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Abstract

We study the data selection problem, whose aim
is to select a small representative subset of data
that can be used to efficiently train a machine
learning model. We present a new data selec-
tion approach based on k-means clustering and
sensitivity sampling. Assuming access to an em-
bedding representation of the data with respect to
which the model loss is Hölder continuous, our
approach provably allows selecting a set of “typi-
cal” k + 1/ε2 elements whose average loss corre-
sponds to the average loss of the whole dataset, up
to a multiplicative (1± ε) factor and an additive
ελΦk, where Φk represents the k-means cost for
the input embeddings and λ is the Hölder constant.
We furthermore demonstrate the performance and
scalability of our approach on fine-tuning foun-
dation models and show that it outperforms state-
of-the-art methods. We also show how it can
be applied on linear regression, leading to a new
sampling strategy that surprisingly matches the
performance of leverage score sampling empiri-
cally, while being conceptually simpler and more
scalable.

1. Introduction
The growth of both datasets and models to a massive scale
has led to a new generation of machine learning models
with astonishing performance. Yet, the size of these models
and datasets makes their training and fine-tuning extremely
difficult, costly, time-consuming, and so nearly impossible
for most academic institutions or small-scale companies to
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perform. On the other hand, a complete dataset is often not
needed to reach nearly optimal performance (i.e., up to a
small increase in error percentage). A central question then
becomes how to identify the most important data items for
the training or fine-tuning process.

While uniform sampling often shows surprisingly good per-
formance, it is still suboptimal, especially when dealing with
real datasets that are complex and imbalanced. To better cap-
ture the usefulness of the underlying data to train the model,
data selection and active learning methods deduce which
data items are the most relevant for training or fine-tuning,
based on their uniqueness, quality, and the model’s knowl-
edge. There exist several heuristics or greedy approaches
for active learning and data selection (see e.g. (Dasgupta,
2004) or references in (Ren et al., 2021)). State-of-the-art
data selection strategies are uncertainty-based, e.g., margin
or entropy scores, and aim at selecting items for which the
uncertainty of the model is high (e.g., (Balcan et al., 2007)).
However, such purely model-based methods have the ad-
ditional overhead of requiring evaluating the model on the
whole dataset.

In a celebrated result, Sener and Savarese (Sener & Savarese,
2018) showed that state-of-the-art active learning strategies
are difficult to use in modern training frameworks for the
following reasons:

1. The training proceeds in batches, which requires the
active learning strategy to pick not only one training
element at a time but a batch of training elements. How-
ever, to make the most out of the batch, it is needed to
ensure some diversity in the set of elements sampled,
which often unfortunately anti-correlates with, for ex-
ample, the margin objective which may lead to picking
near-duplicate elements (see the discussion in (Sener
& Savarese, 2018) for more details).

2. The score (i.e., value) of the training elements is ob-
tained through the model. This requires running the
model on the data items to determine which ones to
pick next. Unfortunately, modern models are often
very large and the inference time is particularly costly.
Moreover, margin scores are not well-suited for foun-
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dation models.

The solution proposed by (Sener & Savarese, 2018) consists
of using the notion of coresets to select the data. A coreset is
a subset of the data defined such that optimizing the model
on the coreset yields a good model for the entire dataset (i.e.,
good generalization bounds for the whole dataset). In more
formal terms, the average model’s gradient (or model loss)
of the coreset elements is the same as the model’s gradient
of the whole dataset and thus, learning on the coreset ele-
ments has the same effect as learning on the whole dataset.
Unfortunately, to implement this approach one would need
to obtain the gradient or loss of all the data items, which im-
plies running the model on all the data items. To circumvent
this problem, Sener and Savarese show that, given some
embedding representation of the dataset and some set of as-
sumptions relating the embeddings to the model’s loss, some
coreset can be computed using a heuristic to the k-center ob-
jective. Their embedding assumption is a fairly natural one
since the embeddings can be obtained from a pre-trained
model or from a generic embedding model (e.g., BERT (De-
vlin et al., 2018), word2vec (Mikolov et al., 2013)). This
approach has, however, the following suboptimal behavior:

(1) The first practical issue is that the k-center objective
is particularly sensitive to outliers, and in particular the
greedy 2-approximation algorithm in the work of (Sener &
Savarese, 2018). Indeed the algorithm iteratively picks the
training items that are the furthest away (in the embedding
space) from the already selected training items. This tends
to select outliers, increasing the diversity at the expense of
the relevance of the elements. We ask: Can we find a more
robust way of selecting a set of items which is both diverse
and that precisely covers the most important traits of the
dataset?

(2) A second theoretical drawback is that the bounds proven
are quite weak and require strong assumptions on the rela-
tionship between the embeddings of the training elements
and the model loss, in particular on the spread of the data
elements (see Section 2.1 for more details). We ask: Can we
provide a theoretical solution that would require a minimal
set of assumptions on our dataset and model?

(3) Finally, and maybe most importantly, their approach is
limited to classification tasks. We ask: Can we provide a
more generic data-selection algorithm, working for a more
general loss function and in particular for the new generation
of foundation models?

1.1. Our Approach and Contribution

Consider the problem of fine-tuning a Large Language
Model (LLM) on a specialized task, such as translation.
Even though we have abundant data points for the transla-
tion task, it is often time-consuming and costly to fine-tune

on the whole translation dataset, and we would instead pre-
fer to sample a small representative subset of data that can
still be used to build a high quality model. While there are
methods that compute importance scores for each data point
(e.g., margin scores) that can then be used to select data,
these scores are expensive to compute, since they require
evaluating all the data using the LLM.

Our key insight is to leverage such expensive, accurate
scores on a sublinear number of data points, coupled with
less accurate but fast to compute embeddings, which can
be generated by a much simpler and efficient model. Sur-
prisingly, we find that even simple embeddings, such as
those generated by a pre-trained BERT model (Devlin et al.,
2018; Mikolov et al., 2013), can be predictive of the loss
affinity between different data points, for much larger and
more complex models (see also Figure 1). Our data selec-
tion algorithm utilizes clustering and sketching techniques,
offering strong theoretical guarantees and significant prac-
tical improvements over existing methods on benchmark
datasets. The power of our theoretical contribution is that
while the analysis is quite simple, it significantly improves
over previous work, in particular over Sener & Savarese
(2018).

Ideally, we want to sample data proportional to the model
loss. However, like margin or entropy scores, this is expen-
sive due to requiring model evaluation on the entire dataset.
Instead, we leverage embeddings to identify a diverse and
relevant subset. Slightly more formally, the data-selection
problem that we consider is, similar to Sener and Savarese,
the following. We assume that we are given a dataset D,
together with a loss function ℓ. The goal is to sample S ⊆ D
of limited size, such that the total loss evaluated on the small
sample S is the same as that evaluated on the full dataset D.
Or in other words that S is an unbiased estimator of the loss
of D. For scalability purposes, the algorithm computing
S should make a sublinear number of queries to the loss
function. We formalize this definition in Definition 3.

Our approach begins with k-means clustering on the entire
dataset. Then, elements are sampled using sensitivity sam-
pling on proxy losses. Specifically, the algorithm first com-
putes a k-means clustering on the whole dataset and then
samples each element with probability proportional to its dis-
tance to the closest mean plus the mean’s loss (see (Feldman
& Langberg, 2011) for the introduction of that probability
distribution for clustering coresets, see also (Bachem et al.,
2018; Bansal et al., 2024)), or of coresets in the sublinear
time regime (Cohen-Addad et al., 2021c).

Here, we use a k-means clustering (or, more generally,
(k, z)-clustering objective, which is k-median for z = 1
and k-means for z = 2) because it provides a more robust
clustering measure than k-center as it is much less sensitive
to outliers.
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In the experiments section 5.2, we show that this yields a
better sample in practice than what was previously known,
in particular for fine-tuning a foundation model (specifically
for fine-tuning an LLM to a translation task). We further
show that our method is quite general as it works for both
neural networks and for regression tasks.

