Arpino & Liu, 2024).

For all experiments, we use i.i.d. Gaussian covariates:
Xi

i.i.d∼ N(0, Ip/n) for i ∈ [n], and study the performance
on both synthetic and image signals. For synthetic data,
the noise distribution is chosen to be Pε̄ = N(0, σ2). The
denoisers {gt, f t+1}t≥0 in the AMP algorithm are chosen
according to Proposition 3.2, unless otherwise stated. We
use a uniform prior πΨ̄ over all configurations with change
points at least ∆ apart, for some ∆ that is a fraction of n.
Error bars represent ± one standard deviation. Full imple-
mentation details are provided in Appendix E.

Figure 1 plots the Hausdorff distance normalized by n for
varying δ, for two different change point configurations Ψ.
We choose p = 600, PB̄ = N(0, I), σ = 0.1, ∆ = n/5 and
fix two true change points, whose locations are indicated
in the legend. The algorithm uses L = L∗ = 3. The state
evolution prediction of Hausdorff distance closely matches
the performance of AMP, verifying (28) in Proposition 3.3.

Figure 2 shows the approximate posterior on the change
point locations, computed using pΨ|V̄ t

Θ,q(Z,Ψ,ε̄)
(·|Θt,y).

We observe strong agreement with the state evolution pre-
diction, validating Proposition 3.4. The experiment uses
p = 400, PB̄ = N(0, I), σ = 0.1, ∆ = n/5, the true
change points are at n/3 and 8n/15 (i.e., L∗ = 3), and the
algorithm uses L = 3. As δ increases, we observe that the
approximate posterior concentrates around the ground truth.

Figure 3 shows the approximate posterior on the number of
change points, i.e.,

∑
ψ∈S pΨ|V̄ t

Θ,q(Z,Ψ,ε̄)
(ψ|Θt,y) where
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Figure 1. Hausdorff error vs. δ = n/p for two configurations.
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Figure 2. Approximate posterior vs. change point locations.
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Figure 3. Approximate posterior on the number of change points
(L∗ − 1). L∗ = 3, L = 4.

S contains all configurations with a specified number of
change points. We use p = 200,PB̄ = N(0, I), σ =
0.1,∆ = n/10, L∗ = 3, L = 4, and a uniform prior over
the number of change points (zero to three). We observe
that the posterior concentrates around the ground truth for
moderately large δ.

Figures 4 and 5 compare the performance of AMP against
four state-of-the-art algorithms: the dynamic programming
(DP) approach in (Rinaldo et al., 2021); dynamic program-
ming with dynamic updates (DPDU) (Xu et al., 2022); di-
vide and conquer dynamic programming (DCDP) (Li et al.,
2023b); and a complementary-sketching-based algorithm
called charcoal (Gao & Wang, 2022). Hyperparameters
are chosen using cross validation (CV), as outlined in Sec-
tion A.1 of (Li et al., 2023b). The first three algorithms, de-
signed for sparse signals, combine LASSO-type estimators
with partitioning techniques based on dynamic program-
ming. The charcoal algorithm is designed for the setting
where the difference β(ηℓ) − β(ηℓ+1) between adjacent sig-
nals is sparse. None of these algorithms uses a prior on
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Figure 4. Comparison with DPDU, DCDP and DP for sparse prior
PB̄ = 0.5N(0, δI) + 0.5δ0. L∗ = L = 3. Runtime shown is the
average runtime per set of CV parameters.
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Figure 5. Comparison with charcoal for a sparse difference prior
with sparsity level 0.5. L∗ = L = 3.

the change point locations, unlike AMP which can flexibly
incorporate both priors via PB̄ and πΨ̄.

Figure 4 uses p = 200, σ = 0.1,∆ = n/10, L∗ =
L = 3 and a sparse Bernoulli-Gaussian signal prior
PB̄ = 0.5N(0, δI) + 0.5δ0. AMP assumes no knowl-
edge of the true sparsity level 0.5 and estimates the spar-
sity level using CV over a set of values not including
the ground truth (details in Appendix E). Figure 5 uses
p = 300,∆ = n/10, L∗ = L = 3 and a Gaussian sparse
difference prior with sparsity level 0.5 (described in (84)-
(86)). AMP is run assuming a mismatched sparsity level of
0.9 and a mismatched magnitude for the sparse difference
vector (details in Appendix E). Figures 4 and 5 show that
AMP consistently achieves the lowest Hausdorff distance
among all algorithms and outperforms most algorithms in
runtime. Figures 7 and 8 in Appendix E show results from
an additional set of experiments comparing AMP with DCDP
(the fastest algorithm in Figure 4). Figure 7 shows the per-
formance of AMP with different change point priors πΨ̄
and suboptimal denoising functions, e.g., soft threshold-
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Figure 6. Top: Ground truth images (first row) and reconstruction
from AMP (second row) at δ = 0.75. Bottom: Approximate
posterior vs. fractional change point locations for different δ.

ing. Figure 8 demonstrates the favourable runtime scaling
of AMP over DCDP with respect to p, due to the LASSO
computations involved in DCDP.

Compressed Sensing with Change Points In Figure 6,
we consider noiseless compressed sensing, where the sig-
nals {β(i)}i∈[n] are rotated versions of a (255, 255) sparse
grayscale image used by Schniter & Rangan (2014). The
fraction of nonzero components in the image is 8645/50625.
We downsample the original image by a factor of three and
flatten, yielding an operation dimension of p = 852 = 7225.
We set {β(i)}0.3ni=1 to be the image, {β(i)}0.7ni=0.3n to be a
30◦ rotated version, and {β(i)}ni=0.7n to be a 45◦ rotated
version. We run AMP with a Bernoulli-Gaussian prior
PB̄ , ∆ = n/4 and L = L∗ = 3. Figure 6 shows im-
age reconstructions along with the approximate posterior
pΨ|V̄ t

Θ,q(Z,Ψ,ε̄)
(·|Θt,y). The approximate posterior con-

centrates around the true change point locations as δ in-
creases, even when the image reconstructions are approx-
imate. The experiment took one hour to complete on an
Apple M1 Max chip, whereas competing algorithms did not
return an output within 2.5 hours, due to the larger signal
dimension compared to Figure 4 (p = 7225 vs p = 200).
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A. Proof of State Evolution
The proof of Theorem 3.1 relies on a generalization of Lemma 14 in (Gerbelot & Berthier, 2023), presented as Lemma
A.1 below. Let W0 ∈ RN×Q be a matrix such that ∥W⊤

0 W0∥F /N converges to a finite constant as N → ∞, and let
A ∈ RN×N be a symmetric GOE(N ) matrix, independent ofW0. Then Lemma 14 in (Gerbelot & Berthier, 2023) gives
a state evolution result involving an AMP iteration whose denoising function takes as input the output of the generalized
linear model φ(AW0), where φ : RN×Q → RN .

Lemma A.1 generalizes Lemma 14 of Gerbelot & Berthier (2023) in two ways: i) it allows for the inclusion of an auxiliary
matrix Ξ ∈ RN×LΞ so that the generalized linear model in question is of the form φ(AW0,Ξ), and ii) the state evolution
convergence result holds for pseudo-Lipschitz test functions taking both the auxiliary matrix Ξ andAW0 as inputs.

