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Abstract

We propose training fitted Q-iteration with log-
loss (FQI-LOG) for batch reinforcement learn-
ing (RL). We show that the number of samples
needed to learn a near-optimal policy with FQI-
LOG scales with the accumulated cost of the op-
timal policy, which is zero in problems where
acting optimally achieves the goal and incurs no
cost. In doing so, we provide a general frame-
work for proving small-cost bounds, i.e. bounds
that scale with the optimal achievable cost, in
batch RL. Moreover, we empirically verify that
FQI-LOG uses fewer samples than FQI trained
with squared loss on problems where the optimal
policy reliably achieves the goal.

1. Introduction
In batch reinforcement learning (RL), also known as offline
RL, the goal is to learn a good policy from a fixed dataset. A
standard approach in this setting is fitted Q-iteration (FQI)
(Ernst et al., 2005), which iteratively obtains a sequence
of value functions by fitting the next value function to a
target that is based on the data and the previously obtained
value function. In this work we propose a simple and princi-
pled improvement to FQI, using log-loss (FQI-LOG), which
is applicable when the returns along trajectories lie in a
bounded interval. We prove that the number of samples the
new method requires to learn a near-optimal policy scales
with the cost of the optimal policy, leading to a so-called
small-cost bound, the RL analogue of a small-loss bound in
supervised learning. Such bounds predict improved sample
efficiency in goal oriented RL tasks where the goal is reli-
ably achievable and the cost is set up to penalize failure in
achieving the goal; a prediction we validate empirically. We
highlight that FQI-LOG is the first computationally efficient
batch RL algorithm to achieve a small-cost bound, provided
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that a regression oracle is available; a condition that can be
met, e.g., when logit models are used in FQI-LOG.

Most earlier works in batch RL focused on algorithms that
achieve the optimal worse-case dependence on the number
of samples required to learn a near-optimal policy (Munos,
2003; Antos et al., 2007; Chen & Jiang, 2019; Xie & Jiang,
2021). The only work prior to ours that is known to adap-
tively improve sample efficiency when facing a task with
near-zero optimal cost is due to Wang et al. (2023), who
obtain small-cost bounds for finite-horizon batch RL prob-
lems but using the so-called “distributional RL” approach.
In this approach, one solves the regression problems arising
when estimating the distribution of a policy’s accumlated
cost. The inspiration for our work comes from this work,
combined with the insights of Abeille et al. (2021); Foster
& Krishnamurthy (2021) who showed that, in the simpler
bandit problems, log-loss alone is sufficient for obtaining
small-cost bounds.

Why log-loss gives a small-cost advantage is subtle. When
used with an unrestricted model class (think: finite state-
action space, “tabular learning”), both log- and squared
losses achieve small cost bounds because they share the
same minimizers, which predict the empirical mean of re-
sponses for all inputs. However, when the model class is
restricted (the only practical case for large problems), log-
loss and squared loss will trade off errors at the various
inputs differently. Specifically, with log-loss, the penalty
for predicting a value far from an observed mean increases
rapidly as the observed mean gets close to the boundary of
its range, an effect that is absent with squared loss. Conse-
quently, log-loss will favor predictors that fit well to those
observed values that are near the boundary of the range, mak-
ing the learning process disregard large variance observed
values, stabilizing learning, a property not shared when a
squared loss is used. As a result, as we show, under suit-
able additional technical assumptions, log-loss based FQI
achieves small-cost bounds, a property that is not shared
when squared loss is used with FQI.

The main contributions of this work can be summarized as:
(i) We propose training FQI with log-loss and prove it en-
joys a small-cost bound. This is the first efficient batch RL
algorithm that achieves a small-cost bound. When showing
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this result, we make two technical contributions that may be
of independent interest: (ii) We show that the Bellman opti-
mality operator is a contraction with respect to the Hellinger
distance, a result; (iii) We present a general result that de-
composes the suboptimality gap of the value of a greedy
policy induced by some value function, f , into the product
of a small-cost term and the pointwise triangular deviation
of f from q⋆, the value function of the optimal policy.

2. Preliminaries
In this section we review some definitions and concepts of
Markov Decision Processes (MDPs) and define the notation
used. Readers unfamiliar with the basic theory of MDPs
are recommended to consult the book of Bertsekas (2019),
or that of Szepesvári (2010). All results mentioned in this
section can be found in these works.

An infinite-horizon discounted Markov Decision Process
(MDP) is given by a tuple M = (S,A, P, c, γ), where S
is the state space, A is the action space, P is a transition
function, c : S ×A → R is a cost function and γ ∈ [0, 1) is
a discount factor. We only consider MDPs with finite action
spaces. Furthermore, for simplicity, we assume that the state
space is finite. Among other things,1 this allows writing the
transition function as P : S ×A →M1(S), whereM1(S)
denotes the set of probability distributions over S. Since
the set S is finite, any element ofM1(S) can and will be
identified with its probability mass function. The notation
M1(X ) will be used in the same way to denote the set of
probability distributions over an arbitrary finite set X and
we will perform the same identification.

A (general) policy π = (πh)
∞
h=1 is a sequence of functions

πh : (S × A)h−1 × S → M1(A). Fixing the start state
s, a policy π induces a distribution Pπ,s over trajectories
S1, A1, C1, S2, A2, C2, . . . , where S1 = s, A1 ∼ π1(S1),
C1 = c(S1, A1), S2 ∼ P (S1, A1), A2 ∼ π2(S1, A1, S2):
the policy is used to govern the selection of actions, while
the transition dynamics of the MDP governs the evolution
of the states in response to the chosen actions. We will
also need stationary Markov policies, where the choice of
the action in any timestep h only depends on the last state
visited. Thus, such policies can be identified with a map
π : S → M1(A), an identification which we will employ
in what follows.

The expected total discounted cost over trajectories start-
ing in s quantifies the policy’s performance when initial-
ized in state s. We collect these expectations in the state-
value function of π, vπ : S → R, which is defined by

1We assume that the state space S is finite solely for exposition.
This allows us to simplify the presentation of our analysis and focus
on the most salient details of the proof, avoiding the cumbersome
measure-theoretic notation required to reason about infinite sets.

vπ(s) = Eπ,s[
∑∞

h=1 γ
h−1Ch], where Eπ,s is the expec-

tation operator corresponding to Pπ,s. For convenience,
throughout this paper we assume that costs are normalized
so that the sum of discounted costs along any trajectory
satisfies

0 ≤
∞∑
h=1

γh−1Ch ≤ 1 . (1)

By appropriately rescaling the costs, this constraint can
always be satisfied (when the state space is not finite, one
needs that the above infinite sums are uniformly bounded to
be able to do this).

The action-value function of π, qπ : S ×A → R, is defined
as

qπ(s, a) = c(s, a) + γ
∑
s′∈S

P (s′|s, a)vπ(s′) ,

where (s, a) ∈ S × A and, by abusing notation, we use
P (s′|s, a) to denote the probability of landing in state s′

when action a is taken in state s. For a stationary Markov
policy π, the state- and action-value functions are related by
the identity vπ(s) =

∑
a∈A π(a|s)qπ(s, a). Here, and in

what follows, abusing notation once again, π(a|s) denotes
the probability that is assigned by π(s) to action a ∈ A.

The optimal policy is defined as any policy π⋆ that satisfies
vπ

⋆

(s) = minπ v
π(s) simultaneously for all s ∈ S . Such a

policy exists in our case. We define the optimal state-value
function as v⋆ = vπ

⋆

and the optimal action-value function
as q⋆ = qπ

⋆

. Any policy that is greedy with respect to q⋆,
i.e., at state s selects only actions a that minimize q⋆(s, ·), is
guaranteed to be optimal. Furthermore, the optimal action-
value function q⋆ satisfies the Bellman optimality equation
q⋆ = T q⋆, where T : RS×A → RS×A is the Bellman opti-
mality operator, defined via

(T f)(s, a) = c(s, a) + γ
∑
s′∈S

P (s′|s, a) min
a′∈A

f(s′, a′),

(2)

for f : S ×A → R and (s, a) ∈ S ×A.

We will find it helpful to use a shorthand for the function
s 7→ mina∈A f(s, a) appearing above. For f : S ×A → R,
define f∧ : S → R by

f∧(s) = min
a∈A

f(s, a) , s ∈ S .

With this notation, we have that for (s, a) ∈ S ×A

(T f)(s, a) = c(s, a) + γ
∑
s′∈S

P (s′|s, a)f∧(s′) .

Finally, we use πf to denote a greedy policy induced by
f : πf (s) = argmina∈A f(s, a). When there are multiple
such policies, we choose one in an arbitrary (systematic)
manner to make πf well-defined.
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3. Problem Definition: Batch RL
In this work, we consider batch reinforcement learning
problems, where a learner is given a sequence of data
points Dn = {(Si, Ai, Ci, S

′
i)}ni=1 such that Si, S

′
i ∈ S,

Ai ∈ A. and Ci ∈ R. Importantly, the learner has no
access to P or c. The learner’s goal is to find a policy π
such that executing the policy π from an initial state S1

drawn randomly from some distribution η1 ∈ M1(S) re-
sults in an expected total discounted cost exceeding the
smallest possible such value with as little as possible. For-
mally, the learner is evaluated by comparing the value
v̄π = ⟨η1, vπ⟩ =

∑
s∈S η1(s)v

π(s), where ⟨·, ·⟩ denotes
the standard inner product, of the policy π that it returns
with the smallest possible such value v̄⋆, which, thanks to
our earlier definitions is easily seen to satisfy v̄⋆ = ⟨η1, v⋆⟩.
Our algorithm does not need to know η1.

The data is assumed to satisfy the following assumption:

Assumption 3.1 (Data/MDP properties). We have that
Dn = {(Si, Ai, Ci, S

′
i)}ni=1 is a sequence of indepen-

dent, identically distributed random variables such that
(Si, Ai) ∼ µ, Ci = c(Si, Ai) and S′

i ∼ P (Si, Ai). Further-
more, Equation (1) holds and c is a nonnegative function.