Next, we provide theoretical guarantees on this sampling
strategy. First, assuming there is a clustering such that, for
each cluster, the model loss is Hölder continuous with re-
spect to the embeddings – a well-motivated assumption as
we show in the experiments section and less restrictive than
the Lipschitz assumption of Sener & Savarese (2018) – we
can prove that the samples provide a strong proxy for the
loss of all the data elements. More specifically, we show
that by using sensitivity sampling we obtain a coreset whose
average model loss is within a (1± ε) factor of the average
model loss on the whole dataset, plus an additive term corre-
sponding to the loss of the (k, z)-clustering objective. This
implies that if the embeddings of the data are clusterable
(i.e., they have small (k, z)-clustering loss), we obtain an ac-
tual coreset for the model loss with only few inferences, i.e.,
queries to the loss function ℓ. Moreover, for classification
tasks, expecting that the model embeddings will be clus-
terable is not an unrealistic assumption: we do expect that
points from the same class have closer model-embedding
distance than points in different classes. This intuition is
validated in Table 1.

More formally, we work with the notion of Hölder con-
tinuity: we say that the loss function ℓ is (z, λ)-Hölder
continuous if for any x, y with embeddings E(x) and E(y),
|ℓ(x)− ℓ(y)| ≤ λ∥E(x)−E(y)∥z . We make the following
assumption on the loss function:

Assumption 1. For Λ = (Λ1, . . . ,Λk) ∈ Rk, an embed-
ding E and a k-clustering of the input C, we say the loss
function is (z,Λ)-well-behaved with respect to E and C
when, for any cluster Ci and point e ∈ Ci, |ℓ(e)− ℓ(ci)| ≤
Λi∥E(e)− E(ci)∥z.

Note that this definition generalizes Lipschitzness: if the
loss function is λ-Lipschitz, then the above holds for Λi = λ
and z = 1, regardless of the clustering C. For simplicity, we
will often write e for the embedding E(e).

In Table 1, we validate Assumption 1 on standard bench-
mark datasets. We cluster the data, and then compute the per-
centiles of the ratio |ℓ(e)− ℓ(ci)| / ∥e− ci∥z (for MNIST ℓ
is the loss function, while for GAS it is the target variable).
We observe that these values are indeed small, implying that
the MNIST and GAS datasets do possess the (z, λ)-Hölder
condition for a small constant λ.

We also sanity check our assumption on LLMs. Specifi-
cally, we examine how predictive a BERT-based embedding
clustering is of the losses on a much larger T5 transformer

Table 1. Value of the Hölder continuous constant for z = 2 for
the different percentiles of the MNIST (classification) and GAS
(regression) datasets.

Smallest %ile λ for MNIST λ for GAS
20 0.00111 0.02286
40 0.00320 0.04488
60 0.00663 0.07158
80 0.01416 0.12589
100 0.05935 0.86976

model. Figure 1 shows that on average a data point’s loss on
the T5 model is much closer to the loss of similarly clustered
points than that of random points.1
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Figure 1. Distribution of loss to random point vs. center of the
corresponding cluster for the WMT T2T EnDe translation dataset
(Bojar et al., 2014) using BERT embeddings (Devlin et al., 2018).

We now proceed to state our main theorem, which gives
strong data selection guarantees under Assumption 1.

Theorem 2. Let ε, z > 0, Λ ∈ Rk. Let D be a dataset and ℓ
a loss function that is (z,Λ)-well-behaved with respect to an
embedding E and a clustering (C1, . . . , Ck) into k clusters.
Then, there exists an algorithm that makes k queries to ℓ and
outputs a sample S of size O(ε−2) and a weight function w
such that

|
∑
e∈D

ℓ(e)−
∑
e∈S

w(e)ℓ(e)| ≤ ε

(∑
e∈D

ℓ(e) + 2ΦΛ
C,z(D)

)
,

with constant probability, where ΦΛ
C,z(D) =

1In numbers, the average absolute loss difference between
two random points is 242.86; whereas the average absolute loss
difference between a point and its center is 175.20. We ran a
similar analysis as well using only random points - we selected
2 random points, and computed the average loss if the distance
between them was ”small” (< 5 in the embedding space) vs. the
average loss when the distance was ”large” (> 5 in the embedding
space). The ”large” average was 253.78, whereas the ”small”
average 215.66. We note we ran the analysis 100 times to ensure
statistical significance.
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i=1 ΛiΦ1,z(Ci), namely the (k, z)-clustering cost

where cluster i is weighted by Λi.

To interpret this result better note that when the loss func-
tion is (λ, z)-Hölder continuous, the upper-bound becomes
ε(
∑

e∈D ℓ(e) + 2λΦk,1(D)), where Φk,z(D) is the (k, z)-
clustering cost of the dataset (which is k-means when z = 2,
ork-median when z = 1 and the loss is λ-Lipshitz). We
believe that our condition is quite a weak requirement; fur-
thermore, we show that such a condition is needed: There
exist worst-case loss functions that are not Hölder continu-
ous and for which it is necessary to query the whole dataset
in order to get the above theorem statement (see Theorem 5).
Thus, this answers the second question raised above.

The assumption on the clustering can be read as follows:
we expect the embedding to have a clustered structure that
an algorithm (e.g., k-means++) can discover. We expect
elements in each cluster to be similar, and therefore that
the loss function is smooth within each cluster – this is
formalized by the Hölder continuity. Note that the clustering
may not be optimal, we only need to be able to compute it
efficiently.

The additive error in our results depends on
the (k, z)-clustering cost, which is defined as
min|C|=k

∑
e∈D minc∈C ∥e − c∥z . Therefore, de-

pending on the choice of z, our upper bound can be made
more, or less, robust to outliers: the smaller the z the
more resilient to outliers it becomes; for sufficiently large
z the objective becomes the k-center objective of (Sener
& Savarese, 2018), which would translate here (with the
assumption that the loss is λ-Lipschitz) into an upper bound
n · λ ·min|C|=k maxe∈D minc∈C ∥e− c∥. This addresses
question 1 raised above.

We further demonstrate that the resulting sampling strategy
outperforms classic data selection approaches, namely, train-
ing the model using the set S obtained via Theorem 2 gives
a several percentage increase in accuracy (more than 4% for
Fashion MNIST) than using other methods. Similarly, for
linear regression, we show empirically that our sampling
strategy is competitive and sometimes outperforms more so-
phisticated state-of-the-art methods, such as leverage score
sampling, adding a fundamentally new sampling strategy
to the growing body of work on active regression (Chen
& Price, 2019; Chen & Derezinski, 2021; Parulekar et al.,
2021; Musco et al., 2022; Woodruff & Yasuda, 2023).

We defer a detailed survey of related work to Appendix A.1

2. Problem Formulation
Given a dataset D and a machine learning model, the high-
level goal is to find a subset S of D such that training the
model on S yields approximately the same model as training

the model on D, while the time taken to compute S and train
the model on S should be much smaller than the time taken
to train the model on D.

We focus here on the general data selection problem, and
dedicate Section 4 to the special case of linear regression.

2.1. Our Model

We assume that we are given a dataset D of size n, together
with a loss function ℓ such that ℓ(e) is the loss of the model
on instance e. The goal is to sample S ⊆ D of limited size,
and associate a weight function w : S 7→ R+ such that

∆(S) := |
∑
e∈D

ℓ(e)−
∑
e∈S

w(e)ℓ(e)| ≤ δ,

for the smallest possible δ. Note that ℓ(e) can be queried
simply by running the model on e and computing the loss
for e, which is expensive. This is why we want to compute
S without having to compute ℓ(e) for all e ∈ D. We now
provide a complete formulation of the problem.

Definition 3 (Data Selection, (Sener & Savarese, 2018)).
The data selection problem is defined as follows:

• Input: A dataset D, oracle access to a function ℓ :
D 7→ R+, and a target size s.

• Output: A sample S ⊆ D of size at most s together
with a weight function w : S 7→ R+ such that

– The number of queries to ℓ (i.e.: inferences) is at
most s.