We extend this lemma by considering an independent random matrix Ξ ∈ RN×LΞ , serving as input to a set of pseudo-
Lipschitz functions φ : RN×(Q+LΞ) → RN . We then analyze a similar AMP iteration whose denoising function f̃ t takes
φ(AW0,Ξ) as input instead of φ(AW0), initialized with an independent initializer X0 ∈ RN×Q:

Xt+1 = AM t −M t−1(bt)⊤ ∈ RN×Q , (32)

M t = f̃ t(φ (AW0,Ξ) ,Xt) ∈ RN×Q , (33)

bt =
1

N

N∑
i=1

∂f̃ ti
∂Xt

i

(φ (AW0,Ξ) ,Xt) ∈ RQ×Q . (34)

Our result in Lemma A.1 presents an asymptotic characterization of (32)–(34) via the following state evolution recursion:

ν0, ν̂0 = 0, (35)

κ0,0 = lim
N→∞

1

N
f̃0(X0)⊤f̃0(X0), (36)

νt+1 = lim
N→∞

1

N
E
[
W⊤

0 f̃ t
(
φ(ZW0

,Ξ),ZW0
ρ−1
W0
νt +W0ν̂

t +Zt
)]
, (37)

ν̂t+1 = lim
N→∞

1

N
E

[
N∑
i=1

∂1if̄
t
i

(
ZW0 ,ZW0ρ

−1
W0
νt +W0ν̂

t +Zt,Ξ
)]
, (38)

κt+1,s+1 = κs+1,t+1 = lim
N→∞

1

N
E
[(
f̃s
(
φ(ZW0

,Ξ),ZW0
ρ−1
W0
νs +W0ν̂

s +Zs
)
−W0ρ

−1
W0
νs+1

)⊤
(
f̃ t
(
φ(ZW0

,Ξ),ZW0
ρ−1
W0
νt +W0ν̂

t +Zt
)
−W0ρ

−1
W0
νt+1

)]
, (39)

where ρW0
= limN→∞

1
NW

⊤
0 W0, and for i ∈ [n] we have (ZW0

)i
i.i.d∼ N(0,ρW0

). For i ∈ [n], 0 ≤ s, r ≤ t, we have

that (ZW0)i is independent from (Zs)i
i.i.d∼ N (0,κs,s) with Cov((Zs)i, (Z

r)i) = κs,r. In (38), we let f̄ t : (z,u,v) 7→
f̃ t(φ(z,v),u) and we let ∂1if̄ ti denote the partial derivative of f̄ ti with respect to the i-th row of its first argument.

We list the necessary assumptions for characterizing this AMP iteration, followed by the result:

Assumptions.

(B1) A ∈ RN×N is a GOE(N ) matrix, i.e.,A = G+G⊤ for G ∈ RN×N with i.i.d. entries Gij ∼ N(0, 1/(2N)).

(B2) For each t ∈ N>0, f̄ t : (z,u,Ξ) 7→ f̃ t(φ(z,Ξ),u) is uniformly pseudo-Lipschitz. For each t ∈ N>0 and for any

1 ⩽ i ⩽ N , (u, z) 7→ ∂f̃t
i

∂Xi
(φ(z,Ξ),u) is uniformly pseudo-Lipschitz. The function f̃0 : RN×Q → RN×Q is

uniformly pseudo-Lipschitz.

(B3) The initializationX0 is deterministic, and ∥X0∥F /
√
N , ∥W⊤

0 W0∥2/N , ∥Ξ∥F /
√
N converge almost surely to finite

constants as N → ∞.

(B4) The following limits exist and are finite:

lim
N→∞

1

N
f̃0(X0)⊤f̃0(X0), lim

N→∞

1

N
W⊤

0 f̃
0(X0).
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(B5) For any t ∈ N>0 and any κ ∈ S+
Q , the following limit exists and is finite:

lim
N→∞

1

N
E
[
f̃0(X0)⊤f̃ t(φ(Z,Ξ),Z)

]
where Z ∈ RN×Q, Z ∼ N (0,κ⊗ IN ).

(B6) For any s, t ∈ N>0 and any κ ∈ S+
2Q, the following limit exists and is finite:

lim
N→∞

1

N
E
[
f̃s(φ(Zs,Ξ),Zs)⊤f̃ t(φ(Zt,Ξ),Zt)

]
where (Zs,Zt) ∈ (RN×Q)2,(Zs,Zt) ∼ N(0,κ⊗ IN ).

Lemma A.1. Consider the AMP iteration (32)–(34) and the state evolution recursion (35)–(39). Assume (B1) −
(B6). Then for any sequence of functions ΦN : (RN×Q)⊗(t+3) × RN×LΞ → R such that (X0, . . . ,Xt,V ) 7→
ΦN (X0,X1, ...,Xt,V ,W0,Ξ) is uniformly pseudo-Lipschitz, we have that:

ΦN
(
X0,X1, ...,Xt,AW0,W0,Ξ

)
P≃ EZ0,...,Zt,ZW0

[
ΦN

(
ZW0ρ

−1
W0
ν0 +W0ν̂

0 +Z0, . . . ,ZW0ρ
−1
W0
νt +W0ν̂

t +Zt,ZW0 ,W0,Ξ
)]
. (40)

Proof. The main differences between the AMP result in (Gerbelot & Berthier, 2023) and our characterization are: 1)
the φ function is allowed to depend on an auxiliary random variable Ξ, 2) the test function ΦN is allowed to depend
additionally onAW0,W0, and Ξ. Assumption (B2) guarantees that f̃ t maintains the same required coverage properties
despite modification 1).

We now address modification 2). Since Ξ andW0 are fixed and Φ̃N : (X0, . . . ,Xt,V ) 7→ ΦN (X0,X1, ...,Xt,V ,W0,Ξ)
is assumed to be uniformly pseudo-Lipschitz, these can be included in ΦN and the right hand side of (40) is unaffected.
Further, note that by Proposition 2 in (Gerbelot & Berthier, 2023) (a standard upper bound on the operator norm of
A∼GOE(N)) we have that ∥AW0∥F /

√
N <∞ as N → ∞. We can therefore includeAW0 in the definition of ΦN as

well, and the uniform pseudo-Lipschitzness of Φ̃N guarantees convergence to the result.

We next present the main reduction, mapping the AMP algorithm proposed in this work (3) to the symmetric one outlined in
(32)–(34).

Proof of Theorem 3.1. Consider the Change Point Linear Regression model (1), and recall that it can be rewritten as (2). We
reduce the algorithm (3) to (32)–(34), following the alternating technique of (Javanmard & Montanari, 2013). The idea is to
define a symmetric GOE matrix withX andX⊤ on the off-diagonals. With a suitable initialization, the iteration (32)–(34)
then yieldsBt+1 in the even iterations and for Θt in the odd iterations.

Let N = n + p. For a matrix E ∈ RN×L, we use E[n] and E[−p] to denote the first n rows and the last p rows of E
respectively. Recall from (3) thatX ∈ Rn×p,B,Bt ∈ Rp×L and Θ =XB,Θt ∈ Rn×L, and n/p→ δ as n, p→ ∞. We
let

A =

√
δ

δ + 1

[
D1 X
X⊤ D2

]
∼ GOE(N), W0 =

[
0n×L
B

]
∈ RN×L, X0 =

[
0n×L
B0

]
(41)

whereD1 ∼ GOE(n) and
√
δD2 ∼ GOE(p) are independent of each other and ofX . Let Ξ :=

[
Ψ ε

]
∈ Rn×2 and define

φ : (W ,Ξ) 7→ q

(√
δ + 1

δ
W[n],Ψ, ε

)
∈ RN , (42)

for anyW ∈ RN×L. We therefore have φ(AW0,Ξ) = q (XB,Ψ, ε). Let f̃ t : RN×L × RN → RN×L such that

f̃2t+1(φ(AW0,Ξ),U) =

√
δ + 1

δ

[
gt(U[n], q(XB,Ψ, ε))

0p×L

]
and f̃2t(φ(AW0,Ξ),U) =

√
δ + 1

δ

[
0n×L

f t(U[−p])

]
,

(43)
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for any U in RN×L.