In this assumption the constraints on Ci and S′
i will help

the learner to discover some information about the costs and
the transition structure of the MDP. The independence as-
sumption is made to simplify the analysis. The distribution
µ will be further restricted to be “sufficiently exploratory”.
To state this assumption, the following definition will be
useful:

Definition 3.1 (Admissible distribution). We say a dis-
tribution ν ∈ M1(S × A) is admissible in MDP M if
there exists h ≥ 1 and a nonstationary policy π such that
ν(s, a) = P π,η1(Sh = s,Ah = a).

Note that what constitutes an admissible distribution de-
pends on η1. With this, the assumption that constrains µ is
as follows:

Assumption 3.2 (Finite concentrability coefficient). There
exists C <∞ such that for all admissible distributions ν of
M , it holds that

max
(s,a)∈S×A

ν(s, a)

µ(s, a)
≤ C . (3)

Note that if µ is positive over S × A, the assumption is
satisfied. By only considering admissible distributions, we
allow µ to be “concentrated” on states that are “relevant” in
the sense that they are visited by some policy in some time
step with a large probability when starting from η1.

In addition to having access to the data, we will also assume
that the learner is given access to a set of functions, F

that map state-action pairs to reals: F ⊂ RS×A. Ideally,
the set F allows the learner to reason about the optimal
action-value function. To make this possible, the following
assumptions are made on F :
Assumption 3.3 (Realizability). q⋆ ∈ F .
Assumption 3.4 (Completeness). For all f ∈ F we have
that T f ∈ F .

Assumptions 3.1 to 3.4 are commonly made, in various
forms, when analyzing fitted Q-iteration (Farahmand, 2011;
Pires & Szepesvári, 2012; Chen & Jiang, 2019). Assump-
tion 3.2 ensures that all admissible distributions are covered
by the exploratory distribution µ, i.e., that “µ is sufficiently
exploratory”. Assumption 3.3 (“realizability”) guarantees
that the optimal action-value function, our ultimate target,
lies in our function class. Assumption 3.4 states that the
function class F is closed under the Bellman optimality
operator T . When F is closed, completeness is easily seen
to imply realizibility (see also footnote 10 of Chen & Jiang
(2019)). Note that Assumption 3.4 is necessary, this is due
to a result by Foster et al. (2021) which states that assuming
both a finite concentrability coefficient and a realizable func-
tion class are not sufficient for sample efficient batch value
function approximation. For a more detailed discussion of
the last three assumptions, we refer the reader to Sections 4
and 5 of Chen & Jiang (2019).

Research question As is well known, under the above
assumptions, and assuming that a regression oracle is avail-
able to find the empirical minimizer of regression problems
defined over F with the squared loss, the so-called fitted
Q-iteration (FQI) algorithm (Ernst et al., 2005; Riedmiller,
2005; Antos et al., 2007) produces a policy such that with
high probability v̄π ≤ v̄⋆ + Õ(

√
CN/n), where N is a

measure that characterizes the “richness” of F and Õ hides
logarithmic factors (Antos et al., 2007). The main ques-
tion investigated in this paper is whether this result can be
improved to v̄π ≤ v̄⋆+ Õ(

√
CNv̄⋆/n)+O(1/n). The sig-

nificance of such small cost results is that the same data can
produce a significantly better policy when v̄⋆ is near zero
(note that v̄⋆ ≥ 0). Alternatively, the number of samples
required to achieve a given level of suboptimality can be
significantly smaller if an algorithm satisfies a small-cost
bound.

Additional notation For n ∈ N, let [n] denote the set
{1, 2, . . . , n}. Let Pπ,η1 denote the distribution induced
over random trajectories by following policy π after an
initial state is sampled from η1. For h ∈ N, we let ηπh(s) be
the probability that state s is observed at timestep h under
P π,η1

, such that ηπh(s) = P π,η1
(Sh = s). We also define

η⋆h(s) = ηπ
⋆

h (s). For g : X → R, ν ∈ M1(X ), and p ≥
1, we define the semi-norm ∥·∥p,ν via ∥g∥pp,ν =

∫
|g|pdν.

We adopt standard big-oh notation and write f = Õ(g)
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to denotes that f dominates g up to polylog factors, i.e.,
f = O(gmax{1, polylog(g)}). Finally, we use f ∧ g to
denote min{f, g}.

4. FQI-LOG: Fitted Q-Iteration with log-loss
The proposed algorithm, FQI-LOG, which is described in
Algorithm 1, is based on the earlier mentioned fitted Q-
iteration algorithm (FQI) (Ernst et al., 2005; Riedmiller,
2005; Antos et al., 2007). Given a batch dataset, FQI itera-
tively produces a sequence of k approximations f1, . . . , fk
to the action-value function q⋆. At iteration j ∈ [k], the al-
gorithm computes fj by minimizing the empirical loss using
targets computed with the help of fj−1, the estimate pro-
duced in the previous iteration. The targets are constructed
such that the regression function for a fixed estimate f ∈ F
is T f . The main difference between the proposed method
and the most common variant of FQI is our use of log-loss,

ℓlog(y, ỹ) = ỹ log
1

y
+ (1− ỹ) log

1

1− y
, (4)

to measure the deviation between a prediction (y ∈ [0, 1])
and a target (ỹ ∈ [0, 1]), where to allow y, ỹ ∈ {0, 1}, we
use 0 · log 0 = 0. The restriction that ỹ ∈ [0, 1] means that
ℓlog(·, ỹ) is convex. In our algorithm the first argument of
ℓlog is a predicted value f(Si, Ai) with f ∈ F . Since this
needs to also belong to [0, 1], running FQI-LOG requires the
range of all functions in F to lie in [0, 1].

Note that previous work on FQI employed the squared loss
ℓsq : R× R→ R, defined as ℓsq(y, ỹ) = (y − ỹ)2, instead
of the log-loss ℓlog. Both squared loss and log-loss have the
property that for a random variable X taking values in [0, 1]
with probability one, E [X] = argminm∈R E [ℓ(m,X)],
where ℓ is either ℓlog or ℓsq. In particular, if F = [0, 1]S×A,
both log-loss and squared loss will give rise to the same
sequence f1, . . . , fk.

The differences between log-loss and squared loss are made
apparent when F ̸= [0, 1]S×A. In this case, when ỹ is near
0 or 1, ℓlog(·, ỹ) increases rapidly as y deviates from ỹ. As
such, when errors need to be traded off at different inputs,
log-loss will end up favoring predictors that predict values
closer to observed targets when the targets are near 0 (or 1),
and will put less weight on observed targets in the middle
of the [0, 1] range. When a true value lies near 0 (or 1), the
observed value (bound to the range [0, 1]) must be closer
to the true value, which means that the observed value is
also close to 0 (or 1). While it may happen that an observed
value is close to 0 (or 1) while its mean is far from it, this
is rare: For this to happen, the observed value has to have a
large variance. As such, favoring to predict observed values
near the 0 or 1 as opposed to paying equal attention to all
datapoints (which is what the squared loss based predictors
do) is beneficial, and, in particular it pays off when some of

Algorithm 1 FQI-LOG

Input: A dataset Dn = {(Si, Ai, Ci, S
′
i)}i∈[n], a func-

tion class F ⊆ [0, 1]S×A and k ∈ N.
Pick f0 arbitrarily from F
for j = 1 to k do

fj ← argmin
f∈F

∑n
i=1 ℓlog

(
f(Si, Ai), Ci + γf∧

j−1(S
′
i)
)

end for
Return: πfk .

the true targets are near 0 (or 1): The situation that arises
when the optimal cost is near zero.

The motivation to switch to log-loss is due to Foster & Kr-
ishnamurthy (2021) who studied the problem of learning a
near-optimal policy in contextual bandits, both in the batch
and the online settings. They noticed that switching to log-
loss from squared loss allows bounding the suboptimality
of the policy found, say in the batch setting after seeing n
contexts, via a term that scales with

√
v̄⋆/n + 1/n. This

is an improvement from the usual
√
1/n bound derived

when analyzing squared loss, which is worst-case in nature.
For log-loss, a significant speedup to 1/n-type convergence
is achieved when v̄⋆, the expected cost of using the opti-
mal policy, is small (cf. Section 3.1 of their paper). They
complemented the theory with convincing empirical demon-
strations. Our results take a similar form. While we reuse
some of their results and techniques, our analysis deviates
significantly from theirs. In particular, our analysis must be
adapted to handle the multistage structure present in RL and
to avoid an unnecessary dependence on the actions.

The astute reader may wonder whether switching to log-
loss is really necessary for achieving small-cost bounds. As
it turns out, the switch is necessary, as attested to by an
example constructed by Foster & Krishnamurthy (2021). In
this example, in contrast to log-loss, squared loss is shown
to be unable to take advantage of small optimal costs (cf.
Theorem 2 of Foster & Krishnamurthy (2021)).

5. Theoretical Results
In this section, we present our main theoretical contribution,
the first small-cost bound for an efficient algorithm in batch
RL.

Theorem 5.1. Given a dataset Dn = {(Si, Ai, Ci, S
′
i)}ni=1

with n ∈ N and a finite function class F ⊆ [0, 1]S×A that
satisfy Assumptions 3.1 to 3.4, it holds with probability 1−δ
that the suboptimality gap g = v̄πk− v̄⋆ of the output policy
of FQI-LOG after k iterations, πk = πfk , satisfies

g ≤ Õ

(
1

(1− γ)2

(√
v̄⋆CN

n
+

CN

(1− γ)2n
+ γk

))
,

4



Switching the Loss Reduces the Cost in Batch Reinforcement Learning

where N = log(|F|/δ) and C is defined in Assumption 3.2.

The full statement of Theorem 5.1, including lower or-
der terms, can be found in Appendix B along with its
proof. Compared to prior error bounds for FQI (Antos
et al., 2007; 2008; Munos & Szepesvári, 2008; Farahmand,
2011; Lazaric et al., 2012; Chen & Jiang, 2019), to the best
of our knowledge, Theorem 5.1 is the first that contains
the instance-dependent optimal cost v̄⋆. This makes Theo-
rem 5.1 a small-cost bound, also referred to as a first-order
(Freund & Schapire, 1997; Neu, 2015) or small-loss (Lyk-
ouris et al., 2022; Wang et al., 2023) bound in the learning
theory literature. All previous results for FQI obtain an error
bound independent of v̄⋆, and cannot be made to scale with
v̄⋆ due to their use of squared loss (see Theorem 2 of Foster
& Krishnamurthy (2021), mentioned earlier). Finally, we
highlight that Theorem 5.1 is the first small-cost bound for
a batch RL algorithm that is computationally efficient when
efficient regression oracles are available, as is the case when
F is the set of logit models with weights bounded in 2-norm.
While technically this is outside of the scope of Theorem 5.1
(since in its current form this result covers only finite model
classes), with some extra work and with appropriate modi-
fications one can show that Theorem 5.1 continues to hold
for infinite model classes, such as the mentioned logit class.