– S minimizes

∆(S) := |
∑
e∈D

ℓ(e)−
∑
e∈S

w(e)ℓ(e)|. (1)

Note that our definition introduces two differences from the
the original definition of (Sener & Savarese, 2018). (A) First,
they use uniform weights, namely ∀s ∈ S,w(s) = |D|

|S| (in
which case, minimizing Equation (1) means that the average
ℓ(e) in the sample should be close to the average ℓ(e) for the
whole data). We slightly generalize the definition to allow
for different sampling strategies, while keeping an unbiased
estimator.

(B) Second, (Sener & Savarese, 2018) consider the
loss after re-training the model with S, namely∣∣ 1
n

∑
e∈D ℓ(e,A(S))−

∑
e∈S w(e)ℓ(e,A(S))

∣∣. In those
notations, A(S) represents the model parameters after train-
ing on S, and the loss function ℓ has two parameters to
emphasize its dependency in the model’s parameters. In
words, the loss of the model trained on S is roughly the
same evaluated on S as on D. In order to bound this quan-
tity, Sener and Savarese make strong assumptions on the
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distribution of the dataset, namely the labels are drawn
randomly from a structured distribution, and it is further as-
sumed that the training loss is 0 on their sample. Instead, we
stay more general and focus on the loss in the current model.
Our underlying assumption is that, if S approximates the
loss well, then it contains “typical” items of the dataset
(with respect to the current model), and therefore training
the model based on S should be similar as training it on D.
This formulation allows us to show strong theoretical results
for the data selection problem, without any assumptions on
D. Note that our objective is more challenging than the
one from Sener and Savarese: the bound we prove on ∆(S)
implies the result of (Sener & Savarese, 2018) (under their
assumption about the model loss).

2.2. Assumptions on ℓ

Limits to the general case The above formulation re-
quires that the number of queries to ℓ is sublinear in |D|.
Unfortunately, as long as s = o(|D|) it is impossible to
bound ∆(S) without further assumptions on ℓ or D, which
can be seen by the following worst-case instance: The ad-
versary chooses uniformly at random (u.a.r.) an element
e∗ ∈ D and defines ℓ(e∗) = 1 and ℓ(e) = 0 for all e ̸= e∗.
Then computing with constant success probability a sample
S of size s = o(D) such that ∆(S) = o(

∑
e∈D ℓ(e)) with

o(|D|) queries to ℓ is impossible. Of course, this worst-case
instance is unrealistic and we can hope to better capture the
structure of real-world dataset.

Assumption on the embeddings In practice we can as-
sume that each element e in D could be associated with
a vector E(e) in Rd for some d, possibly coming from a
model that is “well-behaved” with respect to the loss func-
tion of the model. More concretely, the embeddings of the
data elements can either be obtained from a generic embed-
ding of the input dataset D, e.g., the BERT or word2vec
embeddings for words (Devlin et al., 2018; Mikolov et al.,
2013), or an embedding obtained through the last layers of
the model being trained. The last assumption is particularly
realistic in the warm start or fine-tuning regime where the
model has already been partially trained.

Hölder Continuity assumption This is the assumption
presented above as Assumption 1. Lipschitzness is a com-
mon assumption, and is theoretically grounded for some
embeddings (see e.g., Lemma 1 in (Sener & Savarese, 2018)
for CNN). Our assumption relaxes Lipschitzness, and our
theoretical finding are therefore more general.

In the following, to ease notation for each element e ∈ D,
we will also use e to denote its embedding in Rd.

The problem we consider throughout the rest of the paper is
the Data Selection under well-behaved loss problem, which

is the problem of Definition 3 when the loss function ℓ is
well behaved (see the formal definition in Assumption 1).
This definition can be extended to the active learning setting
where the objective is to iteratively choose a set of elements
to sample based on the model updates.

Definition 4 (r-Adaptive Active learning under well-be-
haved norm). The r-adaptive active learning problem under
(z, λ)-Hölder Continuity is defined as follows:

• Input: A set of elements D ⊂ Rd, oracle access to a
function ℓ : D 7→ R+ that is well-behaved, a target
size s and an adaptivity parameter r.

• Adaptivity: There are r rounds. At round i, the algo-
rithm can query ℓ on a set Qi of size at most s. Qi can
only be defined based on the results of ℓ on ∪j<iQj

and D.

• Output: For all i ∈ [r], a sample Si ⊆ D of size at
most s together with a weight function wi : S 7→ R+

such that Si minimizes

∆(S) := |
∑
e∈D

ℓ(e)−
∑
e∈Si

wi(e)ℓ(e)|.

2.3. Clustering Preliminaries

We defer a detailed description on clustering preliminaries
to Appendix A.2. Most importantly, the (k, z)-clustering
cost of C on D is Φz(D, C) :=

∑
x∈D minc∈C ∥x − c∥z

and Φk,z(D) := minC⊂Rd, |C|≤k Φz(D, C). For z = 1,
this objective corresponds to k-median, while for z = 2 it
corresponds to k-means. We call a clustering C any partition
of D into k parts (called clusters) C1, . . . , Ck. Given a
Λ ∈ Rk, we define ΦΛ

C,z(D) =
∑k

i=1 ΛiΦ1,z(Ci).

3. Algorithmic Results
We now study sampling procedures for the active learning
problem, defined in the previous section. Our goal is to build
a sampling strategy such that

∑
s∈S w(s)ℓ(s) is an unbiased

estimator of
∑

e∈D ℓ(e), and show that the estimator is
tightly concentrated around its mean. We will first study the
case where it is not possible to query the loss function at
all, and show a lower bound on the error achievable. We
then present some adaptive algorithms, which query the loss
function sparingly.

3.1. Algorithm and Lower Bound for the Non-Adaptive
Case

We first focus on the context where the algorithm cannot
query function ℓ at all. In this case, if one only assumes the
loss function to be Hölder continuous the error must scale
linearly with both the size of the dataset and the diameter of
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its embedding, and this can be achieved by a random sample
of the data points, as we show in the following theorem. The
proof is deferred to Appendix B.1

Theorem 5. Let ε, λ > 0. There is a constant c, a dataset
D and a loss function ℓ that is (1, z)-Hölder such that, when
S is a uniform sample of size 1/ε2 with weight function
w(e) = n/s, it holds with constant probability that

∆(S) = |
∑
e∈D

ℓ(e)−
∑
e∈S

w(e)ℓ(e)| ≥ cεn sup
e∈D

ℓ(e).

Furthermore, this lower bound is tight: for all datasets
D and loss functions ℓ, a uniform sample S of size s =
O(1/ε2) with weights w(e) = n/s satisfies with constant
probability ∆(S) ≤ εn supe∈D ℓ(e).

3.2. Adaptive Algorithms

The lower bound on ∆(S) in Theorem 5 shows that one
must sample more carefully if good guarantees are desired.
As explained in the introduction, we present a sampling
strategy that queries at most O(k) many points, and reduce
the additive error to ελΦk(D). This is always better than
εn sup

e∈D
|ℓ(e)|, and, in case the embedding of D has a clus-

tered structured, can be drastically smaller.

3.2.1. 1-ROUND ALGORITHM

In this section we state the 1-round algorithm and show
Theorem 2 (with the full proof deferred to Appendix B.2).
We start by the pseudo-code of the algorithm.

Algorithm 1 Data-Selection(D, k, ε,Λ, C)
1: Input: a dataset D partitioned into clusters C =

(C1, . . . , Ck) with centers c1, . . . , ck and a k-tuple of
parameters Λ1, . . . ,Λk.

2: For e ∈ Ci, define ℓ̂(e) := ℓ(ci) and v(e) := ∥e− ci∥z .
3: Let s := ⌈ε−2(2 + 2ε/3)⌉. For e ∈ Ci define pe :=

ℓ̂(e)+Λiv(e)∑
i ΛjΦ(Ci,{ci})+

∑
x∈D ℓ̂(x)

and w(e) = s−1p−1
e .

4: Compute a sample S of s points, picked independently
following the distribution pe.

5: Output: the set S with weights w.

The proof of Theorem 2 works as follows: we let Xi be
the random variable corresponding to the contribution of
the i-th sample to the cost.