Next, consider the AMP iteration (32)–(34) withA,W0,X
0,Ξ, φ, f̃ t defined as in (41)–(43). Note that the assumptions

(B1)−(B6) are satisfied by construction, and hence the state evolution result in Lemma A.1 holds for the iteration (32)–(34).
We will now show that the state evolution equations decompose into those of interest, (7)–(10). First, note that

X2t+1 =

Xf t(X2t
[−p])− gt−1(X2t−1

[n] , q(XB,Ξ)) ·

=(F t)⊤︷ ︸︸ ︷
1

n

(
p∑
i=1

∂f t(X2t
[−p])i

∂X2t
[−p],i

)⊤

D2f
t(X2t

[−p])

 , (44)

X2t =


D1g

t−1(X2t−1
[n] , q(XB,Ξ))

X⊤gt−1(X2t−1
[n] , q(XB,Ξ))− f t−1(X2t−2

[−p] ) ·

(
1

n

n∑
i=1

∂gt−1(X2t−1
[n] , q(XB,Ξ))

∂X2t−1
[n],i

)⊤

︸ ︷︷ ︸
=(Ct−1)⊤

 , (45)

and hence observe that X2t+1
[n] and X2t

[−p] are equal to Θt and Bt in (3) respectively. Define the main iterate Qt =

ZW0
ρ−1
W0
νt +W0ν̂

t +Zt ∈ RN×L. For i ∈ [n], let g̃ti : (Z,V ,Ψ, ε) 7→ gti(V , q(Z,Ψ, ε)) and let ∂1ig̃ti be the partial
derivative (Jacobian) w.r.t. the ith row of the first argument. Following (35)–(39), we then have that

ν2t+1 = lim
N→∞

1

N

√
δ + 1

δ
E
[[
0L×n B⊤][ 0n×L

f t(Q2t
[−p])

]]
=

√
δ

δ + 1
lim
n→∞

1

n
E
[
B⊤f t(Q2t

[−p])
]
, (46)

ν2t =

√
δ + 1

δ
lim
N→∞

1

N
E
[[
0L×n B⊤][gt−1(Q2t−1

[n] ,Y )

0p×L

]]
= 0L×L, (47)

ν̂2t+1 = 0L×L (48)

ν̂2t = lim
n→∞

1

n
E

[
n∑
i=1

∂1ig̃
t−1
i

(√
δ + 1

δ
ZW0,[n],Q

2t−1
[n] ,Ψ, ε

)]
, (49)

κ2t,2s = lim
n→∞

1

n
E

gt−1

(
Q2t−1

[n] , q

(√
δ + 1

δ
ZW0,[n],Ψ, ε

))⊤

gs−1

(
Q2s−1

[n] , q

(√
δ + 1

δ
ZW0,[n],Ψ, ε

)) (50)

κ2t+1,2s+1 = lim
n→∞

1

n
E

(f t(Q2t
[−p])−

√
δ + 1

δ
Bρ−1

B ν
2t+1

)⊤(
fs(Q2s

[−p])−
√
δ + 1

δ
Bρ−1

B ν
2s+1

) , (51)

where in (51) we used ρW0
= 1

NB
⊤B = δ

δ+1ρB . Hence, we can associate

νtΘ =

√
δ + 1

δ
ν2t+1, (52)

νtB = ν̂2t, (53)

κt,sΘ = κ2t+1,2s+1, (54)

κt,sB = κ2t,2s. (55)

ZB
d
=

√
δ + 1

δ
ZW0,[n], (56)
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Gt
Θ

d
= Z2t+1

[n] , (57)

Gt
B

d
= Z2t

[−p], (58)

V t
Θ

d
= Q2t+1

[n] , (59)

V t
B

d
= Q2t

[−p]. (60)

Substituting the change of variables (52)–(60) into (46)–(51), we obtain (7)–(10). Moreover, substituting (44)–(45) and
(59)–(60) into Lemma A.1 yields Theorem 3.1.

B. State Evolution Limits and Simplifications
B.1. State Evolution Dependence onB, ε

In this section, we outline how the limits in (7)–(10) can be checked, and how the dependence of (7)–(10) onB, ε can be
removed. We give a set of sufficient conditions for the existence of the limits in (7)–(10), which allow for removing the
dependency of the state evolution (7)–(10) onB, ε. Assume (S0) on p.5, and also that the following assumptions hold:

(S1) As n → ∞, the entries of the normalized change point vector η/n converge to constants α0, . . . , αL such that
0 = α0 < α1 < · · · < αL∗ = . . . = αL = 1.

(S2) For t ≥ 0, f t is separable, and gt acts row-wise on its input. (We recall that a separable function acts row-wise and
identically on each row.)

(S3) For ℓ ∈ [L∗ − 1], the empirical distributions of {g̃ti(Z1, (V
t
Θ)1,Ψηℓ , εi)}i∈[ηℓ,ηℓ+1) and

{∂1g̃ti(Z1, (V
t
Θ)1,Ψηℓ , εi)}i∈[ηℓ,ηℓ+1) converge weakly to the laws of random variables ĝtηℓ(Z1, (V

t
Θ)1,Ψηℓ , , ε̄)) and

ǧtηℓ(Z1, (V
t
Θ)1,Ψηℓ , ε̄), respectively, where ∂1 denotes Jacobian with respect to the first argument.

The assumption (S1) is natural in the regime where the number of samples n is proportional to p, and the number of degrees
of freedom in the signals also grows linearly in p. Without change points, f t, gt can both be assumed separable without loss
of optimality (due to (S0)). To handle the temporal dependence created by change points, we require gti to depend on i, for
i ∈ [n]. However, Proposition 3.2 shows that it can be chosen to act row-wise, i.e., g∗ti (Θt,y) = g∗ti (Θt

i, yi). This justifies
(S2). When gti is chosen to be g∗ti for i ∈ [n], the condition (S3) can be translated into regularity conditions on the prior
marginals πΨ̄i

and distributional convergence conditions on the noise εi, as these are the only quantities that differ along the
elements of the sets {g̃ti(Z1, (V

t
Θ)1,Ψηℓ , εi)}i∈[ηℓ,ηℓ+1) and {∂1g̃ti(Z1, (V

t
Θ)1,Ψηℓ , εi)}i∈[ηℓ,ηℓ+1) for ℓ ∈ [L∗ − 1].

Under assumptions (S0)-(S3), the state evolution equations in (7)–(10) reduce to:

νt+1
B =

L−1∑
ℓ=0

E
[
ǧtηℓ(Z1, (V

t
Θ)1,Ψηℓ , ε̄)

]
, (61)

κs+1,t+1
B =

L−1∑
ℓ=0

E
[
ĝsηℓ((V

s
Θ)1, q1(Z1,Ψηℓ , ε̄)) ĝ

t
ηℓ
((V t

Θ)1, q1(Z1,Ψηℓ , ε̄))
⊤] , (62)

νt+1
Θ =

1

δ
E
[
B̄f t+1

1 ((νt+1
B )⊤B̄ + (Gt+1

B )1)
⊤] , (63)

κs+1,t+1
Θ =

1

δ
E
[(
fs+1
1 ((νs+1

B )⊤B̄ + (Gs+1
B )1)− (νs+1

Θ )⊤ρ−1B̄
)

(
f t+1
1 ((νt+1

B )⊤B̄ + (Gt+1
B )1)− (νt+1

Θ )⊤ρ−1B̄
)⊤]

, (64)

where (S2) has allowed us to reduce the matrix products into sums of vector outer-products, and assumptions (S0)–(S3) have
removed the dependence onB and ε due to the law of large numbers argument in Lemma 4 of (Bayati & Montanari, 2011).

B.2. Removing dependencies on ε on the RHS of (28)–(29)

Under assumptions (S0)–(S3) above, the dependence of V t
Θ on the RHS of (28)–(29) onB, ε can be removed. Moreover,

the dependence of the RHS on ε through η̂ can be removed on a case-by-case basis. We expect this to hold, for example,
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under (S0)–(S3) for estimators whose dependence on ε is via a normalized inner product such as (27):

U(η̂(V t
Θ, q(Z, U(η), ε))) = argmax

ψ∈X

⟨(V t
Θ)[:,ψ],Z[:,ψ]⟩

n
+

⟨(V t
Θ)[:,ψ], ε⟩
n

. (65)

Indeed, the numerical experiments in Section 4 for chosen estimators demonstrate a strong agreement between the left-hand
and right-hand sides of (28) and of (31), when ε on the right-hand side is substituted by an independent copy with the same
limiting moments.