5.1. Proof Sketch

The purpose of this section is to give a sketch of the proof of
Theorem 5.1. For the full proof, see Appendix B. We start
by defining the pointwise triangular deviation of f from q⋆,

∆2
f (s, a) =

(f(s, a)− q⋆(s, a))2

f(s, a) + q⋆(s, a)
,

which is closely related to triangular discrimination (Topsøe,
2000). We can relate ∆2

f to the Hellinger distance via the
following lemma:
Lemma 5.2. For all p, q ∈ [0, 1], we have

1

4

(p− q)2

p+ q
≤ 1

2
(
√
p−√q)2 ≤ h2(p ∥ q) , (5)

where for p = q = 0 we define the left-hand side to be zero
and h2(p ∥ q) = 1

2 (
√
p − √q)2 + 1

2 (
√
1− p −

√
1− q)2

is the squared Hellinger distance.

The proof of Lemma 5.2 is deferred to Appendix A.1.
The idea to relate the pointwise triangular deviation to the
squared Hellinger distance was first employed by Foster
& Krishnamurthy (2021) in analyzing regret bounds for
contextual bandits. Our proof can be summarized by the
following three main steps, which correspond to the three
terms given in Lemma 5.2.

Step 1: Error decomposition The first step in the proof
is to decompose the error (or suboptimality gap), v̄πk − v̄⋆,

into the product of a small-cost term and the pointwise tri-
angular deviation of f from q⋆. The analysis in this step
is inspired by the proof of Lemma 1 of Foster & Krish-
namurthy (2021). We deviate from their analysis to avoid
introducing an extra |A| factor in the bound. We use the per-
formance difference lemma (Lemma B.4), a multiplicative
Cauchy-Schwarz (Lemma B.5), i.e. for distribution ν

∥x− y∥1,ν ≤ ∥x+ y∥1/21,ν ·
∥∥∥∥ (x− y)2

(x+ y)

∥∥∥∥
2,ν

,

and an implicit inequality (i.e. Lemma B.7, step ⋆ in the
proof of Proposition B.2) to get a small-cost decomposition
of the error:
Proposition 5.3. Let f : S ×A → [0,∞) and let π = πf

be a policy that is greedy with respect to f . Define Df =
suph≥1 max(∥∆f∥2,ν1,h

, ∥∆f∥2,ν2,h
). Then, it holds that

v̄π − v̄⋆ ≤ C̃

(
Df

1− γ

√
v̄⋆ +

D2
f

(1− γ)2

)
.

where C̃ > 0 is an absolute constant.

Here ν1,h, ν2,h ∈ M1(S × A) are appropriately defined
distributions, the details of which can be found in Proposi-
tion B.2. In summary, step 1 uses the pointwise triangular
deviation of f from q⋆ to bound the error by the optimal
value function v̄⋆.

Step 2: Contraction The second step in our proof starts
by bounding the pointwise triangular deviation by the
Hellinger distance, i.e.

1√
2
∥∆f∥2,ν ≤

∥∥∥√f −
√
q⋆
∥∥∥
2,ν

where ν ∈ M1(S × A). In Lemma B.13 we next estab-
lish that T is a γ-pseudo-contraction at q⋆ with respect to
Hellinger distances: For any f ≥ 0, ν ∈M1(S ×A),∥∥∥√T f −√T q⋆∥∥∥

2,ν
≤ γ1/2

∥∥∥√f −
√
q⋆
∥∥∥
2,ν′

,

where ν′ is a distribution over state-action pairs.

Contraction arguments have a long history (Bertsekas, 1995;
Littman, 1996; Antos et al., 2007; Chen & Jiang, 2019)
in the analysis of dynamic programming algorithms that
solve MDPs. The novelty is that we needed to bound the
pointwise triangular deviation, which led to new analysis
with Hellinger distances.

In Lemma B.15, the combination of a standard change of
measure argument (that uses the definition of the concentra-
tion coefficient C) and a standard contraction argument, we
get∥∥∥√f −

√
q⋆
∥∥∥
2,ν
≤
√
C

1−√γ

∥∥∥√f −
√
T f
∥∥∥
2,µ

, (6)
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where µ is the exploratory distribution in Assumption 3.1. In
batch RL, we often want to learn q⋆, or a policy whose value
is close to q⋆. However, when using function approximation
FQI, the regressor corresponding to the training data is
T f . Therefore, as demonstrated in Equation (6), if we can
show the contraction property then we can bound the error
between f and q⋆ by the error between f and T f . As we
will argue shortly, the error between f and T f goes to zero
as the size of the batch dataset grows.

Step 3: Error control/propagation The third step in our
proof starts by bounding∥∥∥√f −

√
T f
∥∥∥
2,µ
≤
√
2
∥∥h2(f ∥ T f)∥∥1/2

1,µ
.

Then by application of Theorem A.3, we have that if f is
the minimizer of ℓlog with respect to the batch dataset Dn,
then √

2
∥∥h2(f ∥ T f)∥∥1/2

1,µ
≲

2√
n
,

where we use ≲ informally to highlight the most salient
elements of the inequality. We then combine all the results to
control the pointwise triangular deviation in Proposition 5.3,
i.e Df ,

v̄πk − v̄⋆ ≲

√
Cv̄⋆

(1− γ)2
√
n
+

C

(1− γ)4n
.

This provides a sketch for proving Theorem 5.1. In the full
proof we also need to control each iterate of FQI-LOG, i.e.
the fj’s. We fill in the missing details in our appendix.

6. Numerical Experiments
The goal of our experiments is to provide insights into the
benefits of using FQI-LOG for learning a near-optimal policy
in batch reinforcement learning. We run our first set of
experiments in reinforcement learning with logit models, as
this setting allows us to best compare FQI-LOG to FQI-SQ
without other confounding factors. For these experiments,
we used two standard control tasks; “mountain car” and
“inverted pendulum”. The tasks are set up as fixed horizon
episodic problems where at the end of an episode, if the
goal is met no cost is incurred, otherwise a cost of one is
incurred. The two environments differ in that in one of them
the goal region is small, in the other the goal region is large.
In both tasks, some policies can reach the goal, but many
fail. As it is known that the goals in these problems can be
met, we expect FQI-LOG to do better than FQI-SQ on these
environments.

Our second set of experiments aim at verifying whether
the recommendation to switch to log loss transfers to deep
RL (DRL), i.e., to more complex function classes, regres-
sion methods and environments. For these experiments, we

started from the work of Agarwal et al. (2020), who tested
various DRL methods, including C51 of (Bellemare et al.,
2017), a distributional RL algorithm, which was found to
be one of the most capable of the methods tested. As noted
in the introduction, Wang et al. (2023) showed a small-cost
bound for a distributional RL method; hence, our research
question is whether a simpler log-loss based method can
compete with these (more complex) distributional RL al-
gorithms. To create a real challenge, we picked the two
environments (Asterix and Sequest) from Agarwal et al.
(2020) where C51 significantly outperformed DQN-SQ, the
DRL version of FQI and copied their setting.

6.1. Aiming for a Goal: Mountain Car

We first evaluate FQI-LOG and FQI-SQ on an episodic sparse
cost variant of mountain car with episodes lasting for 800
steps. (While we showed our results for the discounted set-
ting, they are expected to hold in episodic problems as well,
with small modifications.) Following Moore (1990), this
environment consists of a 2-dimensional continuous state
space of [−1.2, 0.6]× [−0.07, 0.07] and 3 discrete actions;
the states represent a position and velocity of an underpow-
ered car that can be accelerated left, right, or not accelerated,
until the top of a hill is reached when the dynamics is turned
on, and the car remains in place regardless of the actions.
The cost is 0 at all timesteps except the last, when a cost
of 1 is received if the learner has not reached the hilltop.
We consider the undiscounted version of the problem (i.e.,
γ = 1). An optimal policy for this setting reaches zero
cost if it reliably reaches the top of the hill in 800 steps or
less, regardless of the exact time. For η1, the initial state
distribution, we use a Dirac that outs the car at the bottom
of the hill with zero velocity with probability one.

The feature vectors assigned to states are 16 dimensional and
come from a Fourier basis of order 4, following Konidaris
et al. (2011) and Chapter 9 of Sutton & Barto (2018).
With this, for time step h ∈ [800], the estimator uses
θh = (θha)a∈A ∈ R48 to produce the estimate fh(s, a) =
σ(
〈
ϕ(s), θha , )

〉
, where σ(x) = (1+ exp(−x))−1 is the sig-

moid function. This variant of FQI-LOG with sigmoid func-
tions is closely related to the logistic temporal-difference
learning algorithm proposed in Appendix A of the PhD
thesis of Silver (2009). We employ the BFGS method, a
quasi-Newton method with no learning rate, to find the
minimizer of the losses. For strongly-convex functions,
BFGS is known to converge to the global minimum su-
perlinearly (Dennis & Moré, 1974). Finally, each batch
dataset is constructed from a set of trajectories collected
by running the uniform random policy from the initial
state 30, 000 times. We use rejection sampling in order
to guarantee each dataset has i trajectories that reach the
top of the hill with i ∈ {1, 5, 30}. We train both FQI-
LOG and FQI-SQ on the same batch datasets with the first
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Figure 1. The value of the policy learned by FQI as a function of the size of batch dataset. The results are averaged over 90 independently
collected datasets. The figures on the left, middle and right are generated using batch data that contain only 1, 5, and 30 successful
trajectories respectively. The standard error of the mean is reported via the shaded region.

n = [1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 30] × 103 trajectories
in order to study the relationship between the size of the
batch dataset and the quality of the policies learned by FQI-
LOG and FQI-SQ. We move the successful trajectories to
the front of the batch dataset so that they are included for
all values of n.