∑
Xi is therefore an unbiased

estimator for
∑

e∈D ℓ(e): we show that each Xi has a small
variance, and apply Bernstein’s inequality to conclude. We
formalize this argument in Appendix B.2.

Remark 6. Instead of requiring that, in each cluster, the
worst-case |ℓ(x)−ℓ(ci)|

∥x−ci∥z is bounded, we can allow for a few

outliers and require only that |ℓ(x)−ℓ(ci)|
∥x−ci∥z ≤ Λi for all x but

a 1/k-fraction of the probability mass defined in line 3 of
Algorithm 1. This allows to have some outliers,

3.2.2. r-ROUND ALGORITHM

We now turn to obtaining better guarantees than the above
bounds by allowing for more rounds. Here, we assume that
we are given a set of centers c1, c2, . . . such that for all k,
the set (c1, . . . , ck) is a good solution to (k, z)-clustering
(namely, a solution whose cost is at most O(1) times the
optimal cost). Note that this is precisely the guarantee of
the k-means++ algorithm (Arthur & Vassilvitskii, 2007)
(and, more generally, Dz sampling). We let Ck be the set of
clusters corresponding to the centers c1, . . . , ck.

Theorem 7. Let ε > 0,Λ ∈ Rk, and integer r > 0. Let
D be a dataset with a set of centers c1, . . . , ckr, and ℓ be
be a loss function that is well-behaved with respect to Λ
and Ci, for all i ∈ {k, 2k, . . . , kr}. Then there exists an
algorithm that for each round i ∈ [r], queries k elements
per round and outputs a sample Si of size at most O(1/ε2)
and a weight function wi such that:

∆(Si) = |
∑
e∈D

ℓ(e)−
∑
s∈Si

wi(s)ℓ(s)|

≤ ε

(∑
e∈D

ℓ(e) + ΦΛ
Cik,z

(D)

)

Note that the above algorithm allows to trade-off the round
complexity and sample size and reaches optimality in the
limit: when r · k = |D|, we obtain an exact algorithm.
The algorithm is very similar to Algorithm 1: we defer the
presentation to Appendix B.3.

3.2.3. COMPUTING THE CLUSTERING C AND THE
PARAMETER Λ

Our algorithms require the knowledge of a clustering C and
the vector of parameters Λ. We explain here how to compute
those values.

Finding a Clustering Our theorems require that the loss
is well-behaved w.r.t an estimate of Λ and a clustering
(C1, . . . , Ck). To compute such a clustering, we can use
any algorithm for (k, z)-clustering, e.g., Dz-sampling (the
generalization of k-means++ (Arthur & Vassilvitskii, 2007)),
or some faster algorithms, e.g. (Cohen-Addad et al., 2020;
2021a).

Estimating Λ. Once we are given a clustering, we can
query the loss function in order to estimate Λ. Formally, we
have the following:

Lemma 8. Assume that there is a probability p such that,

6
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for each cluster Ci,

Pr
x∈Ci

[
|ℓ(x)− ℓ(ci)|
∥x− ci∥z

∈ [Λi/ log(n),Λi]

]
≥ p,

where the probability is taken over an x chosen uniformly
at random from Ci. Then, one can compute an upper bound
on each Λi with probability 99/100 by querying the loss of
log(100k)/ log(1− p) points per cluster.

The proof is deferred to Appendix B.4. We note that we
could have made different assumptions in the previous
lemma: the log(n) is picked somewhat arbitrarily, to fit
with an exponentially decreasing tail on the distribution of
the ratios |ℓ(x)−ℓ(ci)|

∥x−ci∥z . We believe that this assumption is
quite natural, and indeed our experiments confirm it across
different applications (see Table 1).

4. Data Selection for Regression
In this section, we specialize our method, i.e., sampling
according to (k, z)-clustering cost, to the setting of linear
regression. Ideally, given a matrix A, our goal is to com-
pute a sketching and rescaling diagonal matrix S with as
few non-zero entries as possible such that computing the
optimal regression on S is equivalent to computing it on
A. For this, we are seeking a “coreset guarantee”, namely
we want ∥SAx− b∥ ≈ ∥Ax− b∥, for all x. In the follow-
ing ai denotes the i-th row of A. Therefore, we define the
data selection problem for regression as the data selection
problem of Definition 3, with loss function for the i-th row
ℓ(i) = (⟨ai, x⟩ − bi)

2. In that case, we note that the total
loss

∑
i∈[n] ℓ(i) is ∥Ax− b∥22.

We show in Section 5.1 that our method is faster and pro-
vides results as accurate of the state-of-the-art data selection
mechanisms. We provide here some theoretical explanations
for this success.

As is the case for the previous active-learning problem, we
need to make several assumptions, both on A, and b and to
restrict the set of possible x. Our first set of assumptions,
similar to Assumption 1, is the following:

Assumption 9. For all i, ∥ai∥2 = O(1) and bi = O(1).
Given Λ ∈ Rk and a k-clustering C = (C1, . . . , Ck) of
the indices, we say that the input is well-behaved w.r.t Λ
and C when, for every index j in cluster Ci |bi − bj | ≤
Λi∥ai − aj∥z2 (where the concatenation of the vectors ai
and [bi] is the center of cluster Ci).

The above assumption is similar to the Hölder-continuity
assumption we made for Theorem 2: it formalizes that in
the sample, the labels (i.e., bis) must be close to those of
their centers when their embeddings (i.e., the ais) are close.
As before, this is necessary to get any result querying a sub-
linear number of labels bi. This assumption is also related

to that of (Sener & Savarese, 2018) who assume the labels
of the data are drawn randomly, following distributions that
are Lipschitz.

The basic idea of our algorithm is to interpret each row of
A as a point in Rd and cluster these points using k-median.
Then we compute the optimal regression solution x0 for the
dataset consisting of all centers, each weighted by the size of
its cluster, and use x0 to define a probability distribution over
all points. Sampling s points according to this distribution
gives a set S together with a suitable weight function.

Algorithm 2 Data-Selection-Regression(A, k, ε,Λ, C)
1: Input: a matrix A representing the dataset, a cluster-

ing C = (C1, . . . , Ck) of the dataset, and a k-tuple of
parameters Λ1, . . . ,Λk.

2: For all i ∈ [n], let j be such that aj is the center of
ai’s cluster: define âi = aj , b̂i = bj and the function
v(ai, x) = (⟨âi, x⟩ − b̂i)

2.
3: Compute the optimal regression x0 for the dataset

{â1, . . . , ân}, i.e., the dataset where each center of A
is weighted by the size of its cluster.

4: For i in clustering Cj , define pi :=
Λj∥ai−âi∥+v(ai,x0)∑

j′∈[k] Λj′Φ(Cj′ )+
∑

i′∈[n] +v(ai′ ,x0)
, and w(i) =

s−1p−1
i .

5: Compute a sample S of s points, picked independently
following the distribution p.

6: Output: the set S with weights w.

Our main theorem for regression is stated next. The proof is
deferred to Appendix B.5.
Theorem 10. Let Λ, A and b respect Assumption 9 for a
clustering C, with Λi being constants, and let âj and x0 be
as computed by Algorithm 2. Let δ ∈ (0, 1/2).

Let X be the set of vectors x such that ∥x∥2 = O(1)
and ∀j ∈ Ci, |⟨âj , x − x0⟩| ≤ Λi∥aj − âi∥2. For
s = O(d/ε2 log(1/δ)), it holds with probability 1− δ that,
for all x ∈ X ,∣∣∣∣∣∑

s∈S

w(s)(⟨as, x⟩ − bs)
2 − ∥Ax− b∥22

∣∣∣∣∣ ≤
ε(∥Ax− b∥22 +ΦΛ

C,1(D))

5. Experiments
In Section 5.1 we present experiments on a linear regression
task, and in Section 5.2 we present results on neural net-
works: first for an LLM translation task, and then for image
classification.