C. Proof and Computation of Optimal Denoisers f t, gt

C.1. Proof of Proposition 3.2

It is similar to the derivation of the optimal denoisers for mixed regression in (Tan & Venkataramanan, 2023), with a few
differences in the derivation of g∗t. We include both parts here for completeness. This proof relies on Lemma C.1 and
Lemma C.2, Cauchy-Schwarz inequality and Stein’s Lemma extended to vector or matrix random variables. Recall that we
treat vectors, including rows of matrices, as column vectors, and that functions h : Rq → Rq have column vectors as input
and output.
Lemma C.1 (Extended Cauchy-Schwarz inequality, Lemma 2 in (Lavergne, 2008)). Let A ∈ Rn×L and B ∈ Rn×L be
random matrices such that E∥A∥2F <∞,E∥B∥2F <∞, and E[A⊤A] is non-singular, then

E[B⊤B]− E[B⊤A](E[A⊤A])−1E[A⊤B] ≽ 0. (66)

Lemma C.2 (Extended Stein’s Lemma). Let x ∈ RL and h : RL → RL be such that for ℓ ∈ [L], the function
hℓ : xℓ → [h(x)]ℓ is absolutely continuous for Lebesgue almost every (xi : i ̸= ℓ) ∈ RL−1, with weak derivative
∂hℓ(x)/∂xℓ : RL → R satisfying E|∂hℓ(x)/∂xℓ| < ∞. If x ∼ N(µ,Σ) with µ ∈ RL and Σ ∈ RL×L positive definite,
then

E
[
(x− µ)h(x)⊤

]
= ΣE[h′(x)]⊤, (67)

where h′(x) is the Jacobian matrix of h.

The proof of Lemma C.2 follows from Lemma 6.20 of (Feng et al., 2022).

Proof of part 1 (optimal f t). Using the law of total expectation and applying (25), we can rewrite ν̄tΘ in (19) as:

ν̄tΘ =
1

δ
lim
p→∞

1

p

p∑
j=1

E
[
B̄
(
f tj (V̄

t
B)
)⊤]

=
1

δ
E
[
B̄
(
f tj (V̄

t
B)
)⊤]

=
1

δ
E
[
E
[
B̄
(
f tj (V̄

t
B)
)⊤ ∣∣V̄ t

B

]]
=

1

δ
E
[
E
[
B̄|V̄ t

B

] (
f tj (V̄

t
B)
)⊤]

=
1

δ
E
[
f∗tj (f tj )

⊤] , (68)

where we used the shorthand f tj ≡ f tj (V̄
t
B) and f∗tj ≡ f∗tj (V̄ t

B) = E[B̄|V̄ t
B]. Applying Lemma C.1 yields

E
[
f∗tj (f∗tj )⊤

]
− E

[
f∗tj (f tj )

⊤]E [f tj (f tj )⊤]−1
E
[
f tj (f

∗t
j )⊤

]
≽ 0. (69)

Since (20) can be simplified into

κ̄t,tΘ =
1

δ
E
[
f tj (f

t
j )

⊤]− (ν̄tΘ)⊤ρ−1νtΘ, (70)

using (68) and (70) in (69), we obtain that

∆ :=
1

δ
E
[
f∗tj (f∗tj )⊤

]
− ν̄tΘ

[
κ̄t,tΘ + (ν̄tΘ)⊤ρ−1(νtΘ)

]−1
(ν̄tΘ)⊤ ≽ 0.

Adding and subtracting κ̄t,tΘ on the LHS gives κ̄t,tΘ −κ̄t,tΘ +∆ ≽ 0. Left multiplying by ρ⊤
(
(ν̄tΘ)−1

)⊤
and right multiplying

by (ν̄tΘ)−1ρ maintains the positive semi-definiteness of the LHS and further yields

ρ⊤
(
(ν̄tΘ)−1

)⊤
κ̄t,tΘ (ν̄tΘ)−1ρ− ρ⊤

(
(ν̄tΘ)−1

)⊤
(κ̄t,tΘ −∆)(ν̄tΘ)−1ρ︸ ︷︷ ︸
=:Γt

Θ

≽ 0, (71)
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which implies

Tr
(
ρ⊤
(
(ν̄tΘ)−1

)⊤
κ̄t,tΘ (ν̄tΘ)−1ρ

)
≥ Tr

(
ΓtΘ
)
. (72)

Recall from (23) that the LHS of (72) is the objective we wish to minimise via optimal f t. Indeed, by setting f t = f∗t, (72)
is satisfied with equality, which proves part 1 of Proposition 3.2.
Remark C.3. When f t = f∗t, (68) and (70) reduce to κ̄t,tΘ = ν̄tΘ − (ν̄tΘ)⊤ρ−1ν̄tΘ.

Proof of part 2 (optimal gt) Recall from (17) that ν̄t+1
B = limn→∞

1
n

∑n
i=1 E

[
∂1ig̃

t
i(Z1, (V̄

t
Θ)1, Ψ̄i, ε̄)

]
, and we can

rewrite the transpose of each summand as:

E
[
∂1ig̃

t
i(Z1, (V̄

t
Θ)1, Ψ̄i, ε̄)

]⊤
(73)

(a)
= E(V̄ t

Θ)1

{
EZ1,ε̄

[
∂1ig̃

t
i

(
Z1, (V̄

t
Θ)1, Ψ̄i, ε̄

) ∣∣∣∣(V̄ t
Θ)1

]}⊤

(b)
= E(V̄ t

Θ)1

{
Cov

(
Z1|(V̄ t

Θ)1
)−1

EZ1,Ψ̄i,ε̄

[(
Z1 − E[Z1|(V̄ t

Θ)1]
)
g̃ti
(
Z1, (V̄

t
Θ)1, Ψ̄i, ε̄

)⊤ ∣∣∣∣(V̄ t
Θ)1

]}
(c)
= E(V̄ t

Θ)1

{
Cov

(
Z1|(V̄ t

Θ)1
)−1

(74)

Eq(Z1,Ψ̄i,ε̄)

[
EZ1

[(
Z1 − E[Z1|(V̄ t

Θ)1]
)
gti
(
(V̄ t

Θ)1, q(Z1, Ψ̄i, ε̄)
)⊤ ∣∣∣∣(V̄ t

Θ)1, q(Z1, Ψ̄i, ε̄)

]]}
= E(V̄ t

Θ)1

{
Cov

(
Z1|(V̄ t

Θ)1
)−1

Eq(Z1,Ψ̄i,ε̄)

[(
E[Z1|(V̄ t

Θ)1, q(Z1, Ψ̄i, ε̄)]− E[Z1|(V̄ t
Θ)1]

)
gti
(
(V̄ t

Θ)1, q(Z1, Ψ̄i, ε̄)
)⊤]}

(d)
= E

{
Cov

(
Z1|(V̄ t

Θ)1
)−1 (

E
[
Z1|(V̄ t

Θ)1, q(Z1, Ψ̄i, ε̄)
]
− E[Z1|(V̄ t

Θ)1]
)︸ ︷︷ ︸

=g∗ti ((V̄ t
Θ)1,q(Z1,Ψ̄i,ε̄))

gti
(
(V̄ t

Θ)1, q(Z1, Ψ̄i, ε̄)
)⊤}

= E
[
g∗ti (gti)

⊤] , (75)

where (a) and (c) follow from the law of total expectation; (b) uses Lemma C.2; and (d) uses (26). In the last line of (75)
we have used the shorthand gti ≡ gti

(
(V̄ t

Θ)1, q(Z1, Ψ̄i, ε̄)
)

and g∗ti ≡ g∗ti
(
(V̄ t

Θ)1, q(Z1, Ψ̄i, ε̄)
)
. Substituting (75) in (17)

yields

ν̄t+1
B = lim

n→∞

1

n

n∑
i=1

E[gti(g∗ti )⊤] = lim
n→∞

E
[
1

n
(gt)⊤g∗t

]
. (76)

Note that since πΨ̄i
differs across i, gti differs across i and the sum in (76) cannot be reduced. Lemma C.1 implies that

E
[
1

n
(g∗t)⊤g∗t

]
− E

[
1

n
(g∗t)⊤(gt)