Since BFGS does not require tuning and the same batch
datasets are given to FQI-LOG and FQI-SQ, the only vari-
able effecting the performance of the two methods is the loss
being minimized. As shown in Figure 1, FQI-LOG accumu-
lates much smaller cost then FQI-SQ using fewer samples,
irrespective of the number of trajectories that reach the top
of the hill. FQI-LOG is also able to learn a near-optimal
policy with only a single successful trajectory. In batch RL
collecting good trajectories is often expensive, so making
efficient use of the few that appear in the batch dataset is
an attractive algorithmic feature. As the number of trajec-
tories that reach the top of the hill increases, so too does
the performance of FQI-SQ. Since the optimal value on this
problem is zero, FQI-LOG is able to learn a near-optimal
policy using fewer samples than FQI-SQ.

6.2. Avoiding Failure: Inverted Pendulum

We further evaluate FQI-LOG and FQI-SQ on the inverted
pendulum environment (Lagoudakis & Parr, 2003; Ried-
miller, 2005), where the goal is to balance an inverted pen-
dulum, by applying forces to it. The state space is two
dimensional (angle, angular velocity) and there are three ac-
tions (push left, right, no change). The environment dynam-
ics are as described by Lagoudakis & Parr (2003), except
that (i) when the pendulum falls below horizontal, the state
is frozen there and (ii) we clip the angular momentum to
be in [−5, 5] instead of letting it take arbitrary real values;
the clipping is done to facilitate the use of Fourier basis
features, which we found works better than the radial basis
functions used by Lagoudakis & Parr (2003). As we were
using order 4 Fourier features, the parameter space in this

case is 4× 4× 3 = 48 dimensional. The same logit class
was used as in the case of mountain car; for fitting BFGS
was used. The cost structure is as follows: The cost of let-
ting the pendulum fall bellow the horizontal is 0. There is
no cost otherwise. Again, we know there exist policies that
achieves near-zero cost. The discount factor is γ = 0.95.
All datasets are collected by a policy that selects actions uni-
formly at random until failure (which happens typically after
6 steps) starting from a close to upright, random position.
We performed 90 independent trials, each trial consisting of
fitting FQI-LOG and FQI-SQ on the same data for k = 300
rounds. We then evaluate the learned policies 1000 times
on whether the inverted pendulum is still balanced after
3000 steps, starting from a near upright, random position.
Results are shown in Figure 2. As with the mountain car
experiments, we see that FQI-LOG uses fewer samples than
FQI-SQ to learn a good policy.
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Figure 2. The portion of the time that a policy learned by FQI was
able to balance the pendulum for 3000 steps. Results are averaged
over 90 independently collected datasets and each learned policy
is tested on 1000 initializations. The standard error of the mean is
shaded.
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6.3. Asterix and Seaquest

As described earlier, we evaluate the deep RL variants of
FQI-LOG and FQI-SQ on the Atari 2600 games Asterix and
Seaquest (Bellemare et al., 2013), and use the distributional
RL algorithm C51 as an additional baseline. We adopt the
data and experimental setup of Agarwal et al. (2020). The
data consist of five batch datasets for each game, which were
collected from independent training runs of a DQN learner
(Mnih et al., 2015). Specifically, each batch dataset contains
every fourth frame from 200 million frames of training; a
frame skip of four and sticky actions (Machado et al., 2018)
were used, whereby all actions were repeated four times
consecutively and a learner randomly repeated its previous
action with probability 0.25.

When the function class F of FQI-SQ is given by a deep
neural network, the algorithm is called DQN. To adapt FQI-
LOG to the deep RL setting, we must switch the training
loss from ℓsq to ℓlog, and add a sigmoid activation layer to
squash the output range to [0, 1]. We henceforth refer to
these algorithms as DQN-SQ and DQN-LOG, respectively.

The first algorithm to implement a variant of a DQN trained
with a form of log-loss is the distributional RL algorithm
C51, i.e. categorical DQN (Bellemare et al., 2017). C51
minimizes the categorical log-loss across N categories:

ℓlog,N (y; ỹ) =

N∑
i=1

ℓlog(yi; ỹi) ,

for y, ỹ ∈ [0, 1]N . C51 modifies DQN-SQ in the following
five ways:

S.1 C51 categorizes the return, i.e. sum of discounted
rewards, into 51 “bins”, and predicts the probability
that the outcome of a state-action pair will fall into
each bin, whereas DQN-SQ regresses directly on the
returns.

S.2 C51 applies a softmax activation to its output, to nor-
malize the values into a probability distribution over
bins, as necessitated by Item S.1.

S.3 C51 exchanges ℓsq for ℓlog,N as the training loss.

S.4 C51 “clips” the targets to the finite interval
[vmin, vmax], to enable mapping them into a finite set
of bins.

S.5 C51 replaces the Bellman optimality operator T with
a modified “distributional Bellman operator”.

For our experiments we clip the targets of DQN-LOG by set-
ting vmin = 0 and vmax = 10. Since the sigmoid activation
of DQN-LOG is a specialization of the softmax activation
to the binary case, DQN-LOG implements the changes S.3,

S.2, and S.4 to the standard form of DQN-SQ. Clipping the
targets introduces a bias which we correct for by similarly
clipping the targets of DQN-SQ. Thus our benchmark results
for DQN-SQ include the change S.4. Clipping the targets of
DQN-SQ is novel to this work and improves performance,
yielding a stronger baseline. We include a comparison with
the traditional unclipped version of DQN-SQ in Appendix C.

In our implementations of DQN-LOG and DQN-SQ, we use
the same hyperparameters reported by Agarwal et al. (2020).
Figure 3 shows the undiscounted return as a function of
the number of training epochs. On Seaquest, DQN-LOG
outperforms DQN-SQ and matches the performance of C51.
In Asterix, DQN-LOG performs similarly to DQN-SQ and
both get lower return than C51. Overall, our results are
inconclusive in this setting in regards to whether switching
to log-losses suffices to reproduce the success of C51. How-
ever, the experiments confirm that switching to log-loss can
be beneficial, as compared to using the squared loss and
sometimes this switch alone is sufficient to compete with
the more complex C51 algorithm.

7. Related Works
First-order bounds in RL Wang et al. (2023) obtain
small-cost bounds for finite-horizon batch RL problems
under the distributional Bellman completeness assumption,
which is more restrictive than our analogue, Assumption 3.4.
Wang et al. (2024) refines the bounds of Wang et al. (2023),
showing second-order bounds (which depends on the vari-
ance) for the same algorithm. They attribute their small-cost
bound to the use of the distributional Bellman operator
(Bellemare et al., 2023). However, their proof techniques
only make use of pessimism (Buckman et al., 2021; Jin et al.,
2021) and log-loss in achieving their small-cost bound. The
use of pessimism is necessary for their proof in order to
control the errors accumulated by use of the distribution
Bellman operator during value iteration. We improve upon
their work by proposing an efficient algorithm for batch
RL that enjoys a similar small-cost bound without using
the distributional Bellman operator or pessimism under a
weaker completeness assumption.

Jin et al. (2020a) and Wagenmaker et al. (2022) obtain regret
bounds that scale with the value of the optimal policy. How-
ever in their setting, the goal is to maximize reward. There-
fore, their bounds only improve upon previous bounds (e.g.,
Azar et al. 2017; Yang & Wang 2019; Jin et al. 2020b) when
the optimal policy accumulates very little reward. These
bounds are somewhat vacuous as they only imply that regret
is low when the value of the initial policy is already close to
the value of the optimal policy, both of which are close to
zero. Small-cost bounds give the same rates as small-return
bounds, however, they are more attractive as the cost of
the initial policy can be high while the cost of the optimal
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Figure 3. Learning curves on Asterix and Seaquest. The results are averaged over 5 datasets. The shaded regions represent one standard
error of the mean. One epoch contains 100k updates.

policy can be low. Small-cost bounds for online learning
were given by Lee et al. (2020) for learning in tabular MDPs,
while Kakade et al. (2020) derived such results for linear
quadratic regulators (LQR). To our knowledge we give the
first small-cost bound for batch RL under completeness
(Antos et al., 2007; Munos & Szepesvári, 2008).

Small-cost bounds in bandits Several works get small-
cost bounds in contextual bandits (Allen-Zhu et al., 2018;
Foster & Krishnamurthy, 2021; Olkhovskaya et al., 2023).
In their Theorem 3, Foster & Krishnamurthy (2021) show
that for batch contextual bandits, playing the greedy pol-
icy with respect to a reward function estimated via log-loss
enjoys a small-cost bound, whereas in their Theorem 2
they show that if a reward function is estimated via squared
loss, the greedy policy fails to achieve a small-cost guar-
antee. Our main result, Theorem 5.1 can be viewed as the
sequel to their Theorem 3. Abeille et al. (2021) show that
for stochastic logistic bandits, where the costs/rewards are
Bernoulli, the regret can be made to scale with the variance
of the optimal arm. This is simultaneously a small-cost and
small-return bound. They achieve this bound by employ-
ing optimism together with maximum likelihood estimation
(MLE). Janz et al. (2024) extend this result and show that
this result continues to hold if the reward distribution comes
from a “self-concordant”, single-parameter family.

Theory on batch RL The theory literature on batch RL
has largely focused on proving sample efficiency rates. Chen
& Jiang (2019) proved that FQI-SQ gets a rate optimal bound
of 1/

√
n when realizability, concentrability and complete-

ness hold. Foster et al. (2021) then show that if one assumes
concentrability then completeness is a necessary assumption
for sample efficient batch RL. Xie & Jiang (2021) prove
that if one uses the stronger notation of concentrability from
Munos (2003) then sample efficient batch RL is possible
even with only realizability. To our best knowledge, the pre-
vious theoretical works on batch RL have only considered
algorithms where value estimation used squared loss (e.g.,
Antos et al., 2007; Farahmand, 2011; Pires & Szepesvári,

2012; Chen & Jiang, 2019; Xie & Jiang, 2021).

Concurrent empirical work The concurrent and inde-
pendent empirical work of Farebrother et al. (2024) also
advocates for log-loss, but they end up with the approach
that is used in distributional RL, which reduces regression to
multiclass classification. This is not only more complicated
than using log-loss (more parameters), but also introduces
irreducible bias, whereas our approach avoids this.