5.1. Experiments on Linear Regression

Following our theoretical analysis in Section 4, we vali-
date our coreset sampling algorithm on a linear regression
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Figure 2. Experimental results on the gas sensor regression dataset. Each data point is the average of 100 runs.

task. We present our results on the UCI gas sensor dataset
from the University of California, Irvine repository (Vergara,
2012; Vergara et al., 2012; Rodriguez-Lujan et al., 2014) in
Figure 2. The dataset consists of 13910 input points in 16 di-
mensions. We report the R2 score, R2 := 1−

∑n
i=1(bi−xi)

2∑n
i=1(bi−y)2 ,

where y := 1
n

∑n
i=1 bi. We run Algorithm 2 with some

implementation details that are deferred to Appendix C.4

We compare with uniform sampling and leverage score sam-
pling. Leverage score sampling is the standard sampling
algorithm for linear regression, and is known to have ex-
tremely good performance but high runtime cost, since it
requires solving a full-dimensional linear system. Surpris-
ingly, we find that our clustering-based algorithm performs
almost equally well as leverage score sampling, while being
drastically faster – the k-medoids solution can be computed
in linear time. We report the observed value for Λ across
the whole dataset in Table 1.

5.2. Experiments on Neural Networks

5.2.1. FINE-TUNING LARGE LANGUAGE MODELS

We use Algorithm 1 to select a sample on which to fine-tune
an LLM for a translation task. We use the WMT T2T EnDe
translation task dataset (Bojar et al., 2014) which consists
of 4, 592, 289 training examples, a test set of size 3003 and
a validation set of size 3000. We deduplicated any repeated
examples to clean the dataset. We fine-tune a T5-Small
model (Raffel et al., 2019) with 77M parameters (details
in C.2). To quantify the effect of the quality of the embed-
ding used, we experiment with two different embeddings for
the input, (1) BERT (Devlin et al., 2018) and (2) Sentence-
T5 (Ni et al., 2021). We run three different methods to
subsample approximately 1% of the data (45000 training
examples). We ran sensitivity sampling with k = 4500 and
subsample 45000 elements of the data and a Hölder constant
of 0.1 2. The diversity sampling methods resembles the one

2We also experimented with Hölder constants up to 500. See
C.2 for more details.

of (Sener & Savarese, 2018): it consists of running k-means
(instead of k-center), with k = 45000 and using the ele-
ments closest to centers for training. Random is a uniform
sample of the dataset of size 45000. Random-deduped is a
uniform sample as well, ensuring no duplicates. We show
that our methods drastically improve over uniform or diver-
sity and observe that the results are consistent across the two
types of embeddings used (see Figure 3). In particular, we
note: fine-tuning on the full dataset for 100, 000 steps yields
an evaluation accuracy of 0.7; as such, we improve from a
0.59 random baseline to 0.6; covering 9% of the headroom.

5.2.2. DATA SELECTION FOR IMAGE CLASSIFICATION

For our classification experiments, our setting is as follows:
given a target number of data points k that we need to sam-
ple, we first train an initial model M using a uniformly
random subset of k′ < k data points, and then sample the
remaining k − k′ data points using Algorithm 1 with the
loss defined by M. Finally, we train a model on all the k
data points and evaluate it on a validation set. For our exper-
iments, we chose k′ = 0.2k. We use three classic datasets
from UCI, MNIST (LeCun et al., 1998), FMNIST (Xiao
et al., 2017), and CIFAR-10 (Krizhevsky et al., 2009).

Our algorithms. We consider two instantiations of the
sensitivity sampling algorithm presented in Algorithm 1:
loss-based sampling and gradient-based sampling. For loss-
based sampling, we set ℓ(e) := L(y,modelθ(e)) to be the
loss of the model on example e with respect to the true
label y, where θ are the model parameters. For gradient-
based sampling, we set ℓ(e) := ∥∇θL(y,modelθ(e))∥22 to
be equal to the squared ℓ2 norm of the gradient update.

We present our results in Table 2 and Figure 6 (in Appendix).
We notice that the loss- and gradient-based sampling ver-
sions of Algorithm 1 perform best when the number of sam-
ples is relatively small. In addition, based on the runtime
comparison in Figure 6, the loss-based algorithm performs
best in terms of runtime.
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Figure 3. Experimental results on the WMT T2T EnDe translation task dataset. We report the accuracy (left) and BLEU score (right) of
the different methods used: Our method (Sensitivity) compared to Diversity (similar to (Sener & Savarese, 2018)), Uniform cleaned
(Random-Deduped), and Uniform (Random). Each method is required to produce a sample of roughly 1% of the whole dataset.

Algorithm MNIST Fashion MNIST CIFAR10

uniform 0.9130 0.8091 0.4587
coreset [SS18] 0.9134 0.7692 0.4491

Loss Alg 1 0.9203 0.8140 0.4590
Grad Alg 1 0.9207 0.8107 0.4598

Table 2. Experimental results for selecting k = 2000 data points
and different datasets. For each algorithm, we show the accuracy
on the validation dataset, averaged over 100 runs.
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Figure 4. Plots of experimental results for different datasets. For
each algorithm, we plot the accuracy on the validation dataset
for different values of k (number of samples). We also provide a
runtime comparison on CIFAR10. We independently run each data
point 100 times, and present the mean with bands of one standard
deviation.
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A. Preliminaries
A.1. Further Related Work

We present related work in data selection and active learning. For an extensive and recent survey, we refer to (Ren et al.,
2021), and detail here some of the most relevant points for comparison.

Our work departs from previous work in the following ways: we work in the regime where we have a budget on both the
number of elements selected (i.e., labeled) and the number of inferences of the model. Moreover, we present a rigorous
analysis of our sampling mechanism that works for a variety of machine learning models, as long as we are provided with
embeddings that are Lipshitz with respect to the loss of the model.

Given an unlabeled set of points, the active learning problem asks to identify the most relevant points to label ((Settles, 2009;
Cohn et al., 1996)). In the era of big data, labeling a big dataset is often too expensive. We are thus given a budget of, say, k
elements that we can label. The question becomes how to pick these k elements so as to maximize the performance of the
final model (that will be trained on these elements).

From a theoretical standpoint, (Dasgupta, 2004) demonstrated that greedy active learning heuristics perform poorly if
agnostic to both data and learning algorithm. To circumvent these negative results, other works have made assumptions on
the data-dependent realizability of the hypothesis space like ((Gonen et al., 2013)) or on a data dependent measure of the
concept space called disagreement coefficient ((Hanneke, 2007)).

Related to ours, several successful works have brought together unsupervised techniques such as clustering and information
from the model (such as margin scores), see e.g.: (Citovsky et al., 2021). The work of (Sener & Savarese, 2018) brings
together clustering, and sketching techniques (coresets in this case).

Another line of works consists of Bayesian active learning methods which use a non-parametric model, such as a Gaussian
process, to obtain an estimate of the expected improvement on the model after each query ((Kapoor et al., 2007)), or
alternatively the expected error after a set of queries ((Roy & McCallum, 2001)). It seems that an important drawback is that
these approaches do not scale to large models (see the discussion in (Sener & Savarese, 2018)).

Uncertainty based methods form another important family of active learning algorithm. They aim at finding relevant
examples using heuristics like highest entropy ((Joshi et al., 2009)), or geometric distance to decision boundaries ((Tong &
Koller, 2001; Brinker, 2003)).

Batch-active learning based on uncertainty may lead to a useless batch, where all queries are very similar (when the highest
uncertainty is concentrated in a small region). To cope with this, several methods aim at trading-off diversity and uncertainty
to select the points. The way the elements are iteratively selected can vary depending on the application from mini-batches
to one-shot (e.g., (Hoi et al., 2006; Guo & Schuurmans, 2007; Chakraborty et al., 2014; Citovsky et al., 2021; Amin et al.,
2020)) Specifically in the context of mini-batch active learning, a common approach is to use unsupervised machine learning
techniques to extract information from the data. Such methods include k- Medoid ((Schubert & Rousseeuw, 2019)), or
MaxCover ((Hochbaum & Pathria, 1998)) to select a set of data points that maximally cover the dataset with respect to some
objective. (Elhamifar et al., 2013) and (Yang et al., 2015) design a discrete optimization problem for this purpose, that they
solve using convex optimization methods. Unfortunately, the running time of these methods is quadratic in the input data
size and so highly impractical for large data.