]
E
[
1

n
(gt)⊤gt

]−1

E
[
1

n
(gt)⊤g∗t

]
≽ 0. (77)

Recalling from (17) and (18) that the limits in the state evolution iterates ν̄t+1
B = limn→∞ E

[
1
n (g

t)⊤g∗t
]

and κ̄t+1,t+1
B =

limn→∞ E
[
1
n (g

t)⊤gt
]

exist, we can take limits to obtain

lim
n→∞

E
[
1

n
(g∗t)⊤g∗t

]
− lim
n→∞

E
[
1

n

(
g∗t
)⊤
gt
]

︸ ︷︷ ︸
(ν̄t+1

B )
⊤

(
lim
n→∞

E
[
1

n
(gt)⊤gt

])−1

︸ ︷︷ ︸
(κ̄t+1,t+1

B )
−1

lim
n→∞

E
[
1

n
(gt)⊤g∗t

]
︸ ︷︷ ︸

ν̄t+1
B

≽ 0. (78)

Left multiplying ν̄t+1
B

(
(ν̄t+1
B )−1

)⊤
and right multiplying (ν̄t+1

B )−1
(
ν̄t+1
B

)⊤
on the LHS maintains the positive semi-

definiteness of the LHS to give

ν̄t+1
B

(
(ν̄t+1
B )−1

)⊤
lim
n→∞

E
[
1

n
(g∗t)⊤g∗t

]
(ν̄t+1
B )−1

(
ν̄t+1
B

)⊤
︸ ︷︷ ︸

=:Γt+1
B

−ν̄t+1
B

(
κ̄t+1,t+1
B

)−1 (
ν̄t+1
B

)⊤
≽ 0, (79)
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Moreover, since for positive definite matrices Γ1 and Γ2, Γ1 − Γ2 ≽ 0 implies Γ−1
1 − Γ−1

2 ≼ 0, we have that

[(ν̄t+1
B )−1]⊤κ̄t+1,t+1

B (ν̄t+1
B )−1 − Γt+1

B ≽ 0, (80)

which implies

Tr
(
[(ν̄t+1

B )−1]⊤κ̄t+1,t+1
B (ν̄t+1

B )−1
)
≥ Tr

(
Γt+1
B

)
.

Recall from (24) that gt is optimised by minimising Tr
(
[(ν̄t+1

B )−1]⊤κ̄t+1,t+1
B (ν̄t+1

B )−1
)

. Indeed, by choosing gt = g∗t,
the objective achieves its lower bound, which completes the proof.
Remark C.4. Note setting gt = g∗t leads to ν̄t+1

B = κ̄t+1,t+1
B .

C.2. Computation of f∗t and g∗t

The computation of the optimal denoisers relies on Lemmas C.5 and C.6, which state the conditioning properties of
multivariate Gaussians or mixtures of Gaussians. We compute the Jacobians of these denoisers in (3) using Automatic
Differentiation in Python JAX (Bradbury et al., 2018).

Lemma C.5 (Conditioning property of multivariate Gaussian). Suppose x ∈ Rn and y ∈ Rm are jointly Gaussian:[
x
y

]
∼ N

([
µx
µy

]
,

[
Σx Σxy
Σ⊤
xy Σy

])
, then

E[x | y = ỹ] = µx +ΣxyΣ
−1
y (ỹ − µy), Cov(x | y) = Σx −ΣxyΣ

−1
y Σ⊤

xy.

Lemma C.6 (Conditioning property of Gaussian mixtures). Let xa ∈ RLa ,xb ∈ RLb with
[
xa
xb

]
∼
∑K
k=1 πkN (µk,Σk),

then

E[xa | xb = x] =
∑K
k=1 πkPk(xb = x)Ek[xa | xb = x]∑K

k′=1 πk′Pk′(xb = x)
(81)

where Ek[xa | xb] is the conditional expectation given
[
xa
xb

]
∼ N (µk,Σk).

Computation of f∗t Recalling (22), f∗tj in (25) can be computed by expanding the conditional expectation:

f∗tj (U) = f∗tj (Uj) := E[B̄|V̄ t
B = Uj ],

which permits easily computable expressions for sufficiently regular distributions PB̄ such as discrete, Bernoulli-Gaussian
or Gaussian distributions. We give the formulas for these below.

Computation of f∗t for Gaussian signals When B̄ ∼ NL(E[B̄], δρ), we have[
B̄
V̄ t
B

]
∼ N2L

(
µB,Σ

t
B

)
, where µtB :=

[
IL×L
(ν̄tB)

⊤

]
E[B̄], Σt

B :=

[
ρ ρν̄tB

(ν̄tB)
⊤ρ (ν̄tB)

⊤ρν̄tB + κ̄t,tB /δ

]
,

and applying Lemma C.5 yields:

f tj (Uj) = E[B̄] + ρν̄tB
(
(ν̄tB)

⊤ρν̄tB + κ̄t,tB /δ
)−1

(Uj − (ν̄tB)
⊤E[B̄]).

Computation of f∗t for Bernoulli-Gaussian prior This prior is used in the experiments in Figures 4, 6 and 7. It assumes
that B̄ℓ ∈ {B̄ℓ}ℓ∈[L] is distributed as follows:

B̄ℓ
i.i.d∼ ζ(α;σℓ) := (1− α)δ0 + αN

(
0, σ2

ℓ

)
,
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with σ2
ℓ = δ

αρℓ,ℓ. Recall that for t ≥ 0, V̄ t+1
B := (νt+1

B )⊤B̄ + (Ḡt+1
B )1, where B̄ and (Ḡt+1

B )1 are independent. Then, for
j ∈ [p], we have that,

f∗tj (s) = E[B̄|V̄ t
B = s] =

∫
B̄P[V̄ t+1

B = s|B̄]
∏L
ℓ=1 ζ(α;σℓ)dB̄∫

P[V̄ t+1
B = s|B̄]

∏L
ℓ=1 ζ(α;σℓ)dB̄

=

∫
B̄ϕ(s; (ν̂t+1

B )⊤B̄,κt+1,t+1
B )

∏L
ℓ=1 ζ(α;σℓ)dB̄∫

ϕ(s; (ν̂t+1
B )⊤B̄,κt+1,t+1

B )
∏L
ℓ=1 ζ(α;σℓ)dB̄

,

where ϕ(x;µ,Σt) denotes the density of a zero-mean multivariate Gaussian with mean µ and covariance matrix Σt,
evaluated at x. The above can be computed numerically, or analytically using properties of Gaussian integrals. The latter
approach yields f∗tj (s) = d1

d2
, where:

d2 =
∑

S⊆[L]

αL−|S|(1− α)|S|
∫
ϕ
(
B̄S ;0,ΣS

)
· ϕ
(
s− (ν̄t+1

B )⊤B̄;0, κ̄t+1,t+1
B

)
dB̄, (82)

d1 =
∑

S⊆[L]

αL−|S|(1− α)|S|
∫
B̄ϕ

(
B̄S ;0,ΣS

)
· ϕ
(
s− (ν̄t+1

B )⊤B̄;0, κ̄t+1,t+1
B

)
dB̄, (83)

and B̄S is the size |S| vector containing the entries of B̄ indexed by S . Here, ΣS is the |S| × |S| sub-matrix of ρ indexed
along S × S . We then have that,∫

ϕ
(
B̄S ;0,ΣS

)
· ϕ
(
s− (ν̄t+1

B )⊤B̄;0, κ̄t+1,t+1
B

)
dB̄

= (2π)
−L

2
∣∣ΣS

∣∣− 1
2
∣∣κ̄t+1,t+1
B

∣∣− 1
2 ·
∣∣Σc

∣∣ 12 exp(−1

2

[
−µ⊤

c Σ
−1
c µc + s

⊤(κ̄t+1,t+1
B )−1s

])
,

where Σc =
[
Σ−1

S +∆
]−1

with ∆ = ν̄t+1
B (κ̄t+1,t+1

B )−1(ν̄t+1
B )⊤ and µc = ΣS ν̄

t+1
B (κ̄t+1,t+1

B )−1s. Moreover,∫
B̄ϕ

(
B̄S ;0L,ΣS

)
· ϕ
(
s− (ν̄t+1

B )⊤B̄;0L, κ̄
t+1,t+1
B

)
dB̄ =: z ∈ RL,

where

zS = (2π)
−L

2
∣∣ΣS

∣∣− 1
2
∣∣κ̄t+1,t+1
B

∣∣− 1
2 ·
∣∣Σc

∣∣ 12 exp(−1

2

[
−µ⊤

c Σ
−1
c µc + s

⊤(κ̄t+1,t+1
B )−1s

])
µc,

z[L]\S = 0.