8. Conclusions
By proving that FQI-LOG is more sample efficient in MDPs
with a small optimal cost v̄⋆ than FQI-SQ, we showed that
in batch RL the loss function genuinely matters. We believe
our result holds generally and can be extended to any batch
RL setting where the squared loss has bounded error, such
as when pessimistic methods are used. Another intriguing
extension would be deriving small-cost bounds in batch RL
with only realizability (and a stronger concentrability as-
sumption), perhaps following the analysis of Xie & Jiang
(2021). Wagenmaker et al. (2022) get small-return bounds
for online RL in linear MDPs. Can we get small-cost bounds
in online RL with linear function approximation? When and
how? Finally, our mountain car experiments indicate that
log-loss might perform well in goal-oriented MDPs (Bert-
sekas, 1995), where the learner is tasked with reaching some
goal and this is possible. However, in this formulation there
is no “pressure” for reaching the goal as quickly as possible.
It remains to be seen how this could be incorporated in al-
gorithms like ours. (Staying away from failure zones for as
long as possible can be easily formulated with the help of
discounting.) Our experiments concerning whether switch-
ing to the log-loss is sufficient to replicate successes of the
more complex C51 distributional RL algorithm were incon-
clusive. Here, it will be interesting to investigate whether
switching to log-loss, but also keeping the losses used by
C51 as auxiliary loss can lead to a method that outperforms
both C51 and our method.
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Munos, R. and Szepesvári, C. Finite-time bounds for fitted
value iteration. Journal of Machine Learning Research
(JMLR), 2008. [pp. 5 and 9]

Neu, G. First-order regret bounds for combinatorial semi-
bandits. In Conference on Learning Theory (COLT), 2015.
[p. 5]

Olkhovskaya, J., Mayo, J., van Erven, T., Neu, G., and Wei,
C.-Y. First- and second-order bounds for adversarial lin-
ear contextual bandits. In Advances in Neural Information
Processing Systems (NeurIPS), 2023. [p. 9]
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A. Preliminary results
In this section we introduce and prove some elementary inequalities that connect useful metrics on function spaces, and then
state a concentration result of Foster & Krishnamurthy (2021) for the log-loss estimator. The concentration result gives a
high probability upper bound on the error of the log-loss estimator, as measured by the integrated binary Hellinger loss
(defined below). This result is central to our analysis. The elementary inequalities connect the integrated binary Hellinger
loss to both the Hellinger distance and the triangular discrimination, and will reduce the analysis of our algorithm to studying
the approximation error of its value function estimates {fj}kj=1.

The analysis of FQI-LOG revolves around controlling the Hellinger distance, which is a distance between nonnegative
integrable functions. In particular, for λ-integrable functions f, g ≥ 0, the Hellinger distance between f and g is defined as

H(f, g) =
1√
2

∥∥∥√f −√g
∥∥∥
2,λ

.

A.1. Some basic inequalities

Given real numbers p, q ∈ [0, 1], we define the binary Hellinger loss of p and q as

h2(p, q) =
1

2
(
√
p−√q)2 + 1

2

(√
1− p−

√
1− q

)2
, (7)

and immediately observe that 0 ≤ h2(p, q) ≤ 1. Note that the Hellinger distance between two distributions P and Q over a
common domain is defined as 1√

2

∥∥√p−√q∥∥
2,λ

, where p = dP/dλ and q = dQ/dλ are the densities of P and Q with

respect to a dominating distribution λ. Thus the binary Hellinger loss between p and q, h2(p, q), is the squared Hellinger
distance between Bernoulli distributions with means p and q.

Lemma A.1. For all p, q ∈ [0, 1], we have

1

4

(p− q)2

p+ q
≤ 1

2
(
√
p−√q)2 ≤ h2(p, q) , (8)

where for p = q = 0 we define the left-hand side to be zero.

Proof. If p = q = 0 then equality holds trivially, and otherwise (
√
p+
√
q)2 ≤ 2(p+ q) implies

(p− q)2

4(p+ q)
≤ (p− q)2

2(
√
p+
√
q)2

=
1

2
(
√
p−√q)2 ≤ 1

2
(
√
p−√q)2 + 1

2

(√
1− p−

√
1− q

)2
= h2(p, q) .

The next result holds for an extended definition of h2 that replaces the inputs p, q ∈ [0, 1] with functions f, g : X → [0, 1].
Given such functions, we define h2(f, g) : X → [0, 1] by

(h2(f, g))(x) = h2(f(x), g(x)) , x ∈ X .

With this definition in hand, the following is a straightforward corollary of Lemma A.1.

Corollary A.2. For any distribution ν over the set X and any measurable functions f, g : X → [0, 1],∥∥∥∥ f − g√
f + g

∥∥∥∥
2,ν

≤
√
2
∥∥∥√f −√g

∥∥∥
2,ν
≤ 2

∥∥h2(f, g)∥∥1/2
1,ν

,

where for f(x) = g(x) = 0 we define f(x)−g(x)√
f(x)+g(x)

= 0.

We call the quantity
∥∥h2(f, g)∥∥

1,ν
, which appears on the right hand side above, the integrated binary Hellinger loss between

f and g. Squaring all quantities and dividing through by 4 yields the equivalent inequalities

1

4

∥∥∥∥ f − g√
f + g

∥∥∥∥2
2,ν

≤ 1

2

∥∥∥√f −√g
∥∥∥2
2,ν
≤
∥∥h2(f, g)∥∥

1,ν
.
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In words, the integrated binary Hellinger loss between f and g is lower bounded by their squared Hellinger distance, which
itself is lower bounded by one quarter of the triangular discrimination between them. The latter is essentially the squared
distance between f and g, but rescaled pointwise by 1/

√
f + g. Because |a− b|/

√
a+ b ≤ ε implies |a− b| ≤ ε

√
a+ b,

we see that a bound on the rescaled distance between two values tightens the bound between them whenever
√
a+ b < 1.

Exploiting this property is key to our later analysis.

Proof of Corollary A.2. Apply Lemma A.1 pointwise and then integrate both sides of the inequalities over ν, before taking
square roots and multiplying by 2 to simplify the constants.

A.2. Concentration for the log-loss estimator

Fix a set X , which, for the sake of avoiding measurability issues, is assumed to be finite. Let (X1, Y1), . . . , (Xn, Yn)
be independent, identically distributed random elements taking values in X × [0, 1]. Let f⋆ be the regression function
underlying ν: f⋆(x) = E [Y1 |X1 = x]. Let F ⊆ [0, 1]X be a finite set of [0, 1]-valued functions with domain X . Recall
the log-loss estimator:

f̂log = argmin
f∈F

n∑
i=1

ℓlog(f(Xi); Yi),

where, for y, y′ ∈ [0, 1],

ℓlog(y; y
′) = y′ log

1

y
+ (1− y′) log

1

1− y
,

where we define 0 log∞ = limx→0 x log 1/x = 0. Foster & Krishnamurthy (2021) show the following concentration result
for f̂log, which we will need:

Theorem A.3. Suppose f⋆ ∈ F . Let Dn = {(Xi, Yi)}ni=1. Then, for any δ ∈ (0, 1), with probability at least 1− δ, we have

∥h2(f̂log, f⋆)∥1,ν ≤
2 log(|F|/δ)

n
,

where ν denotes the common distribution of X1, . . . , Xn.

Proof. The result follows from the last equation on page 24 of the arXiv version of the paper by Foster & Krishnamurthy
(2021) with A = 1.

B. Proof of Theorem 5.1
In this section we give the main steps of the proof of Theorem 5.1. For the benefit of the reader, we first reproduce the text
of the theorem.

Theorem B.1. Given a dataset Dn = {(Si, Ai, Ci, S
′
i)}ni=1 with n ∈ N and a finite function class F ⊆ [0, 1]S×A that

satisfy Assumptions 3.1, 3.2 and 3.4, it holds with probability 1− δ that the output policy of FQI-LOG after k iterations,
πk = πfk , satisfies

v̄πk − v̄⋆ ≤ C̃

(
1

(1− γ)2

√
v̄⋆C log (|F|2/δ)

n
+

C log
(
|F|2/δ

)
(1− γ)4n

+
γ

k
2

1− γ
+

γk

(1− γ)2

)
.

where C̃ > 0 is an absolute constant.

The proof is reduced to two propositions and some extra calculations. We start by stating the two propositions first. The
proofs of these propositions require more steps and will be developed in their own sections, following the proof of the main
result, which ends this section.

The first proposition shows that the error of a policy that is greedy with respect to an action-value function f : S×A → [0,∞)
can be bounded by the triangular discrimination between the action-value function and q⋆, the optimal action-value function
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in our MDP. To state this proposition, for f as above, we define ∆f : S ×A → [0,∞), the pointwise triangular deviation of
f from q⋆:

∆f (s, a) =
f(s, a)− q⋆(s, a)√
f(s, a) + q⋆(s, a)

, (s, a) ∈ S ×A .

To state the proposition, recall that for a distribution η over the states and a stationary policy π, we let η × π denote the joint
probability distribution over the state-action pairs resulting from first sampling a state S ∼ η and then an action A ∼ π(S).
With this, the first proposition is as follows:
Proposition B.2. Let f : S × A → [0,∞) and let π = πf be a policy that is greedy with respect to f . Define
Df = suph≥1 max(∥∆f∥2,ηπ

h×π , ∥∆f∥2,ηπ
h×π⋆). Then, it holds that

v̄π − v̄⋆ ≤ 22Df

1− γ

√
2v̄⋆ +

512D2
f

(1− γ)2
.

Recall that above ηπh is the distribution induced over the states in step h when π is followed from the start state distribution
η1. As expected, the proof uses the performance difference lemma, followed by arguments that relate the stage-wise expected
error that arises from the performance difference lemma to the “size” of ∆f .

When the above proposition is applied to f = fk, the action-value function obtained in the kth iteration of our algorithm, we
see that it remains to bound Dfk . The bound will be based on the second proposition:
Proposition B.3. For any admissible distribution ν over S ×A that may also depend on the data Dn, for any δ ∈ (0, 1),
k ≥ 1, with probability 1− δ,

∥∆fk∥2,ν ≤

√
32C log (|F|2/δ)

(1− γ)2n
+
√
2γ

k
2 , (9)

where fk denotes the value function computed by FQI, Algorithm 1, in step k based on the data Dn.