Covering or clustering approaches have also been tried in the past (Joshi et al., 2010; Wang & Ye, 2015). The former does
not provide any theoretical guarantee associated to its approach. The latter uses empirical risk minimization to minimize
the difference between the maximum mean discrepancy between i.i.d. samples from the dataset and the actively selected
samples (instead of the loss we work with).

Active learning has also been studied when tailored to some specific machine learning problems such as nearest neighbors,
logistic regression or linear regression with Gaussian noise ((Wei et al., 2015; Hoi et al., 2006; Guo & Schuurmans, 2007;
Yu et al., 2006)).

Recently, active learning was also extended to ℓp-regression for all p ≥ 1 without any assumptions on the data, resulting in
a number of optimal bounds (Chen & Price, 2019; Chen & Derezinski, 2021; Parulekar et al., 2021; Musco et al., 2022;
Woodruff & Yasuda, 2023). These works are based on using sampling probabilities defined from the design matrix (agnostic
to the label vector), and range from leverage scores (p = 2) to ℓp-sensitivities to ℓp-Lewis weights, the latter achieving
optimal bounds for all p ≥ 1. Our work adds a new set of scores to this growing literature for regression, namely, scores that
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are proportional to the cost of clustering individual points. We note that in practice, computing an approximate k-median
solution may be much faster than approximating the Lewis weights or leverage scores of a matrix since it does not involve
computing the inverse of any matrices.

If the model can be run on all input data, and so the confidence of the model is known for all the input data elements, then
several set-cover based methods that aim at best covering the hypothesis space have been designed ((Guillory & Bilmes,
2010; Golovin & Krause, 2011; Esfandiari et al., 2021). The key distinguishing factor of our approach compared to these
works is that we do not require the model to be run on all the input data. Furthermore, as we demonstrate, our sampling
technique applies more generally to problems other than regression.

Coresets Our ideas are inspired from the coreset literature. Coreset were introduced initially for k-median and k-means
clustering: the goal is to compute a (weighted) set S of points such that, for any set of k centers, evaluating its cost on S
is almost the same as evaluating it on the full dataset (Har-Peled & Mazumdar, 2004). Coresets with optimal size (which
is O(kε−2 min(ε−2,

√
k)) exist (Cohen-Addad et al., 2021b; 2022a;b; Huang et al., 2023), and one of the most standard

tools to build a coreset is sensitivity sampling, namely sampling according to the cost in a constant-factor (k, z)-clustering
solution.

Ideas from the literature on coreset for clustering have already spread to other domains: (Tukan et al., 2023) presents coresets
for radial basis function neural networks of small sizes, and (Tukan et al., 2020b) for near-convex functions. (Mussay et al.,
2020; Tukan et al., 2022) showed how to use coresets for prunning and compressiong neural networks, and (Maalouf et al.,
2022) used coresets for fast least-square linear regression. For machine-learning tasks, (Tukan et al., 2020a) present coresets
for Support Vector Machines.

A.2. Clustering Preliminaries

In the following, we are given a set of points D in the Euclidean Space Rd with ℓ2 norm. We let µz(D) be the power mean
of X , namely the point p that minimizes

∑
x∈D ∥x− p∥z . We let Dispz(D) :=

∑
x∈X ∥x− µ(D)∥z .

Given a set of k points C ∈ (Rd)k, we denote the (k, z)-clustering cost of C on D as Φz(D, C) :=
∑

x∈D minc∈C ∥x−c∥z
and Φk,z(D) := minC⊂Rd, |C|≤k Φz(D, C). For z = 1, this objective corresponds to k-median, while k-means is for z = 2.
Note that Dispz(D) = Φ1,z(D).

We say that a set C of k points is an α-approximation to (k, z)-clustering on D when Φz(C,D) ≤ αΦk,z(D). An ordered
list of centers c1, . . . , cn is an α-approximation to Prefix-z-clustering when, for all 1 ≤ k ≤ n, (c1, . . . , ck) is an α-
approximation to (k, z)-clustering on D. An O(1)-approximation to prefix (k, z)-clustering can be computed using the
algorithm of (Mettu & Plaxton, 2003). Dz-sampling (which is k-means++ for z = 2) gives an O(log k)-approximation,
which is fast and performs extremely well in practice.

B. Deferred Proofs
In this section, we use Bernstein’s concentration inequality:

Theorem 11 (Bernstein’s inequality). Let X1, . . . , Xn be independent random variables and let M > 0 be such that, for
all i, |Xi| ≤ M . Then, for all t > 0,

Pr[|
∑
i

Xi − E[
∑
i

Xi]| ≥ t] ≤ exp(− t2

2
∑

x∈X E[X2
x] + 2Mt/3

)

B.1. Proof for the non-adaptive case

Proof of Theorem 5. We denote for simplicity R = supe∈D ℓ(e). The upper bound is a simple application of Bernstein’s
inequality and is included for completeness.

The algorithm chooses successively s uniformly random samples S1, . . . , Ss from D (with replacement) and gives each
sampled element weight n/s. Let Xi = w(Si)ℓ(Si). It holds that E[Xi] = n

s

∑
e∈D

ℓ(e)
n =

∑
e∈D ℓ(e)

s , and, thus,
E[
∑

e∈S w(e)ℓ(e)] = E[
∑

Xi] =
∑

e∈D ℓ(e).

To show that this sum of random variables is concentrated, we aim at applying Bernstein’s inequality. For this, we need to
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bound E[X2
i ]: we have

E[X2
i ] =

∑
e∈D

(n
s
ℓ(e)

)2
Pr[e = Si] ≤

∑
e∈D

n

s2
ℓ(e)2 ≤ n2

s2
R2.

Summed over all i, we therefore have
∑s

i=1 E[X2
i ] ≤ n2R2/s. Furthermore, for any i, |Xi| ≤ n

sR with probability 1.
Plugging this result into Bernstein’s inequality yields

Pr[∆(S) ≥ εnR] = Pr

[∣∣∣∣∣∑
i

Xi − E[
∑
i

Xi]

∣∣∣∣∣ ≥ εnR

]
≤ exp

(
− ε2n2R2 · s
2n2R2 + 2nR · εnR/3

)
≤ exp(−ε2 · s/(2 + ε)).

With s = O(1/ε2), this gives the desired probability bound.

For the lower bound, consider a multiset D ⊂ R with n/2 copies of −1 and n/2 copies of 1, and ℓ being the identify
function ℓ(x) = x, implying that

∑
e∈D ℓ(e) = 0. Then, the estimator is a sum of Rademacher random variables, and an

anti-concentration bound states that for any fixed value x,
∑

s∈S ℓ(s) = x with probability at most O(1/
√

|S|) (Littlewood
& Offord, 1939). Therefore, for some constant c (which depends on the previous big-O constant), Pr[|

∑
s∈S ℓ(s)| ≥

c
√
|S|] ≥ 1/2. Multiplying with n/|S|, this implies that our estimator is bigger than cn√

|S|
with probability at least 1/2.

When |S| ≤ 1/ε2, this gives the desired statement.

B.2. Proof of Theorem 2

Proof. We prove that Algorithm 1 yields the desired result. Let S1, . . . , Ss be the successive random samples, and define
Xi = ℓ(Si)w(Si).