Plugging the above expressions into (82)–(83), we obtain a closed-form expression for f∗tj .

Computation of f∗t for sparse difference prior For the experiments in Figure 5, we consider signals with sparse changes
between adjacent signals. The prior takes the following form:

β
(η0)
j

i.i.d.∼ N(0, κ2)

β
(η1)
j =

{
β
(η0)
j , with probability 1− α

γ(β
(η0)
j + w), with probability α

...

β
(ηL)
j =

{
β
(ηL−1)
j , with probability 1− α

γ(β
(ηL−1)
j + w), with probability α

(84)

where w i.i.d.∼ N(0, σ2
w) creates the sparse change between adjacent signals, and γ :=

√
κ2

κ2+σ2
w

is a rescaling factor that

ensures uniform signal magnitude E[(β(η0)
j )2] = · · · = E[(β(ηL)

j )2], i.e., E[(B̄1)
2] = · · · = E[(B̄L)2]. Note (84) can be

compactly expressed as a mixture of Gaussians, for example, for L = 3:

PB̄ = π00N
(
03,Cov

00
)
+ π01N

(
03,Cov

01
)
+ π10N

(
03,Cov

10
)
+ π11N

(
03,Cov

11
)

(85)
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where

π00 = (1− α)2, π01 = (1− α)α, π10 = α(1− α), π11 = α2,

Cov00 = κ213×3, Cov
01 = κ2

1 1 γ
1 1 γ
γ γ 1

 , Cov10 = κ2

1 γ γ
γ 1 1
γ 1 1

 , Cov11 = κ2

 1 γ γ2

γ 1 γ
γ2 γ 1

 .
In general, for any L, defining the shorthand υ ≡ [υ1, . . . , υL−1]

⊤ ∈ {0, 1}L−1, we have

PB̄ =
∑

υ∈{0,1}L−1

πυ N(0L,Cov
υ) (86)

and {πυ} and {Covυ} can be defined analogously to those in (84). Using Lemma C.6, we obtain a closed-form expression
for f∗t involving {πυ} and {Covυ}.

Computation of g∗t for Gaussian noise ε̄ ∼ N(0, σ2) Recalling (21), we have[
Z1

(V̄ t
Θ)1

]
∼ N2L(0,Σ

t
Θ), where Σt

Θ :=

[
ρ ν̄tΘ

(ν̄tΘ)⊤ (ν̄tΘ)⊤ρ−1ν̄tΘ + κ̄t,tΘ

]
. (87)

Lemma C.5 then gives the formulas for E[Z1|(V̄ t
Θ)1 = V1] and Cov(Z1|(V̄ t

Θ)1), the first and last terms of g∗ti in (26), as
follows:

Cov(Z1|(V̄ t
Θ)1) = ρ− (ν̄tΘ)⊤

(
(ν̄tΘ)⊤ρ−1ν̄tΘ + κ̄t,tΘ

)−1
ν̄tΘ,

E[Z1|(V̄ t
Θ)1 = V1] = ν

t
Θ

(
(ν̄tΘ)⊤ρ−1νtΘ + κt,tΘ

)−1
V1. (88)

When f t = f∗t, we can use the simplifications in Remark C.3 to obtain:

Cov(Z1|(V̄ t
Θ)1) = ρ− ν̄tΘ and E[Z1|(V̄ t

Θ)1 = V1] = V1.

We now calculate the middle term E[Z1|(V̄ t
Θ)1 = Vi, q(Z1, Ψ̄i, ε̄) = ui] of g∗ti in (26). Recalling from (2) that

q(Z1, Ψ̄i, ε̄) = (Z1)Ψ̄i
+ ε̄ where Z1 ∼ N(0,ρ), we have

E[Z1q(Z1, Ψ̄i, ε̄) |Ψ̄i = ℓ] = E[Z1(Z1)ℓ] = ρ[:,ℓ],

E[q(Z1, Ψ̄i, ε̄)
2 |Ψ̄i = ℓ] = E[(Z1)

2
ℓ + ε̄2] = ρℓ,ℓ + σ2,

E[(V̄ t
Θ)1q(Z1, Ψ̄i, ε̄) |Ψ̄i = ℓ] = E[(Zρ−1ν̄tΘ)1(Z1)ℓ] = (ν̄tΘ)⊤ρ−1ρ[:,ℓ] =

(
(ν̄tΘ)[ℓ,:]

)⊤
,

(89)

which implies that conditioned on Ψ̄i = ℓ,[
(V̄ t

Θ)1
q(Z1, Ψ̄i, ε̄)

]
∼ NL+1

(
0,Σt

)
, where Σt :=

[
(ν̄tΘ)⊤ρ−1ν̄tΘ + κ̄t,tΘ

(
(ν̄tΘ)[ℓ,:]

)⊤
(ν̄tΘ)[ℓ,:] ρℓ,ℓ + σ2

]
. (90)

Conditioned on Ψi = ℓ the random variables (Z1, (V̄
t
Θ)1, q1(Z1, Ψ̄i, ε̄)) are jointly Gaussian with zero mean and covariance

matrix determined by (87)-(90). Using Lemma C.5 on these jointly Gaussian variables, we obtain:

E[Z1 | (V̄ t
Θ)1 = Vi, q(Z1, Ψ̄i, ε̄) = ui] =

∑L
ℓ=1 λ

t(Vi, ui, ℓ)πΨ̄i
(ℓ)L1(Vi, ui|ℓ)∑L

ℓ̃=1 πΨ̄i
(ℓ̃)L1(Vi, ui|ℓ̃)

, (91)

where πΨ̄i
: ℓ 7→

∑
{ψ:ψi=ℓ} πΨ̄(ψ) denotes the marginal probability of Ψ̄i, and

L1(Vi, ui|ℓ) := ϕ

([
Vi
ui

]
;0,Σt

)
, (92)

λt(Vi, ui, ℓ) := E[Z1 | V̄ t
Θ,1 = Vi, q1(Z1, Ψ̄1, ε̄) = ui, Ψ̄1 = ℓ] =

[
ν̄tΘ ρ[:,ℓ]

]
[Σt]−1

[
Vi
ui

]
∈ RL. (93)

Here, ϕ(x;0,Σt) denotes the density of a zero-mean multivariate Gaussian with covariance matrix Σt, evaluated at x.
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D. Proof of Propositions 3.3 and 3.4
D.1. Proof of Proposition 3.3

Proof. Recall that a signal configuration vector Ψ ∈ X is a vector that is piece-wise constant with respect to its indices
i ∈ [n], with jumps of size 1 occurring at the indices {ηℓ}L

∗−1
ℓ=1 . Without loss of generality, we assume Ψ is also monotone

(otherwise, any non-distinct signal can be treated as a new signal having perfect correlation with the first). Recall that
η ∈ [n]L

∗−1 is the change point vector corresponding to Ψ, i.e., η = U−1(Ψ). Also recall that for i ∈ [n], the distance of
ηi from a change point estimate η̂ ∈ [n]L−1, is defined as d(ηi, {η̂j}L−1

j=1 ) := minη̂j∈{η̂j}L−1
j=1

∥ηi − η̂j∥2. Then, we have

that d(ηi, {η̂j}L−1
j=1 ) ≤ ∥U(η)− U(η̂)∥2F for all i ∈ [L∗ − 1], and similarly d({ηi}L

∗−1
i=1 , η̂j) ≤ ∥U(η)− U(η̂)∥2F for all

j ∈ [L− 1]. This implies that dH(η, η̂) ≤ ∥U(η)− U(η̂)∥2F .