The proof of this proposition uses (i) showing that T enjoys some contraction properties with respect to appropriately
chosen Hellinger distances; (ii) using these contraction properties to show that the Hellinger distance between fk and q⋆ is
controlled by the Hellinger distances between fk and T fk, and then using the results of the previous section to show that
these are controlled by the algorithm.

With these two statements in place, the proof the main theorem is as follows:

Proof of Theorem B.1. Fix k ≥ 1. For h ≥ 1, let ηkh = ηπk

h , Dfk = suph≥1 max(∥∆fk∥2,ηk
h×πk

, ∥∆fk∥2,ηk
h×π⋆). Since,

by definition, πk is greedy with respect to fk, we can use Proposition B.2 to get

v̄πk − v̄⋆ ≤ 22
√
2Dfk

1− γ

√
v̄⋆ +

512D2
fk

(1− γ)2
. (10)

It remains to bound Dfk . An application of Proposition B.3 gives that for any 0 < δ < 1, with probability 1− δ,

S := sup
ν admissible

∥Dfk∥2,ν ≤

√
32C log (|F|2/δ)

(1− γ)2n
+
√
2γ

k
2 . (11)

Since ηkh × πk and ηkh × π⋆ are admissible, as can be easily seen with an argument similar to that used in the proof of
Lemma B.16, it follows that with probability 1− δ,

Dfk ≤ S ≤

√
32C log (|F|2/δ)

(1− γ)2n
+
√
2γ

k
2 . (12)

Squaring both sides and using the inequality (a+ b)2 ≤ 2a2 + 2b2, we get that the inequality

D2
fk
≤

64C log
(
|F|2/δ

)
(1− γ)2n

+ 4γk
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also holds, on the same event when Equation (12) holds. Plugging these bounds into Equation (10), we get that with
probability at least 1− δ,

v̄πk − v̄⋆ ≤ 22
√
2Dfk

1− γ

√
v̄⋆ +

512D2
fk

(1− γ)2

≤ 176

(1− γ)2

√
v̄⋆C log (|F|2/δ)

n
+

32768C log
(
|F|2/δ

)
(1− γ)4n

+
44γ

k
2

1− γ
+

2048γk

(1− γ)2
.

B.1. An error bound for greedy policies: Proof of Proposition B.2

The analysis in this section is inspired by the proof of Lemma 1 of Foster & Krishnamurthy (2021). We deviate from their
analysis to avoid introducing an extra |A| factor in the bounds.

Additional Notations For any function g : S × A → R and policy π, define g(s, π) =
∑

a∈A π(a|s)g(s, a). For any
ν ∈M1(S×A) which is an |S×A| dimensional row vector, define νP ∈M1(S) as the distribution obtained over the states
by first sampling a state-action pair from ν and then following P . That is, νP is the distribution of S′ ∼ P (·|S,A) where
(S,A) ∼ ν. We can think of νP as the distribution we get when P is composed with ν. For any function f : S×A → [0,∞),
in addition to ∆f , we also define ξf : S ×A → R as

ξf (s, a) = f(s, a) + q⋆(s, a) , (s, a) ∈ S ×A . (13)

Recall that F contains [0, 1]-valued functions with domain S ×A and as such for any f ∈ F , ∆f and ξf are well-defined.

We start with the performance difference lemma, which is stated without a proof:

Lemma B.4 (Performance Difference Lemma of Kakade & Langford). For policies π, π̄ : S →M1(A), we have

v̄π − v̄π̄ =

∞∑
h=1

γh−1
〈
ηπh , q

π̄(·, π)− vπ̄
〉
. (14)

Proof. See Lemma 6.1 by Kakade & Langford (2002).

The next lemma upper bounds the one-norm distance between a nonnegative-valued function f : S ×A → [0,∞) and q⋆ in
terms of appropriate norms of ∆f and ξf .

Lemma B.5. For any function f : S ×A → [0,∞) and distribution ν ∈M1(S ×A), we have

∥f − q⋆∥1,ν ≤ ∥ξf∥1/21,ν · ∥∆f∥2,ν . (15)

Proof. We have

∥f − q⋆∥1,ν =

∥∥∥∥√f + q⋆ · f − q⋆√
f + q⋆

∥∥∥∥
1,ν

(16)

≤ ∥f + q⋆∥1/21,ν ·
∥∥∥∥ (f − q⋆)2

f + q⋆

∥∥∥∥1/2
1,ν

(Cauchy-Schwarz)

= ∥ξf∥1/21,ν · ∥∆f∥2,ν .

Lemma B.6. Let f : S ×A→ [0,∞) and let π = πf be a policy that is greedy with respect to f and h be a nonnegative
integer. Then it holds that

⟨ηπh , q⋆(·, π)− v⋆⟩ ≤
(
∥ξf∥1/21,ηπ

h×π + ∥ξf∥1/21,ηπ
h×π⋆

)(
∥∆f∥2,ηπ

h×π + ∥∆f∥2,ηπ
h×π⋆

)
.
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Proof. We have

⟨ηπh , q⋆(·, π)− v⋆⟩ = ⟨ηπh , q⋆(·, π)− q⋆(·, π⋆)⟩ (Defn of v⋆)
≤ ⟨ηπh , q⋆(·, π)− f(·, π) + f(·, π⋆)− q⋆(·, π⋆)⟩ (f(·, π) ≤ f(·, π⋆) by defn of π)
≤ ∥q⋆ − f∥1,ηπ

h×π + ∥f − q⋆∥1,ηπ
h×π⋆ . (triangle inequality)

Now,

∥q⋆ − f∥1,ηπ̃
h×π̃ + ∥f − q⋆∥1,ηπ̃

h×π⋆

≤ ∥ξf∥1/21,ηπ̃
h×π̃
· ∥∆f∥2,ηπ̃

h×π̃ + ∥ξf∥1/21,ηπ̃
h×π⋆ · ∥∆f∥2,ηπ̃

h×π⋆ (Lemma B.5)

≤
(
∥ξf∥1/21,ηπ̃

h×π̃
+ ∥ξf∥1/21,ηπ̃

h×π⋆

)(
∥∆f∥2,ηπ̃

h×π̃ + ∥∆f∥2,ηπ̃
h×π⋆

)
.

Lemma B.7. For any function f : S ×A → [0,∞) and distribution ν ∈M1(S ×A), it holds that

∥f + q⋆∥1,ν ≤ 4 ∥q⋆∥1,ν + ∥∆f∥22,ν . (17)

Proof. Let f ∈ F be fixed, we have

∥f + q⋆∥1,ν = ∥f − q⋆ + q⋆ + q⋆∥1,ν
≤ 2 ∥q⋆∥1,ν + ∥f − q⋆∥1,ν (triangle inequality)

= 2 ∥q⋆∥1,ν +

∥∥∥∥√f + q⋆
f − q⋆√
f + q⋆

∥∥∥∥
1,ν

≤ 2 ∥q⋆∥1,ν +
1

2

∥∥∥∥f + q⋆ +
(f − q⋆)2

f + q⋆

∥∥∥∥
1,ν

(ab ≤ a2+b2

2 for a, b nonnegative reals)

≤ 2 ∥q⋆∥1,ν +
1

2
∥f + q⋆∥1,ν +

1

2
∥∆f∥22,ν . (triangle inequality)

Rearranging and multiplying through by two gives the statement.

Lemma B.8. Let f : S × A → [0,∞) and let π = πf be a policy that is greedy with respect to f . Define Df =
suph≥1 max(∥∆f∥2,ηπ

h×π , ∥∆f∥2,ηπ
h×π⋆). Then, it holds that

v̄π − v̄⋆ ≤ 11Df

∞∑
h=1

γh−1 ∥v⋆∥1/2
1,ηk

h

+
28D2

f

1− γ
.

Proof. Recall that by the performance difference lemma, Lemma B.4, it holds that

v̄π − v̄⋆ =

∞∑
h=1

γh−1⟨ηπh , q⋆(·, π)− v⋆⟩ . (18)

For the remainder of this proof we fix h ≥ 1. For the hth term from the above display, we have

⟨ηπh , q⋆(·, π)− v⋆⟩ ≤
(
∥ξf∥1/21,ηπ

h×π + ∥ξf∥1/21,ηπ
h×π⋆

)(
∥∆f∥2,ηπ

h×π + ∥∆f∥2,ηπ
h×π⋆

)
(Lemma B.6)

≤
(√

4 ∥q⋆∥1,ηπ
h×π + ∥∆f∥22,ηπ

h×π +
√

4 ∥q⋆∥1,ηπ
h×π⋆ + ∥∆f∥22,ηπ

h×π⋆

)(
∥∆f∥2,ηπ

h×π + ∥∆f∥2,ηπ
h×π⋆

)
.

(Lemma B.7)

Now recall that by definition

max
{
∥∆f∥2,ηπ

h×π , ∥∆f∥2,ηπ
h×π⋆

}
≤ Df .
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Hence,

⟨ηπh , q⋆(·, π)− v⋆⟩

≤ 2Df

(√
4 ∥q⋆∥1,ηπ

h×π +D2
f +

√
4 ∥q⋆∥1,ηπ

h×π⋆ +D2
f

)
(19)

≤ 2Df

(
2Df +

√
4 ∥q⋆∥1,ηπ

h×π +
√
4 ∥q⋆∥1,ηπ

h×π⋆

)
(
√
a+ b ≤

√
a+
√
b)

= 4D2
f + 4Df ∥q⋆∥1/21,ηπ

h×π + 4Df ∥q⋆∥1/21,ηπ
h×π⋆

≤ 20D2
f +
∥q⋆∥1,ηπ

h×π + ∥q⋆∥1,ηπ
h×π⋆

2
. (ab ≤ a2+b2

2 for a, b nonnegative reals, twice with a = 4Df )

Using that v⋆, q⋆ are nonnegative valued and that v⋆(·) = q⋆(·, π⋆), we calculate ⟨ηπh , v⋆⟩ = ∥v⋆∥1,ηπ
h
= ∥q⋆∥1,ηπ

h×π⋆ .
Thus, by the previous display, after rearranging, we get

∥q⋆∥1,ηπ
h×π = ⟨ηπh , q⋆(·, π)⟩ ≤ 40D2

f + 3 ∥q⋆∥1,ηπ
h×π⋆ ,

where the equality used the non-negativity of q⋆. Plugging this back into the inequality in Equation (19) gives

⟨ηπh , q⋆(·, π)− v⋆⟩ ≤ 2Df

(√
4 ∥q⋆∥1,ηπ

h×π⋆ +D2
f +

√
4 ∥q⋆∥1,ηπ

h×π +D2
f

)
(restating Equation (19))

≤ 2Df

(√
4 ∥q⋆∥1,ηπ

h×π⋆ +D2
f +

√
160D2

f + 12 ∥q⋆∥1,ηπ
h×π⋆ +D2

f

)
≤ 2Df

(
2 ∥q⋆∥1/21,ηπ

h×π⋆ +Df +
√
161Df +

√
12 ∥q⋆∥1/21,ηπ

h×π⋆

)
(
√
a+ b ≤

√
a+
√
b)

≤ 11Df ∥q⋆∥1/21,ηπ
h×π⋆ + 28D2

f .