We combine Bernstein’s inequality (see Theorem 11) with Assumption 1 to bound the value of t. Recall that ΦΛ
C,z(D) :=∑k

i=1 ΛiΦz(Ci, ci); and when e ∈ Ci we let Λe = Λi

From Assumption 1, we get that for e ∈ Ci, ℓ(e) ≤ ℓ̂(e) + Λiv(e) and ℓ̂(e) ≤ ℓ(e) + Λiv(e). Therefore,

E[X2
i ] =

∑
e∈D

(ℓ(e)w(e))2 · pe =
∑
e∈D

ℓ(e)2
1

pes2

=
1

s2
·
∑
e∈D

ℓ(e)2 ·
ΦΛ

C,z(D) +
∑

x∈D ℓ̂(x)

ℓ̂(e) + Λev(e)

≤ 1

s2
·
∑
e∈D

ℓ(e) · (ℓ̂(e) + Λev(e)) ·
ΦΛ

C,z(D) +
∑

x∈D ℓ̂(x)

ℓ̂(e) + Λev(e)

=
1

s2
·
∑
e∈D

ℓ(e) ·

(
ΦΛ

C,z(D) +
∑
x∈D

ℓ̂(x)

)

≤ 1

s2
·

(∑
e∈D

ℓ(e)

)
·

(
2ΦΛ

C,z(D) +
∑
x∈D

ℓ(x)

)

≤ 1

s2
·

(
2ΦΛ

C,z(D) +
∑
e∈D

ℓ(e)

)2

.

We also let M := maxe∈D ℓ(e)w(e) = maxe ℓ(e) · ΦΛ
C,z(D)+

∑
x ℓ̂(x)

s(ℓ̂(e)+Λev(e))
. Similarly, we have M ≤

1
s

(
ΦΛ

C,z(D) +
∑

e∈D ℓ̂(e)
)
≤ 1

s ·
(
2ΦΛ

C,z(D) +
∑

e∈D ℓ(e)
)
.
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Applying Berstein’s inequality with t = 2ΦΛ
C,z(D) +

∑
e∈D ℓ(e) therefore yields:

Pr [∆(S) > εt] ≤ exp

(
−ε2

t2 · s
2t2 + 2εt2/3

)
= exp

(
−ε2

s

2 + 2ε/3

)
≤ exp(−1),

where the last inequality holds by the choice of s = ⌈ε−2(2 + 2ε/3)⌉.

B.3. Adaptive Active learning

We present here the algorithm used to prove Theorem 7. The proof follows directly from the proof for Theorem 2.
Algorithm 3 Adaptive-active-learning(D, r, λ, ε)

1: Compute a O(1)-approximation to prefix-z-clustering on D, i.e., an ordering of the points in D such that any prefix of
length k0 is an O(1)-approximation to (k0, z)-clustering on D.

2: for each round i = 1, . . . , r do
3: query ℓ for the points at position in [(i−1)k+1, ik] in the ordering, and define A to be the set of elements at position

at most ik in the ordering.
4: For e ∈ D, define A(e) = argmina∈A ∥e − a∥ the element of A that is the closest to x, ℓ̂(e) := ℓ(A(e)) and

v(e) := ∥e−A(x)∥.
5: Define pe :=

ℓ̂(e)+λv(e)

λΦz(D,A)+
∑

x∈D ℓ̂(x)
.

6: Let s := ⌈ε−2(2 + 2ε/3)⌉. For e ∈ D define pe :=
ℓ̂(e)+λv(e)

λΦz(D,A)+
∑

x∈D ℓ̂(x)
and wi(e) = s−1p−1

e .

7: Compute a sample Si of s points, picked independently following the distribution pe.
8: end for
9: Output: Si, wi for each round i.

B.4. The parameter Λ

Proof of Lemma 8. We have, for t points x1, . . . , xt uniformly at random in Ci:

Pr

[
max

j

|ℓ(xj)− ℓ(ci)|
∥xj − ci∥z

∈ [Λi/ log(n),Λi]

]
≥ 1− (1− p)t.

With t = log(100k)/ log(1− p), the maximum of the estimate |ℓ(xj)−ℓ(ci)|
∥xj−ci∥z is in [Λi/ log(n),Λi] with probability at least

1− 1/(100k). Multiplying maxj
|ℓ(xj)−ℓ(ci)|
∥xj−ci∥z by log(n) thus yields our upper bound on Λi.

B.5. Regression

To show Theorem 10, we first prove that for any fixed x ∈ X , the desired bound hold with probability 1− exp(−ε2s). It is
standard to extend this result to all x ∈ X , using discretization techniques to find a set N of size ε−O(d) such that preserving
the cost for all vectors in N is enough to extend the result for all candidate x (N is called a net for X ). Hence, it is enough
to show the following lemma:

Lemma 12. Let Λ ∈ Rk with λi ≥ 1, and A and b that respects Assumption 9 with constant ζ and âi and x0 as computed
by Algorithm 2.

Let x ∈ X , namely x such that ∥x∥2 = O(1) and there is some ζ ≥ 1 such that ∀j ∈ Ci, |⟨âj , x− x0⟩| ≤ Λi∥aj − âj∥2.
Then, with probability 1− δ, it holds that for s = 8ε−2 log(1/δ),∣∣∣∣∣∑

s∈S

w(s)(⟨as, x⟩ − bs)
2 − ∥Ax− b∥22

∣∣∣∣∣ ≤ ε(∥Ax− b∥22 +
∑
i∈[k]

ΛiΦ1,1(Ci)))

Proof. Let S1, . . . , Ss be the successive random samples, and define Xt = w(St)(⟨aSt , x⟩ − bSt)
2. By the choice of w, it

holds that E[
∑

Xt] = ∥Ax− b∥22. We will show concentration using the Bernstein inequality.
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We denote for simplicity ΦΛ(A) =
∑

i∈[k] ΛiΦ1,1(Ci). For j ∈ Ci, we let Λ̃j = Λi.

We first focus on bounding the second moment of Xt. We have:

E[X2
t ] =

n∑
i=1

(⟨ai, x⟩ − bi)
4

s2pi

=
1

s2
·

n∑
i=1

(⟨ai, x⟩ − bi)
4 ·
∑

j∈[n] Λ̃j∥aj − âj∥+ v(aj , x0)

Λ̃i∥ai − âi∥+ v(ai, x0)

To bound this term, we first note that

(⟨ai, x⟩ − bi)
2 − (⟨âi, x⟩ − b̂i)

2

=(⟨ai + âi, x⟩ − bi − b̂i)(⟨ai − âi, x⟩ − bi + b̂i)

=⟨ai + âi, x⟩⟨ai − âi, x⟩+ ⟨ai + âi, x⟩ · (b̂i − bi)− (bi + b̂i)⟨ai − âi, x⟩ − (b̂i + bi)(b̂i − bi)

≤∥ai + âi∥ · ∥ai − âi∥ · ∥x∥2 + ∥ai + âi∥ · ∥x∥|b̂i − bi| − |bi + b̂i| · ∥ai − âi∥ · ∥x∥+ |bi + b̂i| · |bi − b̂i|
=O(Λ̃i∥ai − âi∥), (2)

where the last two lines follow from Cauchy-Schwarz and Assumption 9.

We now relate this to the term v(ai, x0) = (⟨âi, x0⟩ − b̂i)
2 of the denominator:

(⟨âi, x⟩ − b̂i)
2 − (⟨âi, x0⟩ − b̂i)

2 = ⟨âi, x− x0⟩ · (âi, x− x0⟩+ 2b̂i)

= ⟨âi, x+ x0⟩⟨âi, x− x0⟩ − 2b̂i⟨âi, x− x0⟩
= O(|⟨âi, x− x0⟩|) = O(Λ̃i∥ai − âi∥),

where the last line uses our assumption |⟨âi, x− x0⟩| ≤ Λ̃i∥ai − âi∥. Thus, combining those equations:

(⟨ai, x⟩ − bi)
2 ≤ O(Λ̃i∥ai − âi∥) + (⟨âi, x0⟩ − b̂i)

2 +O(Λ̃i∥ai − âi∥)
= O(Λ̃i∥ai − âi∥+ v(ai, x0)).