We first prove that (Θt,y) 7→ dH(η, η̂(Θt,y)) is uniformly pseudo-Lipschitz. Consider two inputs, A(1) :=
((Θt)(1),y(1)) andA(2) := ((Θt)(2),y(2)). We then have that:

1

n

∣∣∣dH(η, η̂(A(1)))− dH(η, η̂(A(2)))
∣∣∣

≤ 1

n
dH(η̂(A(1)), η̂(A(2))) (94)

≤ 1

n
∥U(η̂(A(1)))− U(η̂(A(2)))∥2F (95)

≤ L · 1√
n
∥U(η̂(A(1)))− U(η̂(A(2)))∥F (96)

≤ L · C

1 +

(∥∥[Θ(1) y(1)
]∥∥
F√

n

)r−1

+

(∥∥[Θ(2) y(2)
]∥∥
F√

n

)r−1
 ∥∥[Θ(1) y(1)

]
−
[
Θ(2) y(2)

]∥∥
F√

n
, (97)

for some constants C > 0, r ≥ 1. Here (94) follows from the reverse triangle inequality for the metric dH , (95) follows from
the argument in the paragraph above, (96) follows from the fact that X ⊆ [L]n, and (97) follows from the pseudo-Lipschitz
assumption on U(η̂(Θt,y)). Applying Theorem 3.1 with φn(Θt,y,Ψ) := 1

ndH(U−1(Ψ), η̂(Θt,y)), we obtain the first
result in Proposition 3.3.

We now prove that (Θt,y) 7→ |η̂(Θt,y)| is uniformly pseudo-Lipschitz. Denoting the nth component of U(η̂) by U(η̂)n,
notice that for a change point vector η̂ ∈ [n]L−1, by the monotonicity of Ψ, we have that |η̂| = U(η̂)n. Consider two inputs
A(1) := ((Θt)(1),y(1)),A(2) := ((Θt)(2),y(2)). We then have that:∣∣∣|η̂(A(1))| − |η̂(A(2))|

∣∣∣ (98)

=
∣∣∣|U(η̂(A(1))n| − |U(η̂(A(2))n|

∣∣∣
≤ C

1 +

(∥∥[Θ(1) y(1)
]∥∥
F√

n

)r−1

+

(∥∥[Θ(2) y(2)
]∥∥
F√

n

)r−1
 ∥∥[Θ(1) y(1)

]
−
[
Θ(2) y(2)

]∥∥
F√

n
, (99)

for some constants C > 0, r ≥ 1, where (99) follows because U(η̂(Θt,y))n is assumed to be uniformly pseudo-Lipschitz.
Applying Theorem 3.1 to φn(Θt,y,Ψ) := |U(η̂(Θt,y))n|, we obtain the second claim in in Proposition 3.3.

D.2. Proof of Proposition 3.4

Proof. Fix ψ ∈ X , and define φn : (Θt,y) 7→ pΨ|V̄ t
Θ,q(Z,Ψ,ε̄)

(ψ|Θt,y). Applying Theorem 3.1 to φn, we obtain the
result.

E. Further Implementation and Experiment Details
State Evolution Implementation Our state evolution implementation involves computing (61)–(64). We estimate
νt+1
Θ ,κt+1,t+1

Θ ,νt+1
B ,κt+1,t+1

B in (61)–(64) with finite n, p via empirical averages, for a given change point configuration
{Ψηℓ}

L−1
ℓ=0 . Specifically, assuming νtΘ,κ

t,t
Θ ,ν

t
B,κ

t,t
B have been computed, we compute νt+1

Θ ,κt+1,t+1
Θ ,νt+1

B ,κt+1,t+1
B as
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follows:

νt+1
B ≈

L−1∑
ℓ=0

1

n

∑
i∈[ηℓ,ηℓ+1)

Ê
[
∂1g̃

t
i(Z1, (V

t
Θ)1,Ψηℓ , ε̄)

]
, (100)

κt+1,t+1
B ≈

L−1∑
ℓ=0

1

n

∑
i∈[ηℓ,ηℓ+1)

Ê
[
gti
(
(V t

Θ)1, q1(Z1,Ψηℓ , ε̄)
)⊤
gti
(
(V t

Θ)1, q1(Z1,Ψηℓ , ε̄)
)]
, (101)

νt+1
Θ ≈ 1

δ
Ê
[
B̄f t+1

1 (V t+1
B )⊤

]
, (102)

κt+1,t+1
Θ ≈ 1

δ
Ê
[(
f t+1
1 (V t+1

B )− B̄ρ−1νt+1
Θ

) (
f t+1(V t+1

B )− B̄ρ−1νt+1
Θ

)⊤]
. (103)

where Ê denotes an expectation estimate via Monte Carlo. For example, in the case of (101), we generate 300 to 1000
independent samples of (Z1, (G

t
Θ)1, ε̄), with Z1 ∼ N(0,ρ), (Gt

Θ)1 ∼ N(0,κt,tΘ ), and ε̄ ∼ Pε̄. We form (V t
Θ)1 according

to the first row of (4), i.e., (V t
Θ)1 = Z1ρ

−1νtΘ + (Gt
Θ)1. For ℓ ∈ {0, . . . , L − 1}, this yields a set of samples of the

random variables gti ((V
t
Θ)1, q1(Z1,Ψηℓ , ε̄)) and ∂1g̃ti(Z1, (V

t
Θ)1,Ψηℓ , ε̄) (the latter function is computed using Automatic

Differentiation (AD)). We then compute Ê in (100) and (101) by averaging. The Ê terms in (102)–(103) are similarly
computed.

The ensemble state evolution recursion (17)–(20) is used to compute the optimal denoisers {g∗t, f∗t+1}t≥0 according to
Proposition 3.2. The expectation in the ensemble state evolution iterates (17)–(20) are estimated through sample averages
and AD, similar to the simplified state evolution iterates.

Experiment Details For the synthetic data experiments in Section 4, we consider model (2) with ε i.i.d∼ N(0, σ2In) and
under the model assumptions in Section 2. For each experiment, we run AMP for t ≤ 15 iterations, and average over 10 to
20 independent trials. We initialize AMP with f0(B0) sampled row-wise independently from the prior PB̄ used to define
the ensemble state evolution (17)–(20). The denoisers {gt, f t+1}t≥0 in the AMP algorithm are chosen to be the ones given
by Proposition 3.2, whose computation is detailed in Appendix C.2.

Figures 4, 6, 7 and 8 use Bernoulli-Gaussian priors, as defined in Appendix C.2. Figure 6 uses α = 1/6 and σℓ = 2.5 for
ℓ ∈ [L]. Figures 4, 7 and 8 use α = 0.5 and σ2

ℓ = δ for ℓ ∈ [L] to ensure that the signal power E[(Xi)
⊤β(i)]2 is held

constant for varying δ. There are two change points at n/3 and 8n/15 in the experiments in Figures 4, 7 and 8. AMP uses
cross validation (CV) over 5 values of α̂ : {0.1, 0.3, 0.45, 0.6, 0.9} which do not contain the true α = 0.5. DCDP, DPDU, and
DP each have two hyperparameters: one corresponding to the ℓ1 penalty and the other penalizing the number of change
points. We run cross-validation on these hyperparameters for 12, 12, or 42 pairs of values, respectively, using the suggested
values from the original papers.

Figure 5 uses the sparse difference prior defined in Appendix C.2. We recall that, for j ∈ [p], β(η0)
j

i.i.d.∼ N(0, κ2) and with

probability α we have that β(ηℓ)
j = γ(β

(ηℓ−1)
j + w) where w i.i.d.∼ N(0, σ2

w) and γ > 0 is a normalizing constant so that

E[(β(ηℓ)
j )2] = κ2 for ℓ ∈ [L]. We run the experiment with sparsity level α = 0.5, variance of the entries of the first signal

κ2 = 8δ, and perturbation to each consecutive signal of variance σ2
w = 400δ, for varying δ. This ensures that the signal

power E[(Xi)
⊤β(i)]2 and the signal difference E[(Xi)

⊤β(i) − (Xi+1)
⊤β(i+1)]2 for i ∈ {ηℓ}L−1

ℓ=1 are held constant for
varying δ. There are two change points at n/3 and 8n/15. Without perfect knowledge of the magnitude σ2

w and sparsity
level α of the sparse difference vector, AMP assumes σ̂2

w = 2500δ and α̂ = 0.9 in the experiments in Figure 5.