Combining this with Equation (18) gives the desired inequality.

Lemma B.9. For any policy π : S →M1(A) we have

∞∑
h=1

γh−1
√
⟨ηπh , vπ⟩ ≤

2
√
v̄π

1− γ
. (20)

Proof. Notice that

v̄π = ⟨η1, vπ⟩
= ⟨ηπ1 , c(·, π)⟩+ γ ⟨ηπ2 , c(·, π)⟩+ γ2 ⟨ηπ3 , c(·, π)⟩+ · · ·+ γh−1 ⟨ηπh , vπ⟩
≥ γh−1 ⟨ηπh , vπ⟩

where the inequality follows from the non-negativity of the costs. Simple rearrangement gives

⟨ηπh , vπ⟩ ≤
v̄π

γh−1
.

Using this inequality, we get

∞∑
h=1

γh−1
√
⟨ηπh , vπ⟩ ≤

∞∑
h=1

γh−1

√
v̄π

γh−1
=

∞∑
h=1

√
γh−1v̄π ≤ 2

√
v̄π

1− γ
,

where for the last inequality we used that 1/(1−√γ) ≤ 2/(1− γ).

With this we are ready to prove Proposition B.2:
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Proof of Proposition B.2. For h ≥ 1, let ηh = ηπh . Starting from Lemma B.8, we bound v̄π − v̄⋆ as follows:

v̄π − v̄⋆ ≤ 11Df

∞∑
h=1

γh−1 ∥v⋆∥1/21,ηh
+ 28D2

f

∞∑
h=1

γh−1 (Lemma B.8)

= 11Df

∞∑
h=1

γh−1
√
⟨ηh, v⋆⟩+

28D2
f

1− γ

≤ 11Df

∞∑
h=1

γh−1
√
⟨ηh, vπ⟩+

28D2
f

1− γ
(Defn of v⋆)

≤ 22Df

√
v̄π

1− γ
+

28D2
f

1− γ
(Lemma B.9, (⋆))

≤
222D2

f

2(1− γ)2
+

v̄π

2
+

28D2
f

1− γ
. (ab ≤ (a2 + b2)/2, a, b ≥ 0)

Rearranging the last inequality obtained, we get

v̄π ≤ 2v̄⋆ +
222D2

f

(1− γ)2
+

56D2
f

1− γ
.

Plugging this bound into (⋆), we get

v̄π − v̄⋆ ≤ 22Df

1− γ

√
2v̄⋆ +

222D2
f

(1− γ)2
+

56D2
f

1− γ
+

28D2
f

1− γ

≤ 22
√
2Df

1− γ

√
v̄⋆ +

222D2
f

(1− γ)2
+

165D2
f

(1− γ)3/2
+

28D2
f

1− γ
(
√
a+ b ≤

√
a+
√
b, a, b ≥ 0 twice)

≤ 22
√
2Df

1− γ

√
v̄⋆ +

512D2
f

(1− γ)2
.

B.2. Bounding the triangular deviation between fk and q⋆: Proof of Proposition B.3

As explained earlier, the analysis in this section uses contraction arguments that have a long history in the analysis of
dynamic programming algorithms in the context of MDPs. The novelty is that we need to bound the triangular deviation to
q⋆. As this has been shown to be upper bounded by the Hellinger distance (Corollary A.2), we switch to Hellinger distances
and establishes contraction properties of T with respect to such distances. This required new proofs. The change of measure
arguments used in the “error propagation analysis” are standard.

The following lemma, at a high level, establishes that the map f 7→ f∧ (“min-operator”) is a non-expansion over the set of
nonnegative functions with domain S ×A and S, respectively, when these function spaces are equipped with appropriate
norms:

Lemma B.10. Define the policy πf,g(s) = argmina∈A min{f(s, a), g(s, a)} and assume that f, g : S × A → [0,∞).
Then, for any distribution η ∈M1(S), we have that∥∥∥√f∧ −

√
g∧
∥∥∥
2,η
≤
∥∥∥√f −√g

∥∥∥
2,η×πf,f′

. (21)

Proof. Notice that for two finite sets of reals, U = {u1, . . . , un}, V = {v1, . . . , vm}, with u1 = minU , vj = minV ,
u1 ≤ vj , j ∈ [m], we have |minU − minV | = vj − u1 ≤ v1 − u1 ≤ |u1 − v1|. By taking the square root of all the
elements in both U and V , assuming these are nonnegative, we also get that

|
√
minU −

√
minV | ≤

√
v1 −

√
u1 ≤ |

√
u1 −

√
v1| . (22)
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Hence, ∥∥∥√f∧ −
√

g∧
∥∥∥2
2,η

=
∑
s∈S

η(s)

(√
min
a∈A

f(s, a)−
√
min
a∈A

g(s, a)

)2

=
∑
s∈S

η(s)

(√
f (s, πf (s))−

√
g (s, πg(s))

)2

≤
∑
s∈S

η(s)

(√
f(s, πf,g(s))−

√
g(s, πf,g(s))

)2

(by Equation (22))

=
∑
s∈S

η(s)
∑
a∈A

I {a = πf,g(s)}
(√

f(s, a)−
√
g(s, a)

)2
=
∥∥∥√f −√g

∥∥∥2
2,η×πf,g

where the inequality used the definition of πf,g(s).

We need two more auxiliary lemmas before we can show the desired contraction result for T . The first is an elementary
result that shows that for x ≥ 0, over the nonnegative reals the map u 7→

√
x+ u is a nonexpansion:

Lemma B.11. For any x, a, b ≥ 0, we have∣∣√x+ a−
√
x+ b

∣∣ ≤ ∣∣√a−√b∣∣ . (23)

Proof. For x ≥ 0, let f(x) =
∣∣√x+ a −

√
x+ b

∣∣. Note that the desired inequality is equivalent to that for any x ≥ 0,
f(x) ≤ f(0). This, it suffices to show that f is a decreasing function over its domain.

Without loss of generality we may assume that a > b (when a = b, the inequality trivially holds, and if a < b, just relabel
a to b and b to a). Hence, f(x) =

√
x+ a−

√
x+ b for any x ≥ 0 by the monotonicity of the square root function. For

x > 0, f is differentiable. Here, we get

f ′(x) =
∂

∂x

(√
x+ a−

√
x+ b

)
= −

(√
x+ a−

√
x+ b

)2
2
√
x+ a

√
x+ b

(√
x+ a−

√
x+ b

) ≤ 0 . (24)

Now, since f is continuous over its domain, by the mean-value theorem, f is decreasing over [0,∞).

The next result shows that for any probability distribution λ over some set X , the map g 7→
√
⟨λ, g⟩ is a nonexpansion from

H2(X , λ) to the reals, where H2(X , λ) is the space of nonnegative valued functions over X equipped with the Hellinger
distance d(g, h) := ∥g1/2 − h1/2∥2,λ.

Lemma B.12. Given a random element X taking values in X and nonnegative-valued functions g, g′ : X → [0,∞) such
that g(X) and g′(X) are integrable, we have(√

E g(X)−
√
E g′(X)

)2
≤ E

(√
g(X)−

√
g′(X)

)2
<∞ . (25)

Proof. The result follows by some calculation:(√
E g(X)−

√
E g′(X)

)2
= E g(X)− 2

√
E g(X)

√
E g′(X) + E g′(X)

≤ E g(X)− 2E
√
g(X)g′(X) + E g′(X) (Cauchy-Schwarz)

= E
[
g(X)− 2

√
g(X)g′(X) + g′(X)

]
= E

(√
g(X)−

√
g′(X)

)2
,
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where the Cauchy-Schwarz step uses that g and g′ are nonnegative. Finally, that E
(√

g(X)−
√
g′(X)

)2
< ∞

follows because, from (a + b)2 ≤ 2(a2 + b2), and hence since g(X) and g′(X) are assumed to be integrable,

E
(√

g(X)−
√
g′(X)

)2
≤ 2E g(X) + 2E g′(X) <∞

With this we are ready to prove that the Bellman optimality operator is a contraction when used over nonnegative functions
equipped with Hellinger distances defined with respect to appropriate measures:
Lemma B.13. For any distribution ν ∈M1(S ×A), and functions f, g : S ×A → [0,∞) we have∥∥∥√T f −√T g∥∥∥

2,ν
≤ γ1/2

∥∥∥√f −√g
∥∥∥
2,νP×πf,g

.

Proof. By the definition of T , we have T f = c + γPf∧. Here, P is viewed as an SA × S matrix, while c and f∧ are
viewed as S-dimensional vectors where S and A denote the cardinalities of S and A respectively. Also recalling that we use√
f to denote the elementwise square root of f for f a vector/function, we have

∥∥∥√T f −√T g∥∥∥2
2,ν

=
∥∥∥√c+ γ Pf∧ −

√
c+ γ Pg∧

∥∥∥2
2,ν

≤
∥∥∥√γ Pf∧ −

√
γ Pg∧

∥∥∥2
2,ν

(Lemma B.11 and the defn. of ∥·∥2,ν)

= γ
∥∥∥√Pf∧ −

√
Pg∧

∥∥∥2
2,ν

≤ γ
∥∥∥√f∧ −

√
g∧
∥∥∥2
2,νP

(Lemma B.12)

≤ γ
∥∥∥√f −√g

∥∥∥2
2,νP×πf,g

, (Lemma B.10)

thus finishing the proof.