Thus, we can now finish our bound on the second moment of Xt:

E[X2
t ] =

1

s2
·

n∑
i=1

(⟨ai, x⟩ − bi)
4 ·
∑

j∈[n] Λ̃i∥aj − âj∥+ v(aj , x0)

Λ̃i∥ai − âi∥+ v(ai, x0)

≤ 1

s2
·

n∑
i=1

(⟨ai, x⟩ − bi)
2 ·O(Λ̃i)∥ai − âi∥+ v(ai, x0)) ·

+
∑

j∈[n] Λ̃j∥aj −A(aj)∥+ v(aj)

Λ̃i∥ai − âi∥+ v(ai, x0)

≤
∑

j∈[n] Λ̃j∥aj −A(aj)∥+ v(aj , x0)

s2
·

n∑
i=1

O
(
(⟨ai, x⟩ − bi)

2
)

Using the same upper bounds, we get that for all i,

w(i)(⟨ai, x⟩ − bi)
2 =

1

s
· (⟨ai, x⟩ − bi)

2 ·
∑

j∈[n] Λ̃j∥aj −A(aj)∥+ v(aj , x0)

Λ̃i∥ai − âi∥+ v(ai, x0)

≤
∑

j∈[n] Λ̃j∥aj −A(aj)∥+ v(aj , x0)

s
.

Therefore, for T = ε(∥Ax− b∥22 +ΦΛ(A) +
∑

i v(ai, x0)) we get that 2
∑

t E[X2
t ] ≤ T 2/s, and with probability 1 each

Xt is verifies 2|Xt|T/3 ≤ T 2/s. Furthermore, using Equation (2) and the optimality of x0 for the dataset {â1, . . . , ân}, we

18



Data-Efficient Learning via Clustering-Based Sensitivity Sampling

have that: ∑
i

v(ai, x0) =
∑
i

(⟨âi, x0⟩ − b̂i)
2 ≤

∑
i

(⟨âi, x⟩ − b̂i)
2

≤
∑
i

(⟨ai, x⟩ − bi)
2 +O(Λ̃i)∥ai − âi∥ = ∥Ax− b∥22 +O(ΦΛ(A)).

Hence, the Bernstein inequality ensures that

Pr

[∣∣∣∣∣∑
e∈S

w(e)(⟨ae, x⟩ − bs)
2 − ∥Ax− b∥22

∣∣∣∣∣ ≥ ε(∥Ax− b∥22 +ΦΛ(A)))

]

≤Pr

[∣∣∣∣∣∑
e∈S

w(e)(⟨ae, x⟩ − be)
2 − ∥Ax− b∥22

∣∣∣∣∣ ≥ ε/2 · (∥Ax− b∥22 +ΦΛ(A) +
∑
i

v(ai, x0))

]
≤ exp

(
−ε2s/8

)
.

Therefore, using that s = 8ε−2 log(1/δ) concludes the lemma.

C. More experimental details
C.1. Experimental Setup

For the clustering required in Algorithm 1, we run k′′-means clustering using Python’s sklearn implementation, for some
k′′ < k on the model’s last layer embeddings. Note that k is the total number of data points to be selected, while k′′

is the number of cluster centers sampled (which are a subset of the points being selected). For our experiments, we
chose k′′ = 0.2k. Since the k′′ cluster centers might not be actual data points from the dataset, we replace each center
with the closest data point from the dataset in ℓ2 norm (note that by triangle inequalities, this loses only a factor 4 in
the k-means cost). After computing ℓ(e) for each center and extrapolating to the whole dataset using the approximation
ℓ̃(e) := ℓ(ce) + λ ∥e− ce∥22 (where ce is the closest center to e), we sample the remaining k − k′ − k′′ data points
proportional to ℓ̃.

C.2. Fine-Tuning LLMs

Model Details. For our fine-tuning task, we display the model hyperparameters in the table below. We used a batch size of
128, a constant learning rate of 0.001, and dropout of 0.1. We fine-tune from the T5-Small (Raffel et al., 2019) pre-trained
model that was pre-trained for 1M steps.

Model Name T5-Small
embedding dim 512
number of heads 6
enc./dec. layers 8

head dim 64
mlp dimension 1024

number of parameters 77M

Table 3. Dimensions of T5 Small

Hölder Constant. We experimented with varying the Hölder constant from 0.05 to 500. Each run used BERT embeddings
for clustering (as above), and sampled roughly 1% of the whole dataset. We found that raising the constant too high (e.g.,
500) resulted in a drop in quality and final accuracy more equivalent with diversity sampling (figure 5).

C.3. Classification Tasks

Datasets and models. We largely follow the dataset and model setup used in DISTIL. The datasets we consider are
MNIST, Fashion MNIST and CIFAR10. For the first two we use a neural network with one 128-dimensional hidden layer,
and for the last one we use convolutional neural network with three convolutional layers and three dense layers. We train
each model for 10 epochs, a batch size of 32, and use the Adam optimizer with a learning rate of 10−3.
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Figure 5. We report the accuracy (left) and BLEU score (right) with differing Hölder constants from 0.05 to 500. Each run uses roughly
1% of the whole dataset.
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Figure 6. We present runtime comparisons between different algorithms, for MNIST and CIFAR10. The results for Fashion MNIST are
analogous to those of MNIST, since the model and dataset have the same size.

Runtime comparison. In Figure 6, we show a comparison between the runtimes of our loss- and gradient-based algorithms,
and the coreset algorithm of (Sener & Savarese, 2018). All algorithms were implemented in python using the tensorflow
framework and the runtime calculation experiments ran on CPU, on a cloud VM with 24 CPUs and 100GB of RAM. It
should be noted that a significant advantage of our loss- and gradient-based sampling is that they can rely on a pre-computed
metric and clustering that is not updated during the sampling process. In most applications, this will be a fixed metric
generated by an upstream model, that is easy to generate and compute distances. As a result, most of the runtime will be
spent running model inferences at the cluster center points.

Algorithms for data selection. We list some of the best-performing algorithms in literature, and mention their advantages
and disadvantages. Out of these, margin and entropy sampling are the top performing methods in the DISTIL3 benchmark.

• Uniform sampling: We uniformly sample data points up to the budget k. This is the simplest and fastest way to sample
k data points.

• Margin/Least confidence/Entropy sampling: These methods aim to select the examples with the lowest confidence.
Specifically, if p1, . . . , pC are the per-class output probabilities of the model, we select the data points that either
minimize maxi∈[C] pi, minimize pi∗ − maxi∈[C]\{i∗} pi, where i∗ = argmaxi∈[C]pi, or maximize the entropy
−
∑C

i=1 pi log pi. Unfortunately, these methods require an inference call for each data point, in order to evaluate its

3https://github.com/decile-team/distil
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classification uncertainty, and so are not considered runtime-efficient.

• k-center CoreSet [SS18]: The k-center algorithm from (Sener & Savarese, 2018). This algorithm does not require any
model inferences, but instead requires maintaining a nearest-neighbor data structure under insertions of data points.

In Figure 7 we provide more detailed experiments, including multiple algorithms from previous work.
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Figure 7. The experimental results for different datasets and algorithms. To minimize variation, we independently run each data point 100
times.

C.4. Regression tasks

Our algorithm. We run Algorithm 2, with a couple of differences: i) We run k-medoids, which is a variant of k-median
that is only allowed to pick input points as centers – this does not change the theoretical guarantees provided in the previous
sections, and ii) we set Λi → ∞ for all i, which has the effect that we only look at distances and not losses. We set the
number of clusters to be 10% of the total number of data points in the training set. After computing the regression solution,
we evaluate it on the full training and validation datasets.

Runtime comparison on regression. In Table 4 we compare the runtimes of computing the leverage scores of a matrix
and computing a k-medoid clustering (a variant of k-median). As the results show, even on matrices with i.i.d. normal
entries, the standard k-medoid implementation from Python’s scikit-learn library is significantly faster than computing the
leverage scores. This is expected, since leverage score computation takes time O(nnz + nω), where nnz is the number of
non-zeros in the data matrix and ω ≥ 2 is the runtime exponent of matrix multiplication, while O(1)-approximate k-median
takes time O(nnz + n).
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n 5,000 10,000 20,000 30,000
Leverage runtime (sec) 36.62 250.64 1890.73 6098.31
k-medoid runtime (sec) 19.74 105.29 858.5 2712.09

Table 4. Comparing the runtime for computing all leverage scores and a k-medoids clustering for k = 0.2n, of an n× n matrix with i.i.d.
standard normal entries.
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