Additional numerical results Figure 7 shows results from an additional set of experiments comparing AMP with DCDP

(the fastest algorithm in Figure 4), using different change point priors πΨ̄ (Figure 7a) or denoisers f t (Figure 7b). In both
figures, the solid red plot shows DCDP performance with hyperparameters chosen using CV. Solid black corresponds to AMP
using the true signal prior. Solid green corresponds to AMP using L = 3, the optimal denoiser f t with the sparsity level
estimated using CV. In Figure 7a, AMP performs slightly worse with L = 4 instead of L = 3, because the prior assigns
non-zero probability to the change point configurations with L = 4 signals, which is mismatched from the ground truth
L∗ = 3. In Figure 7b, AMP performs slightly worse at lower δ when using a suboptimal soft thresholding (ST) denoiser.
Nevertheless, in both Figures 7a and 7b, AMP largely outperforms DCDP despite the suboptimal choices of prior or denoiser.

Figure 8 compares AMP with DCDP for n = 500 and varying p, both using hyperparameters chosen via cross-validation.
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(a) Solid purple: AMP using L = 3, 4 and the
optimal denoiser f t with the sparsity level esti-
mated using CV.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
 = n/p

0.0

0.2

0.4

0.6

0.8

1.0

Ha
us

do
rff

 d
ist

an
ce

DCDP with CV
AMP with CV, L=3
AMP with CV, L=3, ST
AMP with = =0.5, L=3

(b) Dashed purple: AMP using L = 3 and a
suboptimal soft thresholding (ST) denoiser f t

whose threshold is selected using CV.

Figure 7. Comparison between AMP and DCDP in the same setting as in Figure 4: p = 200, σ = 0.1, L∗ = 3, sparse signal prior
PB̄ = 0.5N(0, δI) + 0.5δ0 and AMP uses ∆ = n/10. Solid red: DCDP with hyperparameters chosen using CV. Solid green: AMP using
L = 3, the optimal denoiser f t with the sparsity level estimated using CV. Solid black: AMP using the true signal prior.
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Figure 8. Comparison between AMP and DCDP for fixed n = 500 and varying p, with σ = 0.1, L∗ = 3 and sparse signal prior
PB̄ = 0.5N(0, δI) + 0.5δ0. AMP uses ∆ = n/10 and L = 3.

The runtime shown is the average runtime per set of CV parameters. For a fixed set of hyperparameters, the time complexity
of DCDP scales as LASSO(n, p) compared to O(np) for AMP. The runtime of DCDP therefore grows faster with increasing p.

F. Computational Cost
Computing g∗t, f∗t+1 For i ∈ [n], the function g∗ti in Proposition 3.2 only depends on Ψ̄ in (91) through the marginal
probability of Ψ̄i, i.e., πΨ̄i

: ℓ 7→
∑

{ψ:ψi=ℓ} πΨ̄(ψ). This means g∗ti can be efficiently computed, involving only a sum
over Ψ̄i ∈ [L]. Indeed, from the implementation details in Appendix C.2, both f∗tj and g∗ti can be computed in O(L3) time
for each i, j. Thus f∗t and g∗t can be computed in O(nL3). The per-iteration computational cost of AMP is therefore
dominated by the matrix multiplications in (3), which are O(npL).

Computing change point estimators For estimators η̂ withO(np) runtime, the combined AMP and estimator computation
can be made to run in O(np) time by selecting denoisers f t, gt as in Proposition 3.2. For example, the argmax in (27)
can be replaced with a greedy best-first search: search for the location of one change point at a time, conditioning on past
estimates of the other change points. This will yield at most L rounds of searching over O(n) elements, resulting in O(np)
total runtime.

Computing the approximate posterior For low-dimensional latent random variables Ψ, the denominator in (30) only
requires evaluating a polynomial number of terms,

(
n
L

)
in the case of change point signal configurations. Therefore, choosing

f t, gt as in Proposition 3.2, the computational complexity of computing pΨ|V̄ t
Θ,q(Z,Ψ,ε̄)

(ψ|Θt,y) along with AMP is
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O(npL+ nL3 + nL) = O(np+ nL).

G. Background on AMP for Generalized Linear Models (GLMs)
Here we review the AMP algorithm and its state evolution characterization for the GLM without change points. As in
Section 3, letB ∈ Rp×L be a signal matrix and letX ∈ Rn×p be a design matrix . The observation y ∈ Rn×L is produced
as

y = q(XB, ε) ∈ Rn×L, (104)

where ε ∈ Rn is a noise vector, and q : RL → RL is a known output function. The only difference between this model and
the one in (2) is the absence of the signal configuration vector Ψ. The AMP algorithm for the GLM in (104) was derived
by Rangan (2011) for the case of vector signals (L = 1); see also Section 4 of (Feng et al., 2022). Here we discuss the
algorithm for the general case (L ≥ 1), which can be found in (Tan & Venkataramanan, 2023). For ease of exposition, we
will make the following standard assumption (see (S0) on p.5): as n, p→ ∞, the empirical distributions of {Bj}j∈[p] and
{εi}i∈[n] converge weakly to laws PB̄ and Pε̄, respectively, with bounded second moments. We also recall that n/p→ δ as
n, p→ ∞.

The AMP algorithm for the model (104) is the same as the one in (3), but due to the assumption above, we can take f t, gt

to be separable, i.e., f t : RL → RL and gt : RL × RL → RL act row-wise on their matrix inputs. Then, the matrices F t

and Ct in (3) can be simplified to Ct = 1
n

∑n
i=1 dgt(Θt

i, yi) and F t = 1
n

∑p
j=1 df t(Bt

j), where dgt and df t denote the
L× L Jacobians with respect to the first argument.

State evolution The memory terms −R̂t−1(F t)⊤ and −B̂t(Ct)⊤ in (3) debias the iterates Θt andBt+1 and enable a
succinct distributional characterization, guaranteeing that their empirical distributions converge to well-defined limits as
n, p→ ∞. Specifically, Theorem 1 in (Tan & Venkataramanan, 2023) shows that for each t ≥ 1, the empirical distribution
of the rows of Bt converges to the law of a random vector Ṽ t

B := B̄ν̃tB + G̃t
B ∈ R1×L, where G̃t+1

B ∼ N(0, κ̃t,tB )
is independent of B̄ ∼ PB̄ . Similarly, recalling that Θ = XB ∈ Rn×L, the empirical distribution of the rows of
(Θ, Θt) converges to the law of the random vectors (Z̃, Z̃ν̃tΘ + G̃t

Θ), where G̃t+1
Θ ∼ N(0, κ̃t,tΘ ) is independent of

Z̃ ∼ N
(
0, δ(E[B̄B̄T])−1

)
. The deterministic L×L matrices ν̃tB, κ̃

t,t
B , ν̃

t,t
Θ , and κ̃t,tΘ can be recursively computed for t ≥ 1

via a state evolution recursion that depends on f t, gt and the limiting laws PB̄ and Pε̄.

The state evolution characterization allows us to compute asymptotic performance measures such as the MSE of the AMP
algorithm. Indeed, for each t ≥ 1, we almost surely have limp→∞

1
p∥f

t(Bt) −B∥2F = E[∥f t(Ṽ t
B) − B̄∥22], where the

expectation on the right can be computed using the joint law of the L-dimensional random vectors B̄ and Ṽ t
B = B̄ν̃tB+G̃t

B .

In the model (3) with change points, we have an additional signal configuration vector Ψ, because of which we cannot
take the AMP denoising function gt to be separable, even under Assumption (S0). This leads to a more complicated state
evolution characterization, as described in Section 3.
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