The next result is a simple change-of-measure argument:
Lemma B.14. Let µ, ν be any distributions over S × A and assume that ν is admissible. Then for p ≥ 1 we have
∥·∥p,ν ≤ C1/p∥·∥p,µ.

Proof. For any function g : S ×A → R, we have

∥g∥p,ν =

 ∑
(s,a)∈S×A

|g(s, a)|pν(s, a)

1/p

≤

 ∑
(s,a)∈S×A

|g(s, a)|pCµ(s, a)

1/p

(Assumption 3.2)

= C1/p

 ∑
(s,a)∈S×A

|g(s, a)|pµ(s, a)

1/p

= C1/p∥g∥p,µ .

Lemma B.15. Let µ, ν be any distributions over S×A and assume that ν is admissible. Then, for any f, f ′ : S×A→ [0,∞)
we have ∥∥∥√f −

√
q⋆
∥∥∥
2,ν
≤
√
C
∥∥∥√f −

√
T f ′

∥∥∥
2,µ

+
√
γ
∥∥∥√f ′ −

√
q⋆
∥∥∥
2,νP×πf′,q⋆

.

and
∥∥√f −√q⋆∥∥

2,ν
≤

√
C

1−√
γ

∥∥√f −√q⋆∥∥
2,µ

.
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Proof. We have ∥∥∥√f −
√
q⋆
∥∥∥
2,ν

=
∥∥∥√f −

√
T f ′ +

√
T f ′ −

√
T q⋆

∥∥∥
2,ν

(q⋆ = T q⋆)

≤
∥∥∥√f −

√
T f ′

∥∥∥
2,ν

+
∥∥∥√T f ′ −

√
T q⋆

∥∥∥
2,ν

(triangle inequality)

≤
√
C
∥∥∥√f −

√
T f ′

∥∥∥
2,µ

+
√
γ
∥∥∥√f ′ −

√
q⋆
∥∥∥
2,νP×πf′,q⋆

where the last inequality uses Lemmas B.13 and B.14. For the second term let f ′ = f and ν0 = argmaxν
∥∥√f −√q⋆∥∥

2,ν
,

then ∥∥∥√f −
√
q⋆
∥∥∥
2,ν0

≤
√
C
∥∥∥√f −

√
q⋆
∥∥∥
2,µ

+ γ1/2
∥∥∥√f −

√
q⋆
∥∥∥
2,ν0P×πf,q⋆

≤
√
C
∥∥∥√f −

√
q⋆
∥∥∥
2,µ

+ γ1/2
∥∥∥√f −

√
q⋆
∥∥∥
2,ν0

.

Therefore,
∥∥√f −√q⋆∥∥

2,ν
≤
∥∥√f −√q⋆∥∥

2,ν0
≤

√
C

1−√
γ

∥∥√f −√q⋆∥∥
2,µ

.

Lemma B.16 (Error propagation). Fix k ≥ 1 and let f0, f1, . . . , fk : S ×A → [0,∞) be arbitrary functions such that f0
takes values in [0, 1], ν, µ distributions over S ×A and assume that ν is an admissible distribution. Then,∥∥∥√fk −

√
q⋆
∥∥∥
2,ν
≤ γ

k
2 +

2
√
C

1− γ
max
1≤τ≤k

∥∥∥√fτ −
√
T fτ−1

∥∥∥
2,µ

.

Proof. Define (νi)0≤i≤k via νk = ν and for 0 ≤ i < k, let νi = (νi+1P ) × πfi,q⋆ . Note that by assumption, νk is
admissible. It then follows that νi for 0 ≤ i < k is also admissible. Indeed, if for some 0 ≤ i < k, π = (π0, π1, . . . ) is the
nonstationary policy that realizes νi+1 in step s ≥ 0, π′ = (π0, π1, . . . , πs, πfi,q⋆ , πs+1, . . . ) is a policy that realizes νi in
step s+ 1.

Hence, ∥∥∥√fk −
√
q⋆
∥∥∥
2,ν

=
∥∥∥√fk −

√
q⋆
∥∥∥
2,νk

(definition of νk)

≤
√
C
∥∥∥√fk −

√
T fk−1

∥∥∥
2,µ

+
√
γ
∥∥∥√fk−1 −

√
q⋆
∥∥∥
2,νk−1

, (Lemma B.15)

where the second inequality uses Lemma B.15 while setting f, f ′, ν, µ to fk, fk−1, νk and µ (the data generating distribution),
respectively, and noting that, by definition, νP ×πf ′,q⋆ of the Lemma is (νkP )×πfk−1,q⋆ = νk−1, and that, by assumption,
νk = ν is admissible.

Now, we recurse on the second term of the above display using Lemma B.15:

√
γ
∥∥∥√fk−1 −

√
q⋆
∥∥∥
2,νk−1

≤
√

γ C
∥∥∥√fk−1 −

√
T fk−2

∥∥∥
2,µ

+ γ
∥∥∥√fk−2 −

√
q⋆
∥∥∥
2,νk−2

where the inequality uses Lemma B.15 while setting f, f ′, ν, µ to fk−1, fk−2, νk−1 and µ (the data generating distribution),
respectively, and noting that, by definition, νP × πf ′,q⋆ of the Lemma is (νk−1P )× πfk−2,q⋆ = νk−2, and that, as argued
before, νk−1 is admissible.

Continuing this way, and then plugging in back to the first display of the proof, we get

∥∥∥√fk −
√
q⋆
∥∥∥
2,ν
≤
√
C

k∑
j=1

γ
k−j
2

∥∥∥√fj −
√
T fj−1

∥∥∥
2,µ

+ γ
k
2

∥∥∥√f0 −
√
q⋆
∥∥∥
2,ν0

≤
√
C

k∑
j=1

γ
k−j
2

∥∥∥√fj −
√
T fj−1

∥∥∥
2,µ︸ ︷︷ ︸

S:=

+γ
k
2 ,
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where the second inequality holds because by assumption, f0 takes values in [0, 1] and so does q⋆. Hence, (
√
f0−
√
q⋆)2 ≤ 1

and thus
∥∥√f0 −√q⋆∥∥2,ν0

≤ 1.

Now, we bound S defined above:

S ≤ max
τ∈[1,...,k]

∥∥∥√fτ −
√
T fτ−1

∥∥∥
2,µ

k∑
j=1

γ
k−j
2

≤ 2

1− γ
max

τ∈[1,...,k]

∥∥∥√fτ −
√
T fτ−1

∥∥∥
2,µ

. (1/(1−√γ) ≤ 2/(1− γ))

Chaining the inequalities finishes the proof.

Remark B.1. Note that in the proof of the last result it was essential that in the definition of admissibility we allow
nonstationary policies.

With this we are ready to prove Proposition B.3:

Proof of Proposition B.3. For the proof let ft denote the action-value function computed by FQI in step t = 0, 1, . . . , k.
Recall that by construction f0 ∈ F and that by assumption all functions in F take values in [0, 1]. We have

∥∆fk∥2,ν =

∥∥∥∥ fk − q⋆√
fk + q⋆

∥∥∥∥
2,ν

(definition of ∆f )

≤
√
2
∥∥∥√fk −

√
q⋆
∥∥∥
2,ν

(first part of Corollary A.2)

≤
√
2γ

k
2 +

2
√
2
√
C

1− γ
max
1≤τ≤k

∥∥∥√fτ −
√
T fτ−1

∥∥∥
2,µ

(Lemma B.16, 0 ≤ f0 ≤ 1)

≤
√
2γ

k
2 +

4

1− γ
max

τ∈[1,...,k]

∥∥h2(fτ ∥ T fτ−1)
∥∥1/2
1,µ

. (second part of Corollary A.2)

where in the second inequality we used that by assumption ν is admissible.

For g : S ×A → [0, 1], let f̂g be the function learned by regressing on g via log-loss, i.e.,

f̂g = argmin
f∈F

n∑
i=1

ℓlog (f(Si, Ai); Ci + γg∧(S′
i)) .

Note that fτ = f̂fτ−1
. Hence,∥∥h2(fτ ∥ T fτ−1)

∥∥
1,µ

=
∥∥∥h2(f̂fτ−1

∥ T fτ−1)
∥∥∥
1,µ
≤ max

g∈F

∥∥∥h2(f̂g ∥ T g)∥∥∥
1,µ

(because fτ−1 ∈ F)

Since this applies for any 1 ≤ τ ≤ k, all that remains is to bound the right-hand side of the last display. We will
use Theorem A.3 for this purpose. This result can be applied because, on the one hand, by Assumption 3.1, E [Ci +
γg∧(S′

i)|Si, Ai] = T g (Si, Ai), and by Assumption 3.4, T g ∈ F whenever g ∈ F and because, again, by Assumption 3.1,
(Si, Ai, Ci, S

′
i+1) are independent, identically distributed random variables for i = 1, . . . , n. Thus, Theorem A.3 together

with a union bound and recalling that the distribution of (Si, Ai) is µ gives that for any 0 < δ < 1,

max
g∈F

∥∥∥h2(f̂g, T g)∥∥∥
1,µ
≤ 2 log(|F|2/δ)

n
.

Putting things together, we get that for any fixed 0 < δ < 1, with probability 1− δ,

∥∆fk∥2,ν ≤

√
32C log (|F|2/δ)

(1− γ)2n
+
√
2γ

k
2 .
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C. Experimental details
In this section, we provide additional experimental details and results.

In our Atari experiments, we use the hyperparameters reported in Agarwal et al. (2020), and we do not tune the hyperpa-
rameter for our proposed method. The original dataset contains 5 runs of DQN replay data. Each run of DQN replay data
contains 50 datasets, and each dataset contains 1 million transitions. Due to the memory constraint, we can not load the
entire data. As a result, for each training epoch, we select 5 datasets randomly, subsample a total of 500k transitions from
the 5 selected datasets, and perform 100k updates using the 500k transitions.

Figure 4 show the result with clipped losses and unclipped losses. Log-loss consistently outperforms the DQN variants other
than C51.
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Figure 4. Learning curves on Asterix and Seaquest. The result are averaged over 5 datasets with one standard error. One epoch contains
100k updates.